aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/TargetInstrInfoImpl.cpp
blob: be2585575b6693115ebe3f3663c1ae5d0d37104d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfoImpl class, it just provides default
// implementations of various methods.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

static cl::opt<bool> DisableHazardRecognizer(
  "disable-sched-hazard", cl::Hidden, cl::init(false),
  cl::desc("Disable hazard detection during preRA scheduling"));

/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void
TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
                                             MachineBasicBlock *NewDest) const {
  MachineBasicBlock *MBB = Tail->getParent();

  // Remove all the old successors of MBB from the CFG.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_begin());

  // Remove all the dead instructions from the end of MBB.
  MBB->erase(Tail, MBB->end());

  // If MBB isn't immediately before MBB, insert a branch to it.
  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
                 Tail->getDebugLoc());
  MBB->addSuccessor(NewDest);
}

// commuteInstruction - The default implementation of this method just exchanges
// the two operands returned by findCommutedOpIndices.
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
                                                      bool NewMI) const {
  const MCInstrDesc &MCID = MI->getDesc();
  bool HasDef = MCID.getNumDefs();
  if (HasDef && !MI->getOperand(0).isReg())
    // No idea how to commute this instruction. Target should implement its own.
    return 0;
  unsigned Idx1, Idx2;
  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
    std::string msg;
    raw_string_ostream Msg(msg);
    Msg << "Don't know how to commute: " << *MI;
    report_fatal_error(Msg.str());
  }

  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
         "This only knows how to commute register operands so far");
  unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
  unsigned Reg1 = MI->getOperand(Idx1).getReg();
  unsigned Reg2 = MI->getOperand(Idx2).getReg();
  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
  // If destination is tied to either of the commuted source register, then
  // it must be updated.
  if (HasDef && Reg0 == Reg1 &&
      MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
    Reg2IsKill = false;
    Reg0 = Reg2;
  } else if (HasDef && Reg0 == Reg2 &&
             MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
    Reg1IsKill = false;
    Reg0 = Reg1;
  }

  if (NewMI) {
    // Create a new instruction.
    bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
    MachineFunction &MF = *MI->getParent()->getParent();
    if (HasDef)
      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
        .addReg(Reg2, getKillRegState(Reg2IsKill))
        .addReg(Reg1, getKillRegState(Reg2IsKill));
    else
      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
        .addReg(Reg2, getKillRegState(Reg2IsKill))
        .addReg(Reg1, getKillRegState(Reg2IsKill));
  }

  if (HasDef)
    MI->getOperand(0).setReg(Reg0);
  MI->getOperand(Idx2).setReg(Reg1);
  MI->getOperand(Idx1).setReg(Reg2);
  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
  return MI;
}

/// findCommutedOpIndices - If specified MI is commutable, return the two
/// operand indices that would swap value. Return true if the instruction
/// is not in a form which this routine understands.
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
                                                unsigned &SrcOpIdx1,
                                                unsigned &SrcOpIdx2) const {
  assert(!MI->isBundle() &&
         "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");

  const MCInstrDesc &MCID = MI->getDesc();
  if (!MCID.isCommutable())
    return false;
  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
  // is not true, then the target must implement this.
  SrcOpIdx1 = MCID.getNumDefs();
  SrcOpIdx2 = SrcOpIdx1 + 1;
  if (!MI->getOperand(SrcOpIdx1).isReg() ||
      !MI->getOperand(SrcOpIdx2).isReg())
    // No idea.
    return false;
  return true;
}


bool
TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
  if (!MI->isTerminator()) return false;

  // Conditional branch is a special case.
  if (MI->isBranch() && !MI->isBarrier())
    return true;
  if (!MI->isPredicable())
    return true;
  return !isPredicated(MI);
}


bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
                            const SmallVectorImpl<MachineOperand> &Pred) const {
  bool MadeChange = false;

  assert(!MI->isBundle() &&
         "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");

  const MCInstrDesc &MCID = MI->getDesc();
  if (!MI->isPredicable())
    return false;

  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
    if (MCID.OpInfo[i].isPredicate()) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg()) {
        MO.setReg(Pred[j].getReg());
        MadeChange = true;
      } else if (MO.isImm()) {
        MO.setImm(Pred[j].getImm());
        MadeChange = true;
      } else if (MO.isMBB()) {
        MO.setMBB(Pred[j].getMBB());
        MadeChange = true;
      }
      ++j;
    }
  }
  return MadeChange;
}

bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
                                        const MachineMemOperand *&MMO,
                                        int &FrameIndex) const {
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
         oe = MI->memoperands_end();
       o != oe;
       ++o) {
    if ((*o)->isLoad() && (*o)->getValue())
      if (const FixedStackPseudoSourceValue *Value =
          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
        FrameIndex = Value->getFrameIndex();
        MMO = *o;
        return true;
      }
  }
  return false;
}

bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
                                       const MachineMemOperand *&MMO,
                                       int &FrameIndex) const {
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
         oe = MI->memoperands_end();
       o != oe;
       ++o) {
    if ((*o)->isStore() && (*o)->getValue())
      if (const FixedStackPseudoSourceValue *Value =
          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
        FrameIndex = Value->getFrameIndex();
        MMO = *o;
        return true;
      }
  }
  return false;
}

void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator I,
                                        unsigned DestReg,
                                        unsigned SubIdx,
                                        const MachineInstr *Orig,
                                        const TargetRegisterInfo &TRI) const {
  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
  MBB.insert(I, MI);
}

bool
TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
                                      const MachineInstr *MI1,
                                      const MachineRegisterInfo *MRI) const {
  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
}

MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
                                             MachineFunction &MF) const {
  assert(!Orig->isNotDuplicable() &&
         "Instruction cannot be duplicated");
  return MF.CloneMachineInstr(Orig);
}

// If the COPY instruction in MI can be folded to a stack operation, return
// the register class to use.
static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
                                              unsigned FoldIdx) {
  assert(MI->isCopy() && "MI must be a COPY instruction");
  if (MI->getNumOperands() != 2)
    return 0;
  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");

  const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
  const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);

  if (FoldOp.getSubReg() || LiveOp.getSubReg())
    return 0;

  unsigned FoldReg = FoldOp.getReg();
  unsigned LiveReg = LiveOp.getReg();

  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
         "Cannot fold physregs");

  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);

  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
    return RC->contains(LiveOp.getReg()) ? RC : 0;

  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
    return RC;

  // FIXME: Allow folding when register classes are memory compatible.
  return 0;
}

bool TargetInstrInfoImpl::
canFoldMemoryOperand(const MachineInstr *MI,
                     const SmallVectorImpl<unsigned> &Ops) const {
  return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
}

/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
/// slot into the specified machine instruction for the specified operand(s).
/// If this is possible, a new instruction is returned with the specified
/// operand folded, otherwise NULL is returned. The client is responsible for
/// removing the old instruction and adding the new one in the instruction
/// stream.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
                                   const SmallVectorImpl<unsigned> &Ops,
                                   int FI) const {
  unsigned Flags = 0;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    if (MI->getOperand(Ops[i]).isDef())
      Flags |= MachineMemOperand::MOStore;
    else
      Flags |= MachineMemOperand::MOLoad;

  MachineBasicBlock *MBB = MI->getParent();
  assert(MBB && "foldMemoryOperand needs an inserted instruction");
  MachineFunction &MF = *MBB->getParent();

  // Ask the target to do the actual folding.
  if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
    assert((!(Flags & MachineMemOperand::MOStore) ||
            NewMI->mayStore()) &&
           "Folded a def to a non-store!");
    assert((!(Flags & MachineMemOperand::MOLoad) ||
            NewMI->mayLoad()) &&
           "Folded a use to a non-load!");
    const MachineFrameInfo &MFI = *MF.getFrameInfo();
    assert(MFI.getObjectOffset(FI) != -1);
    MachineMemOperand *MMO =
      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
                              Flags, MFI.getObjectSize(FI),
                              MFI.getObjectAlignment(FI));
    NewMI->addMemOperand(MF, MMO);

    // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
    return MBB->insert(MI, NewMI);
  }

  // Straight COPY may fold as load/store.
  if (!MI->isCopy() || Ops.size() != 1)
    return 0;

  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
  if (!RC)
    return 0;

  const MachineOperand &MO = MI->getOperand(1-Ops[0]);
  MachineBasicBlock::iterator Pos = MI;
  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();

  if (Flags == MachineMemOperand::MOStore)
    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
  else
    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
  return --Pos;
}

/// foldMemoryOperand - Same as the previous version except it allows folding
/// of any load and store from / to any address, not just from a specific
/// stack slot.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
                                   const SmallVectorImpl<unsigned> &Ops,
                                   MachineInstr* LoadMI) const {
  assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
#endif
  MachineBasicBlock &MBB = *MI->getParent();
  MachineFunction &MF = *MBB.getParent();

  // Ask the target to do the actual folding.
  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
  if (!NewMI) return 0;

  NewMI = MBB.insert(MI, NewMI);

  // Copy the memoperands from the load to the folded instruction.
  NewMI->setMemRefs(LoadMI->memoperands_begin(),
                    LoadMI->memoperands_end());

  return NewMI;
}

bool TargetInstrInfo::
isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
                                         AliasAnalysis *AA) const {
  const MachineFunction &MF = *MI->getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetMachine &TM = MF.getTarget();
  const TargetInstrInfo &TII = *TM.getInstrInfo();

  // Remat clients assume operand 0 is the defined register.
  if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
    return false;
  unsigned DefReg = MI->getOperand(0).getReg();

  // A sub-register definition can only be rematerialized if the instruction
  // doesn't read the other parts of the register.  Otherwise it is really a
  // read-modify-write operation on the full virtual register which cannot be
  // moved safely.
  if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
      MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
    return false;

  // A load from a fixed stack slot can be rematerialized. This may be
  // redundant with subsequent checks, but it's target-independent,
  // simple, and a common case.
  int FrameIdx = 0;
  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
    return true;

  // Avoid instructions obviously unsafe for remat.
  if (MI->isNotDuplicable() || MI->mayStore() ||
      MI->hasUnmodeledSideEffects())
    return false;

  // Don't remat inline asm. We have no idea how expensive it is
  // even if it's side effect free.
  if (MI->isInlineAsm())
    return false;

  // Avoid instructions which load from potentially varying memory.
  if (MI->mayLoad() && !MI->isInvariantLoad(AA))
    return false;

  // If any of the registers accessed are non-constant, conservatively assume
  // the instruction is not rematerializable.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0)
      continue;

    // Check for a well-behaved physical register.
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!MRI.isConstantPhysReg(Reg, MF))
          return false;
      } else {
        // A physreg def. We can't remat it.
        return false;
      }
      continue;
    }

    // Only allow one virtual-register def.  There may be multiple defs of the
    // same virtual register, though.
    if (MO.isDef() && Reg != DefReg)
      return false;

    // Don't allow any virtual-register uses. Rematting an instruction with
    // virtual register uses would length the live ranges of the uses, which
    // is not necessarily a good idea, certainly not "trivial".
    if (MO.isUse())
      return false;
  }

  // Everything checked out.
  return true;
}

/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
                                               const MachineBasicBlock *MBB,
                                               const MachineFunction &MF) const{
  // Terminators and labels can't be scheduled around.
  if (MI->isTerminator() || MI->isLabel())
    return true;

  // Don't attempt to schedule around any instruction that defines
  // a stack-oriented pointer, as it's unlikely to be profitable. This
  // saves compile time, because it doesn't require every single
  // stack slot reference to depend on the instruction that does the
  // modification.
  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
  if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
    return true;

  return false;
}

// Provide a global flag for disabling the PreRA hazard recognizer that targets
// may choose to honor.
bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
  return !DisableHazardRecognizer;
}

// Default implementation of CreateTargetRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetHazardRecognizer(const TargetMachine *TM,
                             const ScheduleDAG *DAG) const {
  // Dummy hazard recognizer allows all instructions to issue.
  return new ScheduleHazardRecognizer();
}

// Default implementation of CreateTargetPostRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                   const ScheduleDAG *DAG) const {
  return (ScheduleHazardRecognizer *)
    new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
}

int
TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
                                       SDNode *DefNode, unsigned DefIdx,
                                       SDNode *UseNode, unsigned UseIdx) const {
  if (!ItinData || ItinData->isEmpty())
    return -1;

  if (!DefNode->isMachineOpcode())
    return -1;

  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
  if (!UseNode->isMachineOpcode())
    return ItinData->getOperandCycle(DefClass, DefIdx);
  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}

int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
                                         SDNode *N) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  if (!N->isMachineOpcode())
    return 1;

  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
}