aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/TargetInstrInfoImpl.cpp
blob: c28b045b2ec5abc166b99defc1e13a60238f11e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfoImpl class, it just provides default
// implementations of various methods.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
using namespace llvm;

// commuteInstruction - The default implementation of this method just exchanges
// operand 1 and 2.
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
                                                      bool NewMI) const {
  assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
         "This only knows how to commute register operands so far");
  unsigned Reg1 = MI->getOperand(1).getReg();
  unsigned Reg2 = MI->getOperand(2).getReg();
  bool Reg1IsKill = MI->getOperand(1).isKill();
  bool Reg2IsKill = MI->getOperand(2).isKill();
  bool ChangeReg0 = false;
  if (MI->getOperand(0).getReg() == Reg1) {
    // Must be two address instruction!
    assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
           "Expecting a two-address instruction!");
    Reg2IsKill = false;
    ChangeReg0 = true;
  }

  if (NewMI) {
    // Create a new instruction.
    unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
    bool Reg0IsDead = MI->getOperand(0).isDead();
    MachineFunction &MF = *MI->getParent()->getParent();
    return BuildMI(MF, MI->getDesc())
      .addReg(Reg0, true, false, false, Reg0IsDead)
      .addReg(Reg2, false, false, Reg2IsKill)
      .addReg(Reg1, false, false, Reg1IsKill);
  }

  if (ChangeReg0)
    MI->getOperand(0).setReg(Reg2);
  MI->getOperand(2).setReg(Reg1);
  MI->getOperand(1).setReg(Reg2);
  MI->getOperand(2).setIsKill(Reg1IsKill);
  MI->getOperand(1).setIsKill(Reg2IsKill);
  return MI;
}

/// CommuteChangesDestination - Return true if commuting the specified
/// instruction will also changes the destination operand. Also return the
/// current operand index of the would be new destination register by
/// reference. This can happen when the commutable instruction is also a
/// two-address instruction.
bool TargetInstrInfoImpl::CommuteChangesDestination(MachineInstr *MI,
                                                    unsigned &OpIdx) const{
  assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
         "This only knows how to commute register operands so far");
  if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
    // Must be two address instruction!
    assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
           "Expecting a two-address instruction!");
    OpIdx = 2;
    return true;
  }
  return false;
}


bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
                            const SmallVectorImpl<MachineOperand> &Pred) const {
  bool MadeChange = false;
  const TargetInstrDesc &TID = MI->getDesc();
  if (!TID.isPredicable())
    return false;
  
  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
    if (TID.OpInfo[i].isPredicate()) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg()) {
        MO.setReg(Pred[j].getReg());
        MadeChange = true;
      } else if (MO.isImm()) {
        MO.setImm(Pred[j].getImm());
        MadeChange = true;
      } else if (MO.isMBB()) {
        MO.setMBB(Pred[j].getMBB());
        MadeChange = true;
      }
      ++j;
    }
  }
  return MadeChange;
}

void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator I,
                                        unsigned DestReg,
                                        const MachineInstr *Orig) const {
  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
  MI->getOperand(0).setReg(DestReg);
  MBB.insert(I, MI);
}

unsigned
TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
  unsigned FnSize = 0;
  for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
       MBBI != E; ++MBBI) {
    const MachineBasicBlock &MBB = *MBBI;
    for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
         I != E; ++I)
      FnSize += GetInstSizeInBytes(I);
  }
  return FnSize;
}

/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
/// slot into the specified machine instruction for the specified operand(s).
/// If this is possible, a new instruction is returned with the specified
/// operand folded, otherwise NULL is returned. The client is responsible for
/// removing the old instruction and adding the new one in the instruction
/// stream.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
                                   MachineInstr* MI,
                                   const SmallVectorImpl<unsigned> &Ops,
                                   int FrameIndex) const {
  unsigned Flags = 0;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    if (MI->getOperand(Ops[i]).isDef())
      Flags |= MachineMemOperand::MOStore;
    else
      Flags |= MachineMemOperand::MOLoad;

  // Ask the target to do the actual folding.
  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
  if (!NewMI) return 0;

  assert((!(Flags & MachineMemOperand::MOStore) ||
          NewMI->getDesc().mayStore()) &&
         "Folded a def to a non-store!");
  assert((!(Flags & MachineMemOperand::MOLoad) ||
          NewMI->getDesc().mayLoad()) &&
         "Folded a use to a non-load!");
  const MachineFrameInfo &MFI = *MF.getFrameInfo();
  assert(MFI.getObjectOffset(FrameIndex) != -1);
  MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FrameIndex),
                        Flags,
                        MFI.getObjectOffset(FrameIndex),
                        MFI.getObjectSize(FrameIndex),
                        MFI.getObjectAlignment(FrameIndex));
  NewMI->addMemOperand(MF, MMO);

  return NewMI;
}

/// foldMemoryOperand - Same as the previous version except it allows folding
/// of any load and store from / to any address, not just from a specific
/// stack slot.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
                                   MachineInstr* MI,
                                   const SmallVectorImpl<unsigned> &Ops,
                                   MachineInstr* LoadMI) const {
  assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
#endif

  // Ask the target to do the actual folding.
  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
  if (!NewMI) return 0;

  // Copy the memoperands from the load to the folded instruction.
  for (std::list<MachineMemOperand>::iterator I = LoadMI->memoperands_begin(),
       E = LoadMI->memoperands_end(); I != E; ++I)
    NewMI->addMemOperand(MF, *I);

  return NewMI;
}