aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/TwoAddressInstructionPass.cpp
blob: 3820a45d8f70513beda02cc26d9ef07d5173cef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
//     A = B op C
//
// to:
//
//     A = B
//     A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
STATISTIC(NumReMats,           "Number of instructions re-materialized");
STATISTIC(NumDeletes,          "Number of dead instructions deleted");

namespace {
  class VISIBILITY_HIDDEN TwoAddressInstructionPass
    : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo *MRI;
    LiveVariables *LV;

    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
                              unsigned Reg,
                              MachineBasicBlock::iterator OldPos);

    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
                             MachineInstr *MI, MachineInstr *DefMI,
                             MachineBasicBlock *MBB, unsigned Loc,
                             DenseMap<MachineInstr*, unsigned> &DistanceMap);

    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
                           DenseMap<MachineInstr*, unsigned> &DistanceMap,
                           unsigned &LastDef);

    bool isProfitableToCommute(unsigned regB, unsigned regC,
                               MachineInstr *MI, MachineBasicBlock *MBB,
                               unsigned Dist,
                               DenseMap<MachineInstr*, unsigned> &DistanceMap);

    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
                            MachineFunction::iterator &mbbi,
                            unsigned RegC, unsigned Dist,
                            DenseMap<MachineInstr*, unsigned> &DistanceMap);
  public:
    static char ID; // Pass identification, replacement for typeid
    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<LiveVariables>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addPreservedID(MachineDominatorsID);
      if (StrongPHIElim)
        AU.addPreservedID(StrongPHIEliminationID);
      else
        AU.addPreservedID(PHIEliminationID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    /// runOnMachineFunction - Pass entry point.
    bool runOnMachineFunction(MachineFunction&);
  };
}

char TwoAddressInstructionPass::ID = 0;
static RegisterPass<TwoAddressInstructionPass>
X("twoaddressinstruction", "Two-Address instruction pass");

const PassInfo *const llvm::TwoAddressInstructionPassID = &X;

/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
                                           MachineInstr *MI, unsigned SavedReg,
                                           MachineBasicBlock::iterator OldPos) {
  // Check if it's safe to move this instruction.
  bool SeenStore = true; // Be conservative.
  if (!MI->isSafeToMove(TII, SeenStore))
    return false;

  unsigned DefReg = 0;
  SmallSet<unsigned, 4> UseRegs;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    unsigned MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MO.isUse() && MOReg != SavedReg)
      UseRegs.insert(MO.getReg());
    if (!MO.isDef())
      continue;
    if (MO.isImplicit())
      // Don't try to move it if it implicitly defines a register.
      return false;
    if (DefReg)
      // For now, don't move any instructions that define multiple registers.
      return false;
    DefReg = MO.getReg();
  }

  // Find the instruction that kills SavedReg.
  MachineInstr *KillMI = NULL;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    if (!UseMO.isKill())
      continue;
    KillMI = UseMO.getParent();
    break;
  }

  if (!KillMI || KillMI->getParent() != MBB)
    return false;

  // If any of the definitions are used by another instruction between the
  // position and the kill use, then it's not safe to sink it.
  // 
  // FIXME: This can be sped up if there is an easy way to query whether an
  // instruction is before or after another instruction. Then we can use
  // MachineRegisterInfo def / use instead.
  MachineOperand *KillMO = NULL;
  MachineBasicBlock::iterator KillPos = KillMI;
  ++KillPos;

  unsigned NumVisited = 0;
  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
    MachineInstr *OtherMI = I;
    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
      return false;
    ++NumVisited;
    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = OtherMI->getOperand(i);
      if (!MO.isReg())
        continue;
      unsigned MOReg = MO.getReg();
      if (!MOReg)
        continue;
      if (DefReg == MOReg)
        return false;

      if (MO.isKill()) {
        if (OtherMI == KillMI && MOReg == SavedReg)
          // Save the operand that kills the register. We want to unset the kill
          // marker if we can sink MI past it.
          KillMO = &MO;
        else if (UseRegs.count(MOReg))
          // One of the uses is killed before the destination.
          return false;
      }
    }
  }

  // Update kill and LV information.
  KillMO->setIsKill(false);
  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
  KillMO->setIsKill(true);
  
  if (LV)
    LV->replaceKillInstruction(SavedReg, KillMI, MI);

  // Move instruction to its destination.
  MBB->remove(MI);
  MBB->insert(KillPos, MI);

  ++Num3AddrSunk;
  return true;
}

/// isTwoAddrUse - Return true if the specified MI is using the specified
/// register as a two-address operand.
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
  const TargetInstrDesc &TID = UseMI->getDesc();
  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = UseMI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg &&
        (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
      // Earlier use is a two-address one.
      return true;
  }
  return false;
}

/// isProfitableToReMat - Return true if the heuristics determines it is likely
/// to be profitable to re-materialize the definition of Reg rather than copy
/// the register.
bool
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
                                const TargetRegisterClass *RC,
                                MachineInstr *MI, MachineInstr *DefMI,
                                MachineBasicBlock *MBB, unsigned Loc,
                                DenseMap<MachineInstr*, unsigned> &DistanceMap){
  bool OtherUse = false;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = UseMO.getParent();
    MachineBasicBlock *UseMBB = UseMI->getParent();
    if (UseMBB == MBB) {
      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
      if (DI != DistanceMap.end() && DI->second == Loc)
        continue;  // Current use.
      OtherUse = true;
      // There is at least one other use in the MBB that will clobber the
      // register. 
      if (isTwoAddrUse(UseMI, Reg))
        return true;
    }
  }

  // If other uses in MBB are not two-address uses, then don't remat.
  if (OtherUse)
    return false;

  // No other uses in the same block, remat if it's defined in the same
  // block so it does not unnecessarily extend the live range.
  return MBB == DefMI->getParent();
}

/// NoUseAfterLastDef - Return true if there are no intervening uses between the
/// last instruction in the MBB that defines the specified register and the
/// two-address instruction which is being processed. It also returns the last
/// def location by reference
bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
                                 MachineBasicBlock *MBB, unsigned Dist,
                                 DenseMap<MachineInstr*, unsigned> &DistanceMap,
                                 unsigned &LastDef) {
  LastDef = 0;
  unsigned LastUse = Dist;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineOperand &MO = I.getOperand();
    MachineInstr *MI = MO.getParent();
    if (MI->getParent() != MBB)
      continue;
    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    if (DI == DistanceMap.end())
      continue;
    if (MO.isUse() && DI->second < LastUse)
      LastUse = DI->second;
    if (MO.isDef() && DI->second > LastDef)
      LastDef = DI->second;
  }

  return !(LastUse > LastDef && LastUse < Dist);
}

/// isProfitableToReMat - Return true if it's potentially profitable to commute
/// the two-address instruction that's being processed.
bool
TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
                MachineInstr *MI, MachineBasicBlock *MBB,
                unsigned Dist, DenseMap<MachineInstr*, unsigned> &DistanceMap) {
  // Determine if it's profitable to commute this two address instruction. In
  // general, we want no uses between this instruction and the definition of
  // the two-address register.
  // e.g.
  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
  // %reg1029<def> = MOV8rr %reg1028
  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
  // insert => %reg1030<def> = MOV8rr %reg1028
  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
  // In this case, it might not be possible to coalesce the second MOV8rr
  // instruction if the first one is coalesced. So it would be profitable to
  // commute it:
  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
  // %reg1029<def> = MOV8rr %reg1028
  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
  // insert => %reg1030<def> = MOV8rr %reg1029
  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>  

  if (!MI->killsRegister(regC))
    return false;

  // Ok, we have something like:
  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
  // let's see if it's worth commuting it.

  // If there is a use of regC between its last def (could be livein) and this
  // instruction, then bail.
  unsigned LastDefC = 0;
  if (!NoUseAfterLastDef(regC, MBB, Dist, DistanceMap, LastDefC))
    return false;

  // If there is a use of regB between its last def (could be livein) and this
  // instruction, then go ahead and make this transformation.
  unsigned LastDefB = 0;
  if (!NoUseAfterLastDef(regB, MBB, Dist, DistanceMap, LastDefB))
    return true;

  // Since there are no intervening uses for both registers, then commute
  // if the def of regC is closer. Its live interval is shorter.
  return LastDefB && LastDefC && LastDefC > LastDefB;
}

/// CommuteInstruction - Commute a two-address instruction and update the basic
/// block, distance map, and live variables if needed. Return true if it is
/// successful.
bool
TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
                                              MachineFunction::iterator &mbbi,
                                              unsigned RegC, unsigned Dist,
                               DenseMap<MachineInstr*, unsigned> &DistanceMap) {
  MachineInstr *MI = mi;
  DOUT << "2addr: COMMUTING  : " << *MI;
  MachineInstr *NewMI = TII->commuteInstruction(MI);

  if (NewMI == 0) {
    DOUT << "2addr: COMMUTING FAILED!\n";
    return false;
  }

  DOUT << "2addr: COMMUTED TO: " << *NewMI;
  // If the instruction changed to commute it, update livevar.
  if (NewMI != MI) {
    if (LV)
      // Update live variables
      LV->replaceKillInstruction(RegC, MI, NewMI);

    mbbi->insert(mi, NewMI);           // Insert the new inst
    mbbi->erase(mi);                   // Nuke the old inst.
    mi = NewMI;
    DistanceMap.insert(std::make_pair(NewMI, Dist));
  }
  return true;
}

/// isSafeToDelete - If the specified instruction does not produce any side
/// effects and all of its defs are dead, then it's safe to delete.
static bool isSafeToDelete(MachineInstr *MI, const TargetInstrInfo *TII) {
  const TargetInstrDesc &TID = MI->getDesc();
  if (TID.mayStore() || TID.isCall())
    return false;
  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
    return false;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    if (!MO.isDead())
      return false;
  }

  return true;
}

/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
  DOUT << "Machine Function\n";
  const TargetMachine &TM = MF.getTarget();
  MRI = &MF.getRegInfo();
  TII = TM.getInstrInfo();
  TRI = TM.getRegisterInfo();
  LV = getAnalysisIfAvailable<LiveVariables>();

  bool MadeChange = false;

  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';

  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
  BitVector ReMatRegs;
  ReMatRegs.resize(MRI->getLastVirtReg()+1);

  // DistanceMap - Keep track the distance of a MI from the start of the
  // current basic block.
  DenseMap<MachineInstr*, unsigned> DistanceMap;

  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
       mbbi != mbbe; ++mbbi) {
    unsigned Dist = 0;
    DistanceMap.clear();
    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
         mi != me; ) {
      MachineBasicBlock::iterator nmi = next(mi);
      const TargetInstrDesc &TID = mi->getDesc();
      bool FirstTied = true;

      DistanceMap.insert(std::make_pair(mi, ++Dist));
      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
        if (ti == -1)
          continue;

        if (FirstTied) {
          ++NumTwoAddressInstrs;
          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
        }

        FirstTied = false;

        assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
               mi->getOperand(si).isUse() && "two address instruction invalid");

        // If the two operands are the same we just remove the use
        // and mark the def as def&use, otherwise we have to insert a copy.
        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
          // Rewrite:
          //     a = b op c
          // to:
          //     a = b
          //     a = a op c
          unsigned regA = mi->getOperand(ti).getReg();
          unsigned regB = mi->getOperand(si).getReg();

          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
                 TargetRegisterInfo::isVirtualRegister(regB) &&
                 "cannot update physical register live information");

#ifndef NDEBUG
          // First, verify that we don't have a use of a in the instruction (a =
          // b + a for example) because our transformation will not work. This
          // should never occur because we are in SSA form.
          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
            assert((int)i == ti ||
                   !mi->getOperand(i).isReg() ||
                   mi->getOperand(i).getReg() != regA);
#endif

          // If this instruction is not the killing user of B, see if we can
          // rearrange the code to make it so.  Making it the killing user will
          // allow us to coalesce A and B together, eliminating the copy we are
          // about to insert.
          if (!mi->killsRegister(regB)) {
            // If regA is dead and the instruction can be deleted, just delete
            // it so it doesn't clobber regB.
            if (mi->getOperand(ti).isDead() && isSafeToDelete(mi, TII)) {
              mbbi->erase(mi); // Nuke the old inst.
              mi = nmi;
              ++NumDeletes;
              break; // Done with this instruction.
            }

            // If this instruction is commutative, check to see if C dies.  If
            // so, swap the B and C operands.  This makes the live ranges of A
            // and C joinable.
            // FIXME: This code also works for A := B op C instructions.
            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
              assert(mi->getOperand(3-si).isReg() &&
                     "Not a proper commutative instruction!");
              unsigned regC = mi->getOperand(3-si).getReg();
              if (mi->killsRegister(regC)) {
                if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
                  ++NumCommuted;
                  regB = regC;
                  goto InstructionRearranged;
                }
              }
            }

            // If this instruction is potentially convertible to a true
            // three-address instruction,
            if (TID.isConvertibleTo3Addr()) {
              // FIXME: This assumes there are no more operands which are tied
              // to another register.
#ifndef NDEBUG
              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
#endif

              MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
              if (NewMI) {
                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
                DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
                bool Sunk = false;

                if (NewMI->findRegisterUseOperand(regB, false, TRI))
                  // FIXME: Temporary workaround. If the new instruction doesn't
                  // uses regB, convertToThreeAddress must have created more
                  // then one instruction.
                  Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);

                mbbi->erase(mi); // Nuke the old inst.

                if (!Sunk) {
                  DistanceMap.insert(std::make_pair(NewMI, Dist));
                  mi = NewMI;
                  nmi = next(mi);
                }

                ++NumConvertedTo3Addr;
                break; // Done with this instruction.
              }
            }
          }

          // If it's profitable to commute the instruction, do so.
          if (TID.isCommutable() && mi->getNumOperands() >= 3) {
            unsigned regC = mi->getOperand(3-si).getReg();
            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist, DistanceMap))
              if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
                ++NumAggrCommuted;
                ++NumCommuted;
                regB = regC;
              }
          }

        InstructionRearranged:
          const TargetRegisterClass* rc = MRI->getRegClass(regA);
          MachineInstr *DefMI = MRI->getVRegDef(regB);
          // If it's safe and profitable, remat the definition instead of
          // copying it.
          if (DefMI &&
              DefMI->getDesc().isAsCheapAsAMove() &&
              DefMI->isSafeToReMat(TII, regB) &&
              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
            DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
            TII->reMaterialize(*mbbi, mi, regA, DefMI);
            ReMatRegs.set(regB);
            ++NumReMats;
          } else {
            TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
          }

          MachineBasicBlock::iterator prevMI = prior(mi);
          // Update DistanceMap.
          DistanceMap.insert(std::make_pair(prevMI, Dist));
          DistanceMap[mi] = ++Dist;

          // Update live variables for regB.
          if (LV) {
            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);

            // regB is used in this BB.
            varInfoB.UsedBlocks[mbbi->getNumber()] = true;

            if (LV->removeVirtualRegisterKilled(regB,  mi))
              LV->addVirtualRegisterKilled(regB, prevMI);

            if (LV->removeVirtualRegisterDead(regB, mi))
              LV->addVirtualRegisterDead(regB, prevMI);
          }

          DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
          
          // Replace all occurences of regB with regA.
          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
            if (mi->getOperand(i).isReg() &&
                mi->getOperand(i).getReg() == regB)
              mi->getOperand(i).setReg(regA);
          }
        }

        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
        MadeChange = true;

        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
      }

      mi = nmi;
    }
  }

  // Some remat'ed instructions are dead.
  int VReg = ReMatRegs.find_first();
  while (VReg != -1) {
    if (MRI->use_empty(VReg)) {
      MachineInstr *DefMI = MRI->getVRegDef(VReg);
      DefMI->eraseFromParent();
    }
    VReg = ReMatRegs.find_next(VReg);
  }

  return MadeChange;
}