aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SplitKit.cpp
blob: f8be7d484fe146a36247360eb09cee36dde62a25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "splitter"
#include "SplitKit.h"
#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

static cl::opt<bool>
AllowSplit("spiller-splits-edges",
           cl::desc("Allow critical edge splitting during spilling"));

//===----------------------------------------------------------------------===//
//                                 Split Analysis
//===----------------------------------------------------------------------===//

SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
                             const LiveIntervals &lis,
                             const MachineLoopInfo &mli)
  : mf_(mf),
    lis_(lis),
    loops_(mli),
    tii_(*mf.getTarget().getInstrInfo()),
    curli_(0) {}

void SplitAnalysis::clear() {
  usingInstrs_.clear();
  usingBlocks_.clear();
  usingLoops_.clear();
  curli_ = 0;
}

bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
  MachineBasicBlock *T, *F;
  SmallVector<MachineOperand, 4> Cond;
  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}

/// analyzeUses - Count instructions, basic blocks, and loops using curli.
void SplitAnalysis::analyzeUses() {
  const MachineRegisterInfo &MRI = mf_.getRegInfo();
  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
       MachineInstr *MI = I.skipInstruction();) {
    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
      continue;
    MachineBasicBlock *MBB = MI->getParent();
    if (usingBlocks_[MBB]++)
      continue;
    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
         Loop = Loop->getParentLoop())
      usingLoops_[Loop]++;
  }
  DEBUG(dbgs() << "  counted "
               << usingInstrs_.size() << " instrs, "
               << usingBlocks_.size() << " blocks, "
               << usingLoops_.size()  << " loops.\n");
}

void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
    unsigned count = usingBlocks_.lookup(*I);
    OS << " BB#" << (*I)->getNumber();
    if (count)
      OS << '(' << count << ')';
  }
}

// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
  Blocks.clear();

  // Blocks in the loop.
  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());

  // Predecessor blocks.
  const MachineBasicBlock *Header = Loop->getHeader();
  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
       E = Header->pred_end(); I != E; ++I)
    if (!Blocks.Loop.count(*I))
      Blocks.Preds.insert(*I);

  // Exit blocks.
  for (MachineLoop::block_iterator I = Loop->block_begin(),
       E = Loop->block_end(); I != E; ++I) {
    const MachineBasicBlock *MBB = *I;
    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
       SE = MBB->succ_end(); SI != SE; ++SI)
      if (!Blocks.Loop.count(*SI))
        Blocks.Exits.insert(*SI);
  }
}

void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
  OS << "Loop:";
  print(B.Loop, OS);
  OS << ", preds:";
  print(B.Preds, OS);
  OS << ", exits:";
  print(B.Exits, OS);
}

/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
  LoopPeripheralUse use = ContainedInLoop;
  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
       I != E; ++I) {
    const MachineBasicBlock *MBB = I->first;
    // Is this a peripheral block?
    if (use < MultiPeripheral &&
        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
      if (I->second > 1) use = MultiPeripheral;
      else               use = SinglePeripheral;
      continue;
    }
    // Is it a loop block?
    if (Blocks.Loop.count(MBB))
      continue;
    // It must be an unrelated block.
    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
    return OutsideLoop;
  }
  return use;
}

/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has predecessors from outside the loop
/// periphery.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
                                     BlockPtrSet &CriticalExits) {
  CriticalExits.clear();

  // A critical exit block has curli live-in, and has a predecessor that is not
  // in the loop nor a loop predecessor. For such an exit block, the edges
  // carrying the new variable must be moved to a new pre-exit block.
  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
       I != E; ++I) {
    const MachineBasicBlock *Exit = *I;
    // A single-predecessor exit block is definitely not a critical edge.
    if (Exit->pred_size() == 1)
      continue;
    // This exit may not have curli live in at all. No need to split.
    if (!lis_.isLiveInToMBB(*curli_, Exit))
      continue;
    // Does this exit block have a predecessor that is not a loop block or loop
    // predecessor?
    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
         PE = Exit->pred_end(); PI != PE; ++PI) {
      const MachineBasicBlock *Pred = *PI;
      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
        continue;
      // This is a critical exit block, and we need to split the exit edge.
      CriticalExits.insert(Exit);
      break;
    }
  }
}

void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
                                     BlockPtrSet &CriticalPreds) {
  CriticalPreds.clear();

  // A critical predecessor block has curli live-out, and has a successor that
  // has curli live-in and is not in the loop nor a loop exit block. For such a
  // predecessor block, we must carry the value in both the 'inside' and
  // 'outside' registers.
  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
       I != E; ++I) {
    const MachineBasicBlock *Pred = *I;
    // Definitely not a critical edge.
    if (Pred->succ_size() == 1)
      continue;
    // This block may not have curli live out at all if there is a PHI.
    if (!lis_.isLiveOutOfMBB(*curli_, Pred))
      continue;
    // Does this block have a successor outside the loop?
    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
         SE = Pred->succ_end(); SI != SE; ++SI) {
      const MachineBasicBlock *Succ = *SI;
      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
        continue;
      if (!lis_.isLiveInToMBB(*curli_, Succ))
        continue;
      // This is a critical predecessor block.
      CriticalPreds.insert(Pred);
      break;
    }
  }
}

/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
                                     BlockPtrSet &CriticalExits) {
  // If we don't allow critical edge splitting, require no critical exits.
  if (!AllowSplit)
    return CriticalExits.empty();

  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
       I != E; ++I) {
    const MachineBasicBlock *Succ = *I;
    // We want to insert a new pre-exit MBB before Succ, and change all the
    // in-loop blocks to branch to the pre-exit instead of Succ.
    // Check that all the in-loop predecessors can be changed.
    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
         PE = Succ->pred_end(); PI != PE; ++PI) {
      const MachineBasicBlock *Pred = *PI;
      // The external predecessors won't be altered.
      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
        continue;
      if (!canAnalyzeBranch(Pred))
        return false;
    }

    // If Succ's layout predecessor falls through, that too must be analyzable.
    // We need to insert the pre-exit block in the gap.
    MachineFunction::const_iterator MFI = Succ;
    if (MFI == mf_.begin())
      continue;
    if (!canAnalyzeBranch(--MFI))
      return false;
  }
  // No problems found.
  return true;
}

void SplitAnalysis::analyze(const LiveInterval *li) {
  clear();
  curli_ = li;
  analyzeUses();
}

const MachineLoop *SplitAnalysis::getBestSplitLoop() {
  assert(curli_ && "Call analyze() before getBestSplitLoop");
  if (usingLoops_.empty())
    return 0;

  LoopPtrSet Loops;
  LoopBlocks Blocks;
  BlockPtrSet CriticalExits;

  // We split around loops where curli is used outside the periphery.
  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
       E = usingLoops_.end(); I != E; ++I) {
    const MachineLoop *Loop = I->first;
    getLoopBlocks(Loop, Blocks);
    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });

    switch(analyzeLoopPeripheralUse(Blocks)) {
    case OutsideLoop:
      break;
    case MultiPeripheral:
      // FIXME: We could split a live range with multiple uses in a peripheral
      // block and still make progress. However, it is possible that splitting
      // another live range will insert copies into a peripheral block, and
      // there is a small chance we can enter an infinity loop, inserting copies
      // forever.
      // For safety, stick to splitting live ranges with uses outside the
      // periphery.
      DEBUG(dbgs() << ": multiple peripheral uses\n");
      break;
    case ContainedInLoop:
      DEBUG(dbgs() << ": fully contained\n");
      continue;
    case SinglePeripheral:
      DEBUG(dbgs() << ": single peripheral use\n");
      continue;
    }
    // Will it be possible to split around this loop?
    getCriticalExits(Blocks, CriticalExits);
    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
    if (!canSplitCriticalExits(Blocks, CriticalExits))
      continue;
    // This is a possible split.
    Loops.insert(Loop);
  }

  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
               << " candidate loops.\n");

  if (Loops.empty())
    return 0;

  // Pick the earliest loop.
  // FIXME: Are there other heuristics to consider?
  const MachineLoop *Best = 0;
  SlotIndex BestIdx;
  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
       ++I) {
    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
    if (!Best || Idx < BestIdx)
      Best = *I, BestIdx = Idx;
  }
  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
  return Best;
}

//===----------------------------------------------------------------------===//
//                               LiveIntervalMap
//===----------------------------------------------------------------------===//

// Work around the fact that the std::pair constructors are broken for pointer
// pairs in some implementations. makeVV(x, 0) works.
static inline std::pair<const VNInfo*, VNInfo*>
makeVV(const VNInfo *a, VNInfo *b) {
  return std::make_pair(a, b);
}

void LiveIntervalMap::reset(LiveInterval *li) {
  li_ = li;
  valueMap_.clear();
  liveOutCache_.clear();
}

bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
  return i != valueMap_.end() && i->second == 0;
}

// defValue - Introduce a li_ def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
  assert(li_ && "call reset first");
  assert(ParentVNI && "Mapping  NULL value");
  assert(Idx.isValid() && "Invalid SlotIndex");
  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");

  // Create a new value.
  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());

  // Preserve the PHIDef bit.
  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
    VNI->setIsPHIDef(true);

  // Use insert for lookup, so we can add missing values with a second lookup.
  std::pair<ValueMap::iterator,bool> InsP =
    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));

  // This is now a complex def. Mark with a NULL in valueMap.
  if (!InsP.second)
    InsP.first->second = 0;

  return VNI;
}


// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
                                  bool *simple) {
  assert(li_ && "call reset first");
  assert(ParentVNI && "Mapping  NULL value");
  assert(Idx.isValid() && "Invalid SlotIndex");
  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");

  // Use insert for lookup, so we can add missing values with a second lookup.
  std::pair<ValueMap::iterator,bool> InsP =
    valueMap_.insert(makeVV(ParentVNI, 0));

  // This was an unknown value. Create a simple mapping.
  if (InsP.second) {
    if (simple) *simple = true;
    return InsP.first->second = li_->createValueCopy(ParentVNI,
                                                     lis_.getVNInfoAllocator());
  }

  // This was a simple mapped value.
  if (InsP.first->second) {
    if (simple) *simple = true;
    return InsP.first->second;
  }

  // This is a complex mapped value. There may be multiple defs, and we may need
  // to create phi-defs.
  if (simple) *simple = false;
  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
  assert(IdxMBB && "No MBB at Idx");

  // Is there a def in the same MBB we can extend?
  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
    return VNI;

  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
  // Perform a search for all predecessor blocks where we know the dominating
  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
               << " at " << Idx << " in " << *li_ << '\n');

  // Blocks where li_ should be live-in.
  SmallVector<MachineDomTreeNode*, 16> LiveIn;
  LiveIn.push_back(mdt_[IdxMBB]);

  // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
  for (unsigned i = 0; i != LiveIn.size(); ++i) {
    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI) {
       MachineBasicBlock *Pred = *PI;
       // Is this a known live-out block?
       std::pair<LiveOutMap::iterator,bool> LOIP =
         liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
       // Yes, we have been here before.
       if (!LOIP.second) {
         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
                 dbgs() << "    known valno #" << VNI->id
                        << " at BB#" << Pred->getNumber() << '\n');
         continue;
       }

       // Does Pred provide a live-out value?
       SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
       if (VNInfo *VNI = extendTo(Pred, Last)) {
         MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
         DEBUG(dbgs() << "    found valno #" << VNI->id
                      << " from BB#" << DefMBB->getNumber()
                      << " at BB#" << Pred->getNumber() << '\n');
         LiveOutPair &LOP = LOIP.first->second;
         LOP.first = VNI;
         LOP.second = mdt_[DefMBB];
         continue;
       }
       // No, we need a live-in value for Pred as well
       if (Pred != IdxMBB)
         LiveIn.push_back(mdt_[Pred]);
    }
  }

  // We may need to add phi-def values to preserve the SSA form.
  // This is essentially the same iterative algorithm that SSAUpdater uses,
  // except we already have a dominator tree, so we don't have to recompute it.
  VNInfo *IdxVNI = 0;
  unsigned Changes;
  do {
    Changes = 0;
    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
    // Propagate live-out values down the dominator tree, inserting phi-defs when
    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
    // likely for us to visit immediate dominators before their children.
    for (unsigned i = LiveIn.size(); i; --i) {
      MachineDomTreeNode *Node = LiveIn[i-1];
      MachineBasicBlock *MBB = Node->getBlock();
      MachineDomTreeNode *IDom = Node->getIDom();
      LiveOutPair IDomValue;
      // We need a live-in value to a block with no immediate dominator?
      // This is probably an unreachable block that has survived somehow.
      bool needPHI = !IDom;

      // Get the IDom live-out value.
      if (!needPHI) {
        LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
        if (I != liveOutCache_.end())
          IDomValue = I->second;
        else
          // If IDom is outside our set of live-out blocks, there must be new
          // defs, and we need a phi-def here.
          needPHI = true;
      }

      // IDom dominates all of our predecessors, but it may not be the immediate
      // dominator. Check if any of them have live-out values that are properly
      // dominated by IDom. If so, we need a phi-def here.
      if (!needPHI) {
        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
               PE = MBB->pred_end(); PI != PE; ++PI) {
          LiveOutPair Value = liveOutCache_[*PI];
          if (!Value.first || Value.first == IDomValue.first)
            continue;
          // This predecessor is carrying something other than IDomValue.
          // It could be because IDomValue hasn't propagated yet, or it could be
          // because MBB is in the dominance frontier of that value.
          if (mdt_.dominates(IDom, Value.second)) {
            needPHI = true;
            break;
          }
        }
      }

      // Create a phi-def if required.
      if (needPHI) {
        ++Changes;
        SlotIndex Start = lis_.getMBBStartIdx(MBB);
        VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
        VNI->setIsPHIDef(true);
        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
                     << " phi-def #" << VNI->id << " at " << Start << '\n');
        // We no longer need li_ to be live-in.
        LiveIn.erase(LiveIn.begin()+(i-1));
        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
        if (MBB == IdxMBB)
          IdxVNI = VNI;
        // Check if we need to update live-out info.
        LiveOutMap::iterator I = liveOutCache_.find(MBB);
        if (I == liveOutCache_.end() || I->second.second == Node) {
          // We already have a live-out defined in MBB, so this must be IdxMBB.
          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
        } else {
          // This phi-def is also live-out, so color the whole block.
          li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
          I->second = LiveOutPair(VNI, Node);
        }
      } else if (IDomValue.first) {
        // No phi-def here. Remember incoming value for IdxMBB.
        if (MBB == IdxMBB)
          IdxVNI = IDomValue.first;
        // Propagate IDomValue if needed:
        // MBB is live-out and doesn't define its own value.
        LiveOutMap::iterator I = liveOutCache_.find(MBB);
        if (I != liveOutCache_.end() && I->second.second != Node &&
            I->second.first != IDomValue.first) {
          ++Changes;
          I->second = IDomValue;
          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
                       << " idom valno #" << IDomValue.first->id
                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
        }
      }
    }
    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
  } while (Changes);

  assert(IdxVNI && "Didn't find value for Idx");

#ifndef NDEBUG
  // Check the liveOutCache_ invariants.
  for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
         I != E; ++I) {
    assert(I->first && "Null MBB entry in cache");
    assert(I->second.first && "Null VNInfo in cache");
    assert(I->second.second && "Null DomTreeNode in cache");
    if (I->second.second->getBlock() == I->first)
      continue;
    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
           PE = I->first->pred_end(); PI != PE; ++PI)
      assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
  }
#endif

  // Since we went through the trouble of a full BFS visiting all reaching defs,
  // the values in LiveIn are now accurate. No more phi-defs are needed
  // for these blocks, so we can color the live ranges.
  // This makes the next mapValue call much faster.
  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
    SlotIndex Start = lis_.getMBBStartIdx(MBB);
    if (MBB == IdxMBB) {
      li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
      continue;
    }
    // Anything in LiveIn other than IdxMBB is live-through.
    VNInfo *VNI = liveOutCache_.lookup(MBB).first;
    assert(VNI && "Missing block value");
    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
  }

  return IdxVNI;
}

// extendTo - Find the last li_ value defined in MBB at or before Idx. The
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
  assert(li_ && "call reset first");
  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
  if (I == li_->begin())
    return 0;
  --I;
  if (I->end <= lis_.getMBBStartIdx(MBB))
    return 0;
  if (I->end <= Idx)
    I->end = Idx.getNextSlot();
  return I->valno;
}

// addSimpleRange - Add a simple range from parentli_ to li_.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
                                     const VNInfo *ParentVNI) {
  assert(li_ && "call reset first");
  bool simple;
  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
  // A simple mapping is easy.
  if (simple) {
    li_->addRange(LiveRange(Start, End, VNI));
    return;
  }

  // ParentVNI is a complex value. We must map per MBB.
  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());

  if (MBB == MBBE) {
    li_->addRange(LiveRange(Start, End, VNI));
    return;
  }

  // First block.
  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));

  // Run sequence of full blocks.
  for (++MBB; MBB != MBBE; ++MBB) {
    Start = lis_.getMBBStartIdx(MBB);
    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
                            mapValue(ParentVNI, Start)));
  }

  // Final block.
  Start = lis_.getMBBStartIdx(MBB);
  if (Start != End)
    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
}

/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
  assert(li_ && "call reset first");
  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);

  // Check if --I begins before Start and overlaps.
  if (I != B) {
    --I;
    if (I->end > Start)
      addSimpleRange(Start, std::min(End, I->end), I->valno);
    ++I;
  }

  // The remaining ranges begin after Start.
  for (;I != E && I->start < End; ++I)
    addSimpleRange(I->start, std::min(End, I->end), I->valno);
}

VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
                                       const VNInfo *ParentVNI,
                                       MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator I) {
  const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
    get(TargetOpcode::COPY);
  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
  VNInfo *VNI = defValue(ParentVNI, DefIdx);
  VNI->setCopy(MI);
  li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
  return VNI;
}

//===----------------------------------------------------------------------===//
//                               Split Editor
//===----------------------------------------------------------------------===//

/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa,
                         LiveIntervals &lis,
                         VirtRegMap &vrm,
                         MachineDominatorTree &mdt,
                         LiveRangeEdit &edit)
  : sa_(sa), lis_(lis), vrm_(vrm),
    mri_(vrm.getMachineFunction().getRegInfo()),
    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
    edit_(edit),
    dupli_(lis_, mdt, edit.getParent()),
    openli_(lis_, mdt, edit.getParent())
{
}

bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
      return true;
  return false;
}

/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
  assert(!openli_.getLI() && "Previous LI not closed before openIntv");

  if (!dupli_.getLI())
    dupli_.reset(&edit_.create(mri_, lis_, vrm_));

  openli_.reset(&edit_.create(mri_, lis_, vrm_));
}

/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
/// not live before Idx, a COPY is not inserted.
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return;
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
  truncatedValues.insert(ParentVNI);
  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
  assert(MI && "enterIntvBefore called with invalid index");
  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
                                      *MI->getParent(), MI);
  openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
}

/// enterIntvAtEnd - Enter openli at the end of MBB.
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
  SlotIndex End = lis_.getMBBEndIdx(&MBB);
  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return;
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
  truncatedValues.insert(ParentVNI);
  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
                                      MBB, MBB.getFirstTerminator());
  // Make sure openli is live out of MBB.
  openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
}

/// useIntv - indicate that all instructions in MBB should use openli.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
}

void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
  assert(openli_.getLI() && "openIntv not called before useIntv");
  openli_.addRange(Start, End);
  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
               << *openli_.getLI() << '\n');
}

/// leaveIntvAfter - Leave openli after the instruction at Idx.
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);

  // The interval must be live beyond the instruction at Idx.
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return;
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id);

  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
  MachineBasicBlock *MBB = MII->getParent();
  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
                                     llvm::next(MII));

  // Finally we must make sure that openli is properly extended from Idx to the
  // new copy.
  openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
}

/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);

  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return;
  }

  // We are going to insert a back copy, so we must have a dupli_.
  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
                                     MBB, MBB.SkipPHIsAndLabels(MBB.begin()));

  // Finally we must make sure that openli is properly extended from Start to
  // the new copy.
  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
}

/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
  assert(openli_.getLI() && "openIntv not called before closeIntv");

  DEBUG(dbgs() << "    closeIntv cleaning up\n");
  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
  openli_.reset(0);
}

/// rewrite - Rewrite all uses of reg to use the new registers.
void SplitEditor::rewrite(unsigned reg) {
  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
       RE = mri_.reg_end(); RI != RE;) {
    MachineOperand &MO = RI.getOperand();
    unsigned OpNum = RI.getOperandNo();
    MachineInstr *MI = MO.getParent();
    ++RI;
    if (MI->isDebugValue()) {
      DEBUG(dbgs() << "Zapping " << *MI);
      // FIXME: We can do much better with debug values.
      MO.setReg(0);
      continue;
    }
    SlotIndex Idx = lis_.getInstructionIndex(MI);
    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
    LiveInterval *LI = 0;
    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
         ++I) {
      LiveInterval *testli = *I;
      if (testli->liveAt(Idx)) {
        LI = testli;
        break;
      }
    }
    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
    assert(LI && "No register was live at use");
    MO.setReg(LI->reg);
    if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
      MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
    DEBUG(dbgs() << '\t' << *MI);
  }
}

void
SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
  // Build vector of iterator pairs from the intervals.
  typedef std::pair<LiveInterval::const_iterator,
                    LiveInterval::const_iterator> IIPair;
  SmallVector<IIPair, 8> Iters;
  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
       ++LI) {
    if (*LI == dupli_.getLI())
      continue;
    LiveInterval::const_iterator I = (*LI)->find(Start);
    LiveInterval::const_iterator E = (*LI)->end();
    if (I != E)
      Iters.push_back(std::make_pair(I, E));
  }

  SlotIndex sidx = Start;
  // Break [Start;End) into segments that don't overlap any intervals.
  for (;;) {
    SlotIndex next = sidx, eidx = End;
    // Find overlapping intervals.
    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
      LiveInterval::const_iterator I = Iters[i].first;
      // Interval I is overlapping [sidx;eidx). Trim sidx.
      if (I->start <= sidx) {
        sidx = I->end;
        // Move to the next run, remove iters when all are consumed.
        I = ++Iters[i].first;
        if (I == Iters[i].second) {
          Iters.erase(Iters.begin() + i);
          --i;
          continue;
        }
      }
      // Trim eidx too if needed.
      if (I->start >= eidx)
        continue;
      eidx = I->start;
      next = I->end;
    }
    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
    if (sidx < eidx)
      dupli_.addSimpleRange(sidx, eidx, VNI);
    // If the interval end was truncated, we can try again from next.
    if (next <= sidx)
      break;
    sidx = next;
  }
}

void SplitEditor::computeRemainder() {
  // First we need to fill in the live ranges in dupli.
  // If values were redefined, we need a full recoloring with SSA update.
  // If values were truncated, we only need to truncate the ranges.
  // If values were partially rematted, we should shrink to uses.
  // If values were fully rematted, they should be omitted.
  // FIXME: If a single value is redefined, just move the def and truncate.
  LiveInterval &parent = edit_.getParent();

  // Values that are fully contained in the split intervals.
  SmallPtrSet<const VNInfo*, 8> deadValues;
  // Map all curli values that should have live defs in dupli.
  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
       E = parent.vni_end(); I != E; ++I) {
    const VNInfo *VNI = *I;
    // Don't transfer unused values to the new intervals.
    if (VNI->isUnused())
      continue;
    // Original def is contained in the split intervals.
    if (intervalsLiveAt(VNI->def)) {
      // Did this value escape?
      if (dupli_.isMapped(VNI))
        truncatedValues.insert(VNI);
      else
        deadValues.insert(VNI);
      continue;
    }
    // Add minimal live range at the definition.
    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
  }

  // Add all ranges to dupli.
  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
       I != E; ++I) {
    const LiveRange &LR = *I;
    if (truncatedValues.count(LR.valno)) {
      // recolor after removing intervals_.
      addTruncSimpleRange(LR.start, LR.end, LR.valno);
    } else if (!deadValues.count(LR.valno)) {
      // recolor without truncation.
      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
    }
  }

  // Extend dupli_ to be live out of any critical loop predecessors.
  // This means we have multiple registers live out of those blocks.
  // The alternative would be to split the critical edges.
  if (criticalPreds_.empty())
    return;
  for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
       E = criticalPreds_.end(); I != E; ++I)
     dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
   criticalPreds_.clear();
}

void SplitEditor::finish() {
  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");

  // Complete dupli liveness.
  computeRemainder();

  // Get rid of unused values and set phi-kill flags.
  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
    (*I)->RenumberValues(lis_);

  // Rewrite instructions.
  rewrite(edit_.getReg());

  // Now check if any registers were separated into multiple components.
  ConnectedVNInfoEqClasses ConEQ(lis_);
  for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
    // Don't use iterators, they are invalidated by create() below.
    LiveInterval *li = edit_.get(i);
    unsigned NumComp = ConEQ.Classify(li);
    if (NumComp <= 1)
      continue;
    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
    SmallVector<LiveInterval*, 8> dups;
    dups.push_back(li);
    for (unsigned i = 1; i != NumComp; ++i)
      dups.push_back(&edit_.create(mri_, lis_, vrm_));
    ConEQ.Distribute(&dups[0]);
    // Rewrite uses to the new regs.
    rewrite(li->reg);
  }

  // Calculate spill weight and allocation hints for new intervals.
  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
    LiveInterval &li = **I;
    vrai.CalculateRegClass(li.reg);
    vrai.CalculateWeightAndHint(li);
    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
                 << ":" << li << '\n');
  }
}


//===----------------------------------------------------------------------===//
//                               Loop Splitting
//===----------------------------------------------------------------------===//

void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
  SplitAnalysis::LoopBlocks Blocks;
  sa_.getLoopBlocks(Loop, Blocks);

  DEBUG({
    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
  });

  // Break critical edges as needed.
  SplitAnalysis::BlockPtrSet CriticalExits;
  sa_.getCriticalExits(Blocks, CriticalExits);
  assert(CriticalExits.empty() && "Cannot break critical exits yet");

  // Get critical predecessors so computeRemainder can deal with them.
  sa_.getCriticalPreds(Blocks, criticalPreds_);

  // Create new live interval for the loop.
  openIntv();

  // Insert copies in the predecessors.
  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
       E = Blocks.Preds.end(); I != E; ++I) {
    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
    enterIntvAtEnd(MBB);
  }

  // Switch all loop blocks.
  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
       E = Blocks.Loop.end(); I != E; ++I)
     useIntv(**I);

  // Insert back copies in the exit blocks.
  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
       E = Blocks.Exits.end(); I != E; ++I) {
    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
    leaveIntvAtTop(MBB);
  }

  // Done.
  closeIntv();
  finish();
}


//===----------------------------------------------------------------------===//
//                            Single Block Splitting
//===----------------------------------------------------------------------===//

/// getMultiUseBlocks - if curli has more than one use in a basic block, it
/// may be an advantage to split curli for the duration of the block.
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
  // If curli is local to one block, there is no point to splitting it.
  if (usingBlocks_.size() <= 1)
    return false;
  // Add blocks with multiple uses.
  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
       I != E; ++I)
    switch (I->second) {
    case 0:
    case 1:
      continue;
    case 2: {
      // When there are only two uses and curli is both live in and live out,
      // we don't really win anything by isolating the block since we would be
      // inserting two copies.
      // The remaing register would still have two uses in the block. (Unless it
      // separates into disconnected components).
      if (lis_.isLiveInToMBB(*curli_, I->first) &&
          lis_.isLiveOutOfMBB(*curli_, I->first))
        continue;
    } // Fall through.
    default:
      Blocks.insert(I->first);
    }
  return !Blocks.empty();
}

/// splitSingleBlocks - Split curli into a separate live interval inside each
/// basic block in Blocks.
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
  // Determine the first and last instruction using curli in each block.
  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
  IndexPairMap MBBRange;
  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
       E = sa_.usingInstrs_.end(); I != E; ++I) {
    const MachineBasicBlock *MBB = (*I)->getParent();
    if (!Blocks.count(MBB))
      continue;
    SlotIndex Idx = lis_.getInstructionIndex(*I);
    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
    IndexPair &IP = MBBRange[MBB];
    if (!IP.first.isValid() || Idx < IP.first)
      IP.first = Idx;
    if (!IP.second.isValid() || Idx > IP.second)
      IP.second = Idx;
  }

  // Create a new interval for each block.
  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
       E = Blocks.end(); I != E; ++I) {
    IndexPair &IP = MBBRange[*I];
    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
                 << IP.first << ';' << IP.second << ")\n");
    assert(IP.first.isValid() && IP.second.isValid());

    openIntv();
    enterIntvBefore(IP.first);
    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
    leaveIntvAfter(IP.second);
    closeIntv();
  }
  finish();
}


//===----------------------------------------------------------------------===//
//                            Sub Block Splitting
//===----------------------------------------------------------------------===//

/// getBlockForInsideSplit - If curli is contained inside a single basic block,
/// and it wou pay to subdivide the interval inside that block, return it.
/// Otherwise return NULL. The returned block can be passed to
/// SplitEditor::splitInsideBlock.
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
  // The interval must be exclusive to one block.
  if (usingBlocks_.size() != 1)
    return 0;
  // Don't to this for less than 4 instructions. We want to be sure that
  // splitting actually reduces the instruction count per interval.
  if (usingInstrs_.size() < 4)
    return 0;
  return usingBlocks_.begin()->first;
}

/// splitInsideBlock - Split curli into multiple intervals inside MBB.
void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
  SmallVector<SlotIndex, 32> Uses;
  Uses.reserve(sa_.usingInstrs_.size());
  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
       E = sa_.usingInstrs_.end(); I != E; ++I)
    if ((*I)->getParent() == MBB)
      Uses.push_back(lis_.getInstructionIndex(*I));
  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
               << Uses.size() << " instructions.\n");
  assert(Uses.size() >= 3 && "Need at least 3 instructions");
  array_pod_sort(Uses.begin(), Uses.end());

  // Simple algorithm: Find the largest gap between uses as determined by slot
  // indices. Create new intervals for instructions before the gap and after the
  // gap.
  unsigned bestPos = 0;
  int bestGap = 0;
  DEBUG(dbgs() << "    dist (" << Uses[0]);
  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
    int g = Uses[i-1].distance(Uses[i]);
    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
    if (g > bestGap)
      bestPos = i, bestGap = g;
  }
  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");

  // bestPos points to the first use after the best gap.
  assert(bestPos > 0 && "Invalid gap");

  // FIXME: Don't create intervals for low densities.

  // First interval before the gap. Don't create single-instr intervals.
  if (bestPos > 1) {
    openIntv();
    enterIntvBefore(Uses.front());
    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
    leaveIntvAfter(Uses[bestPos-1]);
    closeIntv();
  }

  // Second interval after the gap.
  if (bestPos < Uses.size()-1) {
    openIntv();
    enterIntvBefore(Uses[bestPos]);
    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
    leaveIntvAfter(Uses.back());
    closeIntv();
  }

  finish();
}