aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SplitKit.cpp
blob: 201e9b16cba4e64fb70c9ac950016939bcde059c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "SplitKit.h"
#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

STATISTIC(NumFinished, "Number of splits finished");
STATISTIC(NumSimple,   "Number of splits that were simple");

//===----------------------------------------------------------------------===//
//                                 Split Analysis
//===----------------------------------------------------------------------===//

SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
                             const LiveIntervals &lis,
                             const MachineLoopInfo &mli)
  : MF(vrm.getMachineFunction()),
    VRM(vrm),
    LIS(lis),
    Loops(mli),
    TII(*MF.getTarget().getInstrInfo()),
    CurLI(0),
    LastSplitPoint(MF.getNumBlockIDs()) {}

void SplitAnalysis::clear() {
  UseSlots.clear();
  UseBlocks.clear();
  ThroughBlocks.clear();
  CurLI = 0;
}

SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];

  // Compute split points on the first call. The pair is independent of the
  // current live interval.
  if (!LSP.first.isValid()) {
    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
    if (FirstTerm == MBB->end())
      LSP.first = LIS.getMBBEndIdx(MBB);
    else
      LSP.first = LIS.getInstructionIndex(FirstTerm);

    // If there is a landing pad successor, also find the call instruction.
    if (!LPad)
      return LSP.first;
    // There may not be a call instruction (?) in which case we ignore LPad.
    LSP.second = LSP.first;
    for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin();
         I != E; --I)
      if (I->getDesc().isCall()) {
        LSP.second = LIS.getInstructionIndex(I);
        break;
      }
  }

  // If CurLI is live into a landing pad successor, move the last split point
  // back to the call that may throw.
  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
    return LSP.second;
  else
    return LSP.first;
}

/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
  assert(UseSlots.empty() && "Call clear first");

  // First get all the defs from the interval values. This provides the correct
  // slots for early clobbers.
  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
       E = CurLI->vni_end(); I != E; ++I)
    if (!(*I)->isPHIDef() && !(*I)->isUnused())
      UseSlots.push_back((*I)->def);

  // Get use slots form the use-def chain.
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  for (MachineRegisterInfo::use_nodbg_iterator
       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
       ++I)
    if (!I.getOperand().isUndef())
      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());

  array_pod_sort(UseSlots.begin(), UseSlots.end());

  // Remove duplicates, keeping the smaller slot for each instruction.
  // That is what we want for early clobbers.
  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
                             SlotIndex::isSameInstr),
                 UseSlots.end());

  // Compute per-live block info.
  if (!calcLiveBlockInfo()) {
    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
    // I am looking at you, SimpleRegisterCoalescing!
    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
    const_cast<LiveIntervals&>(LIS)
      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
    UseBlocks.clear();
    ThroughBlocks.clear();
    bool fixed = calcLiveBlockInfo();
    (void)fixed;
    assert(fixed && "Couldn't fix broken live interval");
  }

  DEBUG(dbgs() << "Analyze counted "
               << UseSlots.size() << " instrs in "
               << UseBlocks.size() << " blocks, through "
               << ThroughBlocks.size() << " blocks.\n");
}

/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where CurLI is live.
bool SplitAnalysis::calcLiveBlockInfo() {
  if (CurLI->empty())
    return true;

  LiveInterval::const_iterator LVI = CurLI->begin();
  LiveInterval::const_iterator LVE = CurLI->end();

  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
  UseI = UseSlots.begin();
  UseE = UseSlots.end();

  // Loop over basic blocks where CurLI is live.
  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
  for (;;) {
    BlockInfo BI;
    BI.MBB = MFI;
    SlotIndex Start, Stop;
    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

    // LVI is the first live segment overlapping MBB.
    BI.LiveIn = LVI->start <= Start;
    if (!BI.LiveIn)
      BI.Def = LVI->start;

    // Find the first and last uses in the block.
    bool Uses = UseI != UseE && *UseI < Stop;
    if (Uses) {
      BI.FirstUse = *UseI;
      assert(BI.FirstUse >= Start);
      do ++UseI;
      while (UseI != UseE && *UseI < Stop);
      BI.LastUse = UseI[-1];
      assert(BI.LastUse < Stop);
    }

    // Look for gaps in the live range.
    bool hasGap = false;
    BI.LiveOut = true;
    while (LVI->end < Stop) {
      SlotIndex LastStop = LVI->end;
      if (++LVI == LVE || LVI->start >= Stop) {
        BI.Kill = LastStop;
        BI.LiveOut = false;
        break;
      }
      if (LastStop < LVI->start) {
        hasGap = true;
        BI.Kill = LastStop;
        BI.Def = LVI->start;
      }
    }

    // Don't set LiveThrough when the block has a gap.
    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
    if (Uses)
      UseBlocks.push_back(BI);
    else
      ThroughBlocks.push_back(BI.MBB->getNumber());

    // FIXME: This should never happen. The live range stops or starts without a
    // corresponding use. An earlier pass did something wrong.
    if (!BI.LiveThrough && !Uses)
      return false;

    // LVI is now at LVE or LVI->end >= Stop.
    if (LVI == LVE)
      break;

    // Live segment ends exactly at Stop. Move to the next segment.
    if (LVI->end == Stop && ++LVI == LVE)
      break;

    // Pick the next basic block.
    if (LVI->start < Stop)
      ++MFI;
    else
      MFI = LIS.getMBBFromIndex(LVI->start);
  }
  return true;
}

bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
  const LiveInterval &Orig = LIS.getInterval(OrigReg);
  assert(!Orig.empty() && "Splitting empty interval?");
  LiveInterval::const_iterator I = Orig.find(Idx);

  // Range containing Idx should begin at Idx.
  if (I != Orig.end() && I->start <= Idx)
    return I->start == Idx;

  // Range does not contain Idx, previous must end at Idx.
  return I != Orig.begin() && (--I)->end == Idx;
}

void SplitAnalysis::analyze(const LiveInterval *li) {
  clear();
  CurLI = li;
  analyzeUses();
}


//===----------------------------------------------------------------------===//
//                               Split Editor
//===----------------------------------------------------------------------===//

/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa,
                         LiveIntervals &lis,
                         VirtRegMap &vrm,
                         MachineDominatorTree &mdt)
  : SA(sa), LIS(lis), VRM(vrm),
    MRI(vrm.getMachineFunction().getRegInfo()),
    MDT(mdt),
    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
    Edit(0),
    OpenIdx(0),
    RegAssign(Allocator)
{}

void SplitEditor::reset(LiveRangeEdit &lre) {
  Edit = &lre;
  OpenIdx = 0;
  RegAssign.clear();
  Values.clear();

  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
  LiveOutSeen.clear();

  // We don't need an AliasAnalysis since we will only be performing
  // cheap-as-a-copy remats anyway.
  Edit->anyRematerializable(LIS, TII, 0);
}

void SplitEditor::dump() const {
  if (RegAssign.empty()) {
    dbgs() << " empty\n";
    return;
  }

  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
  dbgs() << '\n';
}

VNInfo *SplitEditor::defValue(unsigned RegIdx,
                              const VNInfo *ParentVNI,
                              SlotIndex Idx) {
  assert(ParentVNI && "Mapping  NULL value");
  assert(Idx.isValid() && "Invalid SlotIndex");
  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
  LiveInterval *LI = Edit->get(RegIdx);

  // Create a new value.
  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());

  // Use insert for lookup, so we can add missing values with a second lookup.
  std::pair<ValueMap::iterator, bool> InsP =
    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));

  // This was the first time (RegIdx, ParentVNI) was mapped.
  // Keep it as a simple def without any liveness.
  if (InsP.second)
    return VNI;

  // If the previous value was a simple mapping, add liveness for it now.
  if (VNInfo *OldVNI = InsP.first->second) {
    SlotIndex Def = OldVNI->def;
    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
    // No longer a simple mapping.
    InsP.first->second = 0;
  }

  // This is a complex mapping, add liveness for VNI
  SlotIndex Def = VNI->def;
  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));

  return VNI;
}

void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
  assert(ParentVNI && "Mapping  NULL value");
  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];

  // ParentVNI was either unmapped or already complex mapped. Either way.
  if (!VNI)
    return;

  // This was previously a single mapping. Make sure the old def is represented
  // by a trivial live range.
  SlotIndex Def = VNI->def;
  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
  VNI = 0;
}

// extendRange - Extend the live range to reach Idx.
// Potentially create phi-def values.
void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
  assert(Idx.isValid() && "Invalid SlotIndex");
  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
  assert(IdxMBB && "No MBB at Idx");
  LiveInterval *LI = Edit->get(RegIdx);

  // Is there a def in the same MBB we can extend?
  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
    return;

  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
  // Perform a search for all predecessor blocks where we know the dominating
  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.

  // Initialize the live-out cache the first time it is needed.
  if (LiveOutSeen.empty()) {
    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
    LiveOutSeen.resize(N);
    LiveOutCache.resize(N);
  }

  // Blocks where LI should be live-in.
  SmallVector<MachineDomTreeNode*, 16> LiveIn;
  LiveIn.push_back(MDT[IdxMBB]);

  // Remember if we have seen more than one value.
  bool UniqueVNI = true;
  VNInfo *IdxVNI = 0;

  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
  for (unsigned i = 0; i != LiveIn.size(); ++i) {
    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
    assert(!MBB->pred_empty() && "Value live-in to entry block?");
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI) {
       MachineBasicBlock *Pred = *PI;
       LiveOutPair &LOP = LiveOutCache[Pred];

       // Is this a known live-out block?
       if (LiveOutSeen.test(Pred->getNumber())) {
         if (VNInfo *VNI = LOP.first) {
           if (IdxVNI && IdxVNI != VNI)
             UniqueVNI = false;
           IdxVNI = VNI;
         }
         continue;
       }

       // First time. LOP is garbage and must be cleared below.
       LiveOutSeen.set(Pred->getNumber());

       // Does Pred provide a live-out value?
       SlotIndex Start, Last;
       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
       Last = Last.getPrevSlot();
       VNInfo *VNI = LI->extendInBlock(Start, Last);
       LOP.first = VNI;
       if (VNI) {
         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
         if (IdxVNI && IdxVNI != VNI)
           UniqueVNI = false;
         IdxVNI = VNI;
         continue;
       }
       LOP.second = 0;

       // No, we need a live-in value for Pred as well
       if (Pred != IdxMBB)
         LiveIn.push_back(MDT[Pred]);
       else
         UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help.
    }
  }

  // We may need to add phi-def values to preserve the SSA form.
  if (UniqueVNI) {
    LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]);
    // Update LiveOutCache, but skip IdxMBB at LiveIn[0].
    for (unsigned i = 1, e = LiveIn.size(); i != e; ++i)
      LiveOutCache[LiveIn[i]->getBlock()] = LOP;
  } else
    IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);

  // Since we went through the trouble of a full BFS visiting all reaching defs,
  // the values in LiveIn are now accurate. No more phi-defs are needed
  // for these blocks, so we can color the live ranges.
  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
    SlotIndex Start = LIS.getMBBStartIdx(MBB);
    VNInfo *VNI = LiveOutCache[MBB].first;

    // Anything in LiveIn other than IdxMBB is live-through.
    // In IdxMBB, we should stop at Idx unless the same value is live-out.
    if (MBB == IdxMBB && IdxVNI != VNI)
      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
    else
      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
  }
}

VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
                               SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
                               SlotIndex Idx,
                               const MachineBasicBlock *IdxMBB) {
  // This is essentially the same iterative algorithm that SSAUpdater uses,
  // except we already have a dominator tree, so we don't have to recompute it.
  LiveInterval *LI = Edit->get(RegIdx);
  VNInfo *IdxVNI = 0;
  unsigned Changes;
  do {
    Changes = 0;
    // Propagate live-out values down the dominator tree, inserting phi-defs
    // when necessary. Since LiveIn was created by a BFS, going backwards makes
    // it more likely for us to visit immediate dominators before their
    // children.
    for (unsigned i = LiveIn.size(); i; --i) {
      MachineDomTreeNode *Node = LiveIn[i-1];
      MachineBasicBlock *MBB = Node->getBlock();
      MachineDomTreeNode *IDom = Node->getIDom();
      LiveOutPair IDomValue;

      // We need a live-in value to a block with no immediate dominator?
      // This is probably an unreachable block that has survived somehow.
      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());

      // IDom dominates all of our predecessors, but it may not be the immediate
      // dominator. Check if any of them have live-out values that are properly
      // dominated by IDom. If so, we need a phi-def here.
      if (!needPHI) {
        IDomValue = LiveOutCache[IDom->getBlock()];
        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
               PE = MBB->pred_end(); PI != PE; ++PI) {
          LiveOutPair Value = LiveOutCache[*PI];
          if (!Value.first || Value.first == IDomValue.first)
            continue;
          // This predecessor is carrying something other than IDomValue.
          // It could be because IDomValue hasn't propagated yet, or it could be
          // because MBB is in the dominance frontier of that value.
          if (MDT.dominates(IDom, Value.second)) {
            needPHI = true;
            break;
          }
        }
      }

      // Create a phi-def if required.
      if (needPHI) {
        ++Changes;
        SlotIndex Start = LIS.getMBBStartIdx(MBB);
        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
        VNI->setIsPHIDef(true);
        // We no longer need LI to be live-in.
        LiveIn.erase(LiveIn.begin()+(i-1));
        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
        if (MBB == IdxMBB)
          IdxVNI = VNI;
        // Check if we need to update live-out info.
        LiveOutPair &LOP = LiveOutCache[MBB];
        if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) {
          // We already have a live-out defined in MBB, so this must be IdxMBB.
          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
        } else {
          // This phi-def is also live-out, so color the whole block.
          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
          LOP = LiveOutPair(VNI, Node);
        }
      } else if (IDomValue.first) {
        // No phi-def here. Remember incoming value for IdxMBB.
        if (MBB == IdxMBB) {
          IdxVNI = IDomValue.first;
          // IdxMBB need not be live-out.
          if (!LiveOutSeen.test(MBB->getNumber()))
            continue;
        }
        assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block");
        // Propagate IDomValue if needed:
        // MBB is live-out and doesn't define its own value.
        LiveOutPair &LOP = LiveOutCache[MBB];
        if (LOP.second != Node && LOP.first != IDomValue.first) {
          ++Changes;
          LOP = IDomValue;
        }
      }
    }
  } while (Changes);

  assert(IdxVNI && "Didn't find value for Idx");
  return IdxVNI;
}

VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
                                   VNInfo *ParentVNI,
                                   SlotIndex UseIdx,
                                   MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I) {
  MachineInstr *CopyMI = 0;
  SlotIndex Def;
  LiveInterval *LI = Edit->get(RegIdx);

  // Attempt cheap-as-a-copy rematerialization.
  LiveRangeEdit::Remat RM(ParentVNI);
  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
  } else {
    // Can't remat, just insert a copy from parent.
    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
               .addReg(Edit->getReg());
    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
  }

  // Define the value in Reg.
  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
  VNI->setCopy(CopyMI);
  return VNI;
}

/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
  assert(!OpenIdx && "Previous LI not closed before openIntv");

  // Create the complement as index 0.
  if (Edit->empty())
    Edit->create(LIS, VRM);

  // Create the open interval.
  OpenIdx = Edit->size();
  Edit->create(LIS, VRM);
}

SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before enterIntvBefore");
  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
  Idx = Idx.getBaseIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return Idx;
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "enterIntvBefore called with invalid index");

  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
  return VNI->def;
}

SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
  SlotIndex End = LIS.getMBBEndIdx(&MBB);
  SlotIndex Last = End.getPrevSlot();
  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return End;
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
  RegAssign.insert(VNI->def, End, OpenIdx);
  DEBUG(dump());
  return VNI->def;
}

/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}

void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
  assert(OpenIdx && "openIntv not called before useIntv");
  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
  RegAssign.insert(Start, End, OpenIdx);
  DEBUG(dump());
}

SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);

  // The interval must be live beyond the instruction at Idx.
  Idx = Idx.getBoundaryIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return Idx.getNextSlot();
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');

  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "No instruction at index");
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
                              llvm::next(MachineBasicBlock::iterator(MI)));
  return VNI->def;
}

SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);

  // The interval must be live into the instruction at Idx.
  Idx = Idx.getBoundaryIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return Idx.getNextSlot();
  }
  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');

  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "No instruction at index");
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
  return VNI->def;
}

SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);

  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
  if (!ParentVNI) {
    DEBUG(dbgs() << ": not live\n");
    return Start;
  }

  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
                              MBB.SkipPHIsAndLabels(MBB.begin()));
  RegAssign.insert(Start, VNI->def, OpenIdx);
  DEBUG(dump());
  return VNI->def;
}

void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
  assert(OpenIdx && "openIntv not called before overlapIntv");
  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
         "Parent changes value in extended range");
  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
         "Range cannot span basic blocks");

  // The complement interval will be extended as needed by extendRange().
  if (ParentVNI)
    markComplexMapped(0, ParentVNI);
  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
  RegAssign.insert(Start, End, OpenIdx);
  DEBUG(dump());
}

/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
  assert(OpenIdx && "openIntv not called before closeIntv");
  OpenIdx = 0;
}

/// transferSimpleValues - Transfer all simply defined values to the new live
/// ranges.
/// Values that were rematerialized or that have multiple defs are left alone.
bool SplitEditor::transferSimpleValues() {
  bool Skipped = false;
  RegAssignMap::const_iterator AssignI = RegAssign.begin();
  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
    DEBUG(dbgs() << "  blit " << *ParentI << ':');
    VNInfo *ParentVNI = ParentI->valno;
    // RegAssign has holes where RegIdx 0 should be used.
    SlotIndex Start = ParentI->start;
    AssignI.advanceTo(Start);
    do {
      unsigned RegIdx;
      SlotIndex End = ParentI->end;
      if (!AssignI.valid()) {
        RegIdx = 0;
      } else if (AssignI.start() <= Start) {
        RegIdx = AssignI.value();
        if (AssignI.stop() < End) {
          End = AssignI.stop();
          ++AssignI;
        }
      } else {
        RegIdx = 0;
        End = std::min(End, AssignI.start());
      }
      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
        DEBUG(dbgs() << ':' << VNI->id);
        Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI));
      } else
        Skipped = true;
      Start = End;
    } while (Start != ParentI->end);
    DEBUG(dbgs() << '\n');
  }
  return Skipped;
}

void SplitEditor::extendPHIKillRanges() {
    // Extend live ranges to be live-out for successor PHI values.
  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
       E = Edit->getParent().vni_end(); I != E; ++I) {
    const VNInfo *PHIVNI = *I;
    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
      continue;
    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
      // The predecessor may not have a live-out value. That is OK, like an
      // undef PHI operand.
      if (Edit->getParent().liveAt(End)) {
        assert(RegAssign.lookup(End) == RegIdx &&
               "Different register assignment in phi predecessor");
        extendRange(RegIdx, End);
      }
    }
  }
}

/// rewriteAssigned - Rewrite all uses of Edit->getReg().
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
       RE = MRI.reg_end(); RI != RE;) {
    MachineOperand &MO = RI.getOperand();
    MachineInstr *MI = MO.getParent();
    ++RI;
    // LiveDebugVariables should have handled all DBG_VALUE instructions.
    if (MI->isDebugValue()) {
      DEBUG(dbgs() << "Zapping " << *MI);
      MO.setReg(0);
      continue;
    }

    // <undef> operands don't really read the register, so just assign them to
    // the complement.
    if (MO.isUse() && MO.isUndef()) {
      MO.setReg(Edit->get(0)->reg);
      continue;
    }

    SlotIndex Idx = LIS.getInstructionIndex(MI);
    if (MO.isDef())
      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();

    // Rewrite to the mapped register at Idx.
    unsigned RegIdx = RegAssign.lookup(Idx);
    MO.setReg(Edit->get(RegIdx)->reg);
    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
                 << Idx << ':' << RegIdx << '\t' << *MI);

    // Extend liveness to Idx if the instruction reads reg.
    if (!ExtendRanges)
      continue;

    // Skip instructions that don't read Reg.
    if (MO.isDef()) {
      if (!MO.getSubReg() && !MO.isEarlyClobber())
        continue;
      // We may wan't to extend a live range for a partial redef, or for a use
      // tied to an early clobber.
      Idx = Idx.getPrevSlot();
      if (!Edit->getParent().liveAt(Idx))
        continue;
    } else
      Idx = Idx.getUseIndex();

    extendRange(RegIdx, Idx);
  }
}

void SplitEditor::deleteRematVictims() {
  SmallVector<MachineInstr*, 8> Dead;
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
    LiveInterval *LI = *I;
    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
           LII != LIE; ++LII) {
      // Dead defs end at the store slot.
      if (LII->end != LII->valno->def.getNextSlot())
        continue;
      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
      assert(MI && "Missing instruction for dead def");
      MI->addRegisterDead(LI->reg, &TRI);

      if (!MI->allDefsAreDead())
        continue;

      DEBUG(dbgs() << "All defs dead: " << *MI);
      Dead.push_back(MI);
    }
  }

  if (Dead.empty())
    return;

  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
}

void SplitEditor::finish() {
  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
  ++NumFinished;

  // At this point, the live intervals in Edit contain VNInfos corresponding to
  // the inserted copies.

  // Add the original defs from the parent interval.
  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
         E = Edit->getParent().vni_end(); I != E; ++I) {
    const VNInfo *ParentVNI = *I;
    if (ParentVNI->isUnused())
      continue;
    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
    VNI->setIsPHIDef(ParentVNI->isPHIDef());
    VNI->setCopy(ParentVNI->getCopy());

    // Mark rematted values as complex everywhere to force liveness computation.
    // The new live ranges may be truncated.
    if (Edit->didRematerialize(ParentVNI))
      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
        markComplexMapped(i, ParentVNI);
  }

#ifndef NDEBUG
  // Every new interval must have a def by now, otherwise the split is bogus.
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
#endif

  // Transfer the simply mapped values, check if any are complex.
  bool Complex = transferSimpleValues();
  if (Complex)
    extendPHIKillRanges();
  else
    ++NumSimple;

  // Rewrite virtual registers, possibly extending ranges.
  rewriteAssigned(Complex);

  // Delete defs that were rematted everywhere.
  if (Complex)
    deleteRematVictims();

  // Get rid of unused values and set phi-kill flags.
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
    (*I)->RenumberValues(LIS);

  // Now check if any registers were separated into multiple components.
  ConnectedVNInfoEqClasses ConEQ(LIS);
  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
    // Don't use iterators, they are invalidated by create() below.
    LiveInterval *li = Edit->get(i);
    unsigned NumComp = ConEQ.Classify(li);
    if (NumComp <= 1)
      continue;
    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
    SmallVector<LiveInterval*, 8> dups;
    dups.push_back(li);
    for (unsigned i = 1; i != NumComp; ++i)
      dups.push_back(&Edit->create(LIS, VRM));
    ConEQ.Distribute(&dups[0], MRI);
  }

  // Calculate spill weight and allocation hints for new intervals.
  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
}


//===----------------------------------------------------------------------===//
//                            Single Block Splitting
//===----------------------------------------------------------------------===//

/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
/// may be an advantage to split CurLI for the duration of the block.
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
  // If CurLI is local to one block, there is no point to splitting it.
  if (UseBlocks.size() <= 1)
    return false;
  // Add blocks with multiple uses.
  for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
    const BlockInfo &BI = UseBlocks[i];
    if (BI.FirstUse == BI.LastUse)
      continue;
    Blocks.insert(BI.MBB);
  }
  return !Blocks.empty();
}

/// splitSingleBlocks - Split CurLI into a separate live interval inside each
/// basic block in Blocks.
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    if (!Blocks.count(BI.MBB))
      continue;

    openIntv();
    SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
    SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
                                                  LastSplitPoint));
    if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
    } else {
      // The last use is after the last valid split point.
      SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
      useIntv(SegStart, SegStop);
      overlapIntv(SegStop, BI.LastUse);
    }
    closeIntv();
  }
  finish();
}