aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/TwoAddressInstructionPass.cpp
blob: 6c7c1a1305e3f774fe316fc7f00b4f773c915020 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
//     A = B op C
//
// to:
//
//     A = B
//     A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
STATISTIC(NumReMats,           "Number of instructions re-materialized");
STATISTIC(NumDeletes,          "Number of dead instructions deleted");

namespace {
  class TwoAddressInstructionPass : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo *MRI;
    LiveVariables *LV;
    AliasAnalysis *AA;

    // DistanceMap - Keep track the distance of a MI from the start of the
    // current basic block.
    DenseMap<MachineInstr*, unsigned> DistanceMap;

    // SrcRegMap - A map from virtual registers to physical registers which
    // are likely targets to be coalesced to due to copies from physical
    // registers to virtual registers. e.g. v1024 = move r0.
    DenseMap<unsigned, unsigned> SrcRegMap;

    // DstRegMap - A map from virtual registers to physical registers which
    // are likely targets to be coalesced to due to copies to physical
    // registers from virtual registers. e.g. r1 = move v1024.
    DenseMap<unsigned, unsigned> DstRegMap;

    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
                              unsigned Reg,
                              MachineBasicBlock::iterator OldPos);

    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
                             MachineInstr *MI, MachineInstr *DefMI,
                             MachineBasicBlock *MBB, unsigned Loc);

    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
                           unsigned &LastDef);

    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
                                   unsigned Dist);

    bool isProfitableToCommute(unsigned regB, unsigned regC,
                               MachineInstr *MI, MachineBasicBlock *MBB,
                               unsigned Dist);

    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
                            MachineFunction::iterator &mbbi,
                            unsigned RegB, unsigned RegC, unsigned Dist);

    bool isProfitableToConv3Addr(unsigned RegA);

    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
                            MachineBasicBlock::iterator &nmi,
                            MachineFunction::iterator &mbbi,
                            unsigned RegB, unsigned Dist);

    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
                               SmallVector<NewKill, 4> &NewKills,
                               MachineBasicBlock *MBB, unsigned Dist);
    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
                           MachineBasicBlock::iterator &nmi,
                           MachineFunction::iterator &mbbi, unsigned Dist);

    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
                                 MachineBasicBlock::iterator &nmi,
                                 MachineFunction::iterator &mbbi,
                                 unsigned SrcIdx, unsigned DstIdx,
                                 unsigned Dist);

    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
                     SmallPtrSet<MachineInstr*, 8> &Processed);

  public:
    static char ID; // Pass identification, replacement for typeid
    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<AliasAnalysis>();
      AU.addPreserved<LiveVariables>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addPreservedID(MachineDominatorsID);
      if (StrongPHIElim)
        AU.addPreservedID(StrongPHIEliminationID);
      else
        AU.addPreservedID(PHIEliminationID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    /// runOnMachineFunction - Pass entry point.
    bool runOnMachineFunction(MachineFunction&);
  };
}

char TwoAddressInstructionPass::ID = 0;
static RegisterPass<TwoAddressInstructionPass>
X("twoaddressinstruction", "Two-Address instruction pass");

const PassInfo *const llvm::TwoAddressInstructionPassID = &X;

/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
                                           MachineInstr *MI, unsigned SavedReg,
                                           MachineBasicBlock::iterator OldPos) {
  // Check if it's safe to move this instruction.
  bool SeenStore = true; // Be conservative.
  if (!MI->isSafeToMove(TII, SeenStore, AA))
    return false;

  unsigned DefReg = 0;
  SmallSet<unsigned, 4> UseRegs;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    unsigned MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MO.isUse() && MOReg != SavedReg)
      UseRegs.insert(MO.getReg());
    if (!MO.isDef())
      continue;
    if (MO.isImplicit())
      // Don't try to move it if it implicitly defines a register.
      return false;
    if (DefReg)
      // For now, don't move any instructions that define multiple registers.
      return false;
    DefReg = MO.getReg();
  }

  // Find the instruction that kills SavedReg.
  MachineInstr *KillMI = NULL;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    if (!UseMO.isKill())
      continue;
    KillMI = UseMO.getParent();
    break;
  }

  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
    return false;

  // If any of the definitions are used by another instruction between the
  // position and the kill use, then it's not safe to sink it.
  // 
  // FIXME: This can be sped up if there is an easy way to query whether an
  // instruction is before or after another instruction. Then we can use
  // MachineRegisterInfo def / use instead.
  MachineOperand *KillMO = NULL;
  MachineBasicBlock::iterator KillPos = KillMI;
  ++KillPos;

  unsigned NumVisited = 0;
  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
    MachineInstr *OtherMI = I;
    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
      return false;
    ++NumVisited;
    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = OtherMI->getOperand(i);
      if (!MO.isReg())
        continue;
      unsigned MOReg = MO.getReg();
      if (!MOReg)
        continue;
      if (DefReg == MOReg)
        return false;

      if (MO.isKill()) {
        if (OtherMI == KillMI && MOReg == SavedReg)
          // Save the operand that kills the register. We want to unset the kill
          // marker if we can sink MI past it.
          KillMO = &MO;
        else if (UseRegs.count(MOReg))
          // One of the uses is killed before the destination.
          return false;
      }
    }
  }

  // Update kill and LV information.
  KillMO->setIsKill(false);
  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
  KillMO->setIsKill(true);
  
  if (LV)
    LV->replaceKillInstruction(SavedReg, KillMI, MI);

  // Move instruction to its destination.
  MBB->remove(MI);
  MBB->insert(KillPos, MI);

  ++Num3AddrSunk;
  return true;
}

/// isTwoAddrUse - Return true if the specified MI is using the specified
/// register as a two-address operand.
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
  const TargetInstrDesc &TID = UseMI->getDesc();
  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = UseMI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg &&
        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
      // Earlier use is a two-address one.
      return true;
  }
  return false;
}

/// isProfitableToReMat - Return true if the heuristics determines it is likely
/// to be profitable to re-materialize the definition of Reg rather than copy
/// the register.
bool
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
                                         const TargetRegisterClass *RC,
                                         MachineInstr *MI, MachineInstr *DefMI,
                                         MachineBasicBlock *MBB, unsigned Loc) {
  bool OtherUse = false;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = UseMO.getParent();
    MachineBasicBlock *UseMBB = UseMI->getParent();
    if (UseMBB == MBB) {
      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
      if (DI != DistanceMap.end() && DI->second == Loc)
        continue;  // Current use.
      OtherUse = true;
      // There is at least one other use in the MBB that will clobber the
      // register. 
      if (isTwoAddrUse(UseMI, Reg))
        return true;
    }
  }

  // If other uses in MBB are not two-address uses, then don't remat.
  if (OtherUse)
    return false;

  // No other uses in the same block, remat if it's defined in the same
  // block so it does not unnecessarily extend the live range.
  return MBB == DefMI->getParent();
}

/// NoUseAfterLastDef - Return true if there are no intervening uses between the
/// last instruction in the MBB that defines the specified register and the
/// two-address instruction which is being processed. It also returns the last
/// def location by reference
bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
                                           MachineBasicBlock *MBB, unsigned Dist,
                                           unsigned &LastDef) {
  LastDef = 0;
  unsigned LastUse = Dist;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineOperand &MO = I.getOperand();
    MachineInstr *MI = MO.getParent();
    if (MI->getParent() != MBB || MI->isDebugValue())
      continue;
    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    if (DI == DistanceMap.end())
      continue;
    if (MO.isUse() && DI->second < LastUse)
      LastUse = DI->second;
    if (MO.isDef() && DI->second > LastDef)
      LastDef = DI->second;
  }

  return !(LastUse > LastDef && LastUse < Dist);
}

MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
                                                         MachineBasicBlock *MBB,
                                                         unsigned Dist) {
  unsigned LastUseDist = 0;
  MachineInstr *LastUse = 0;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineOperand &MO = I.getOperand();
    MachineInstr *MI = MO.getParent();
    if (MI->getParent() != MBB || MI->isDebugValue())
      continue;
    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    if (DI == DistanceMap.end())
      continue;
    if (DI->second >= Dist)
      continue;

    if (MO.isUse() && DI->second > LastUseDist) {
      LastUse = DI->first;
      LastUseDist = DI->second;
    }
  }
  return LastUse;
}

/// isCopyToReg - Return true if the specified MI is a copy instruction or
/// a extract_subreg instruction. It also returns the source and destination
/// registers and whether they are physical registers by reference.
static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
                        unsigned &SrcReg, unsigned &DstReg,
                        bool &IsSrcPhys, bool &IsDstPhys) {
  SrcReg = 0;
  DstReg = 0;
  unsigned SrcSubIdx, DstSubIdx;
  if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
    if (MI.isExtractSubreg()) {
      DstReg = MI.getOperand(0).getReg();
      SrcReg = MI.getOperand(1).getReg();
    } else if (MI.isInsertSubreg()) {
      DstReg = MI.getOperand(0).getReg();
      SrcReg = MI.getOperand(2).getReg();
    } else if (MI.isSubregToReg()) {
      DstReg = MI.getOperand(0).getReg();
      SrcReg = MI.getOperand(2).getReg();
    }
  }

  if (DstReg) {
    IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    return true;
  }
  return false;
}

/// isKilled - Test if the given register value, which is used by the given
/// instruction, is killed by the given instruction. This looks through
/// coalescable copies to see if the original value is potentially not killed.
///
/// For example, in this code:
///
///   %reg1034 = copy %reg1024
///   %reg1035 = copy %reg1025<kill>
///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
///
/// %reg1034 is not considered to be killed, since it is copied from a
/// register which is not killed. Treating it as not killed lets the
/// normal heuristics commute the (two-address) add, which lets
/// coalescing eliminate the extra copy.
///
static bool isKilled(MachineInstr &MI, unsigned Reg,
                     const MachineRegisterInfo *MRI,
                     const TargetInstrInfo *TII) {
  MachineInstr *DefMI = &MI;
  for (;;) {
    if (!DefMI->killsRegister(Reg))
      return false;
    if (TargetRegisterInfo::isPhysicalRegister(Reg))
      return true;
    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    // If there are multiple defs, we can't do a simple analysis, so just
    // go with what the kill flag says.
    if (llvm::next(Begin) != MRI->def_end())
      return true;
    DefMI = &*Begin;
    bool IsSrcPhys, IsDstPhys;
    unsigned SrcReg,  DstReg;
    // If the def is something other than a copy, then it isn't going to
    // be coalesced, so follow the kill flag.
    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
      return true;
    Reg = SrcReg;
  }
}

/// isTwoAddrUse - Return true if the specified MI uses the specified register
/// as a two-address use. If so, return the destination register by reference.
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
  const TargetInstrDesc &TID = MI.getDesc();
  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
  for (unsigned i = 0; i != NumOps; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
      continue;
    unsigned ti;
    if (MI.isRegTiedToDefOperand(i, &ti)) {
      DstReg = MI.getOperand(ti).getReg();
      return true;
    }
  }
  return false;
}

/// findOnlyInterestingUse - Given a register, if has a single in-basic block
/// use, return the use instruction if it's a copy or a two-address use.
static
MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
                                     MachineRegisterInfo *MRI,
                                     const TargetInstrInfo *TII,
                                     bool &IsCopy,
                                     unsigned &DstReg, bool &IsDstPhys) {
  MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
  if (UI == MRI->use_end())
    return 0;
  MachineInstr &UseMI = *UI;
  if (++UI != MRI->use_end())
    // More than one use.
    return 0;
  if (UseMI.getParent() != MBB)
    return 0;
  unsigned SrcReg;
  bool IsSrcPhys;
  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    IsCopy = true;
    return &UseMI;
  }
  IsDstPhys = false;
  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    return &UseMI;
  }
  return 0;
}

/// getMappedReg - Return the physical register the specified virtual register
/// might be mapped to.
static unsigned
getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    if (SI == RegMap.end())
      return 0;
    Reg = SI->second;
  }
  if (TargetRegisterInfo::isPhysicalRegister(Reg))
    return Reg;
  return 0;
}

/// regsAreCompatible - Return true if the two registers are equal or aliased.
///
static bool
regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
  if (RegA == RegB)
    return true;
  if (!RegA || !RegB)
    return false;
  return TRI->regsOverlap(RegA, RegB);
}


/// isProfitableToReMat - Return true if it's potentially profitable to commute
/// the two-address instruction that's being processed.
bool
TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
                                       MachineInstr *MI, MachineBasicBlock *MBB,
                                       unsigned Dist) {
  // Determine if it's profitable to commute this two address instruction. In
  // general, we want no uses between this instruction and the definition of
  // the two-address register.
  // e.g.
  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
  // %reg1029<def> = MOV8rr %reg1028
  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
  // insert => %reg1030<def> = MOV8rr %reg1028
  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
  // In this case, it might not be possible to coalesce the second MOV8rr
  // instruction if the first one is coalesced. So it would be profitable to
  // commute it:
  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
  // %reg1029<def> = MOV8rr %reg1028
  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
  // insert => %reg1030<def> = MOV8rr %reg1029
  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>  

  if (!MI->killsRegister(regC))
    return false;

  // Ok, we have something like:
  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
  // let's see if it's worth commuting it.

  // Look for situations like this:
  // %reg1024<def> = MOV r1
  // %reg1025<def> = MOV r0
  // %reg1026<def> = ADD %reg1024, %reg1025
  // r0            = MOV %reg1026
  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
  unsigned ToRegB = getMappedReg(regB, DstRegMap);
  unsigned ToRegC = getMappedReg(regC, DstRegMap);
  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
       regsAreCompatible(FromRegC, ToRegB, TRI)))
    return true;

  // If there is a use of regC between its last def (could be livein) and this
  // instruction, then bail.
  unsigned LastDefC = 0;
  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
    return false;

  // If there is a use of regB between its last def (could be livein) and this
  // instruction, then go ahead and make this transformation.
  unsigned LastDefB = 0;
  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
    return true;

  // Since there are no intervening uses for both registers, then commute
  // if the def of regC is closer. Its live interval is shorter.
  return LastDefB && LastDefC && LastDefC > LastDefB;
}

/// CommuteInstruction - Commute a two-address instruction and update the basic
/// block, distance map, and live variables if needed. Return true if it is
/// successful.
bool
TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
                               MachineFunction::iterator &mbbi,
                               unsigned RegB, unsigned RegC, unsigned Dist) {
  MachineInstr *MI = mi;
  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
  MachineInstr *NewMI = TII->commuteInstruction(MI);

  if (NewMI == 0) {
    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    return false;
  }

  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
  // If the instruction changed to commute it, update livevar.
  if (NewMI != MI) {
    if (LV)
      // Update live variables
      LV->replaceKillInstruction(RegC, MI, NewMI);

    mbbi->insert(mi, NewMI);           // Insert the new inst
    mbbi->erase(mi);                   // Nuke the old inst.
    mi = NewMI;
    DistanceMap.insert(std::make_pair(NewMI, Dist));
  }

  // Update source register map.
  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
  if (FromRegC) {
    unsigned RegA = MI->getOperand(0).getReg();
    SrcRegMap[RegA] = FromRegC;
  }

  return true;
}

/// isProfitableToConv3Addr - Return true if it is profitable to convert the
/// given 2-address instruction to a 3-address one.
bool
TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
  // Look for situations like this:
  // %reg1024<def> = MOV r1
  // %reg1025<def> = MOV r0
  // %reg1026<def> = ADD %reg1024, %reg1025
  // r2            = MOV %reg1026
  // Turn ADD into a 3-address instruction to avoid a copy.
  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
}

/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
/// three address one. Return true if this transformation was successful.
bool
TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
                                              MachineBasicBlock::iterator &nmi,
                                              MachineFunction::iterator &mbbi,
                                              unsigned RegB, unsigned Dist) {
  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
  if (NewMI) {
    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    bool Sunk = false;

    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
      // FIXME: Temporary workaround. If the new instruction doesn't
      // uses RegB, convertToThreeAddress must have created more
      // then one instruction.
      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);

    mbbi->erase(mi); // Nuke the old inst.

    if (!Sunk) {
      DistanceMap.insert(std::make_pair(NewMI, Dist));
      mi = NewMI;
      nmi = llvm::next(mi);
    }
    return true;
  }

  return false;
}

/// ProcessCopy - If the specified instruction is not yet processed, process it
/// if it's a copy. For a copy instruction, we find the physical registers the
/// source and destination registers might be mapped to. These are kept in
/// point-to maps used to determine future optimizations. e.g.
/// v1024 = mov r0
/// v1025 = mov r1
/// v1026 = add v1024, v1025
/// r1    = mov r1026
/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
/// potentially joined with r1 on the output side. It's worthwhile to commute
/// 'add' to eliminate a copy.
void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
                                     MachineBasicBlock *MBB,
                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
  if (Processed.count(MI))
    return;

  bool IsSrcPhys, IsDstPhys;
  unsigned SrcReg, DstReg;
  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    return;

  if (IsDstPhys && !IsSrcPhys)
    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
  else if (!IsDstPhys && IsSrcPhys) {
    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    if (!isNew)
      assert(SrcRegMap[DstReg] == SrcReg &&
             "Can't map to two src physical registers!");

    SmallVector<unsigned, 4> VirtRegPairs;
    bool IsCopy = false;
    unsigned NewReg = 0;
    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
                                                   IsCopy, NewReg, IsDstPhys)) {
      if (IsCopy) {
        if (!Processed.insert(UseMI))
          break;
      }

      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
      if (DI != DistanceMap.end())
        // Earlier in the same MBB.Reached via a back edge.
        break;

      if (IsDstPhys) {
        VirtRegPairs.push_back(NewReg);
        break;
      }
      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
      if (!isNew)
        assert(SrcRegMap[NewReg] == DstReg &&
               "Can't map to two src physical registers!");
      VirtRegPairs.push_back(NewReg);
      DstReg = NewReg;
    }

    if (!VirtRegPairs.empty()) {
      unsigned ToReg = VirtRegPairs.back();
      VirtRegPairs.pop_back();
      while (!VirtRegPairs.empty()) {
        unsigned FromReg = VirtRegPairs.back();
        VirtRegPairs.pop_back();
        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
        if (!isNew)
          assert(DstRegMap[FromReg] == ToReg &&
                 "Can't map to two dst physical registers!");
        ToReg = FromReg;
      }
    }
  }

  Processed.insert(MI);
}

/// isSafeToDelete - If the specified instruction does not produce any side
/// effects and all of its defs are dead, then it's safe to delete.
static bool isSafeToDelete(MachineInstr *MI,
                           const TargetInstrInfo *TII,
                           SmallVector<unsigned, 4> &Kills) {
  const TargetInstrDesc &TID = MI->getDesc();
  if (TID.mayStore() || TID.isCall())
    return false;
  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
    return false;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.isDef() && !MO.isDead())
      return false;
    if (MO.isUse() && MO.isKill())
      Kills.push_back(MO.getReg());
  }
  return true;
}

/// canUpdateDeletedKills - Check if all the registers listed in Kills are
/// killed by instructions in MBB preceding the current instruction at
/// position Dist.  If so, return true and record information about the
/// preceding kills in NewKills.
bool TwoAddressInstructionPass::
canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
                      SmallVector<NewKill, 4> &NewKills,
                      MachineBasicBlock *MBB, unsigned Dist) {
  while (!Kills.empty()) {
    unsigned Kill = Kills.back();
    Kills.pop_back();
    if (TargetRegisterInfo::isPhysicalRegister(Kill))
      return false;

    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
    if (!LastKill)
      return false;

    bool isModRef = LastKill->modifiesRegister(Kill);
    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
                                      LastKill));
  }
  return true;
}

/// DeleteUnusedInstr - If an instruction with a tied register operand can
/// be safely deleted, just delete it.
bool
TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
                                             MachineBasicBlock::iterator &nmi,
                                             MachineFunction::iterator &mbbi,
                                             unsigned Dist) {
  // Check if the instruction has no side effects and if all its defs are dead.
  SmallVector<unsigned, 4> Kills;
  if (!isSafeToDelete(mi, TII, Kills))
    return false;

  // If this instruction kills some virtual registers, we need to
  // update the kill information. If it's not possible to do so,
  // then bail out.
  SmallVector<NewKill, 4> NewKills;
  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
    return false;

  if (LV) {
    while (!NewKills.empty()) {
      MachineInstr *NewKill = NewKills.back().second;
      unsigned Kill = NewKills.back().first.first;
      bool isDead = NewKills.back().first.second;
      NewKills.pop_back();
      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
        if (isDead)
          LV->addVirtualRegisterDead(Kill, NewKill);
        else
          LV->addVirtualRegisterKilled(Kill, NewKill);
      }
    }
  }

  mbbi->erase(mi); // Nuke the old inst.
  mi = nmi;
  return true;
}

/// TryInstructionTransform - For the case where an instruction has a single
/// pair of tied register operands, attempt some transformations that may
/// either eliminate the tied operands or improve the opportunities for
/// coalescing away the register copy.  Returns true if the tied operands
/// are eliminated altogether.
bool TwoAddressInstructionPass::
TryInstructionTransform(MachineBasicBlock::iterator &mi,
                        MachineBasicBlock::iterator &nmi,
                        MachineFunction::iterator &mbbi,
                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
  const TargetInstrDesc &TID = mi->getDesc();
  unsigned regA = mi->getOperand(DstIdx).getReg();
  unsigned regB = mi->getOperand(SrcIdx).getReg();

  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
         "cannot make instruction into two-address form");

  // If regA is dead and the instruction can be deleted, just delete
  // it so it doesn't clobber regB.
  bool regBKilled = isKilled(*mi, regB, MRI, TII);
  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
    ++NumDeletes;
    return true; // Done with this instruction.
  }

  // Check if it is profitable to commute the operands.
  unsigned SrcOp1, SrcOp2;
  unsigned regC = 0;
  unsigned regCIdx = ~0U;
  bool TryCommute = false;
  bool AggressiveCommute = false;
  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
    if (SrcIdx == SrcOp1)
      regCIdx = SrcOp2;
    else if (SrcIdx == SrcOp2)
      regCIdx = SrcOp1;

    if (regCIdx != ~0U) {
      regC = mi->getOperand(regCIdx).getReg();
      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
        // If C dies but B does not, swap the B and C operands.
        // This makes the live ranges of A and C joinable.
        TryCommute = true;
      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
        TryCommute = true;
        AggressiveCommute = true;
      }
    }
  }

  // If it's profitable to commute, try to do so.
  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
    ++NumCommuted;
    if (AggressiveCommute)
      ++NumAggrCommuted;
    return false;
  }

  if (TID.isConvertibleTo3Addr()) {
    // This instruction is potentially convertible to a true
    // three-address instruction.  Check if it is profitable.
    if (!regBKilled || isProfitableToConv3Addr(regA)) {
      // Try to convert it.
      if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
        ++NumConvertedTo3Addr;
        return true; // Done with this instruction.
      }
    }
  }
  return false;
}

/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "Machine Function\n");
  const TargetMachine &TM = MF.getTarget();
  MRI = &MF.getRegInfo();
  TII = TM.getInstrInfo();
  TRI = TM.getRegisterInfo();
  LV = getAnalysisIfAvailable<LiveVariables>();
  AA = &getAnalysis<AliasAnalysis>();

  bool MadeChange = false;

  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
  DEBUG(dbgs() << "********** Function: " 
        << MF.getFunction()->getName() << '\n');

  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
  BitVector ReMatRegs;
  ReMatRegs.resize(MRI->getLastVirtReg()+1);

  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
    TiedOperandMap;
  TiedOperandMap TiedOperands(4);

  SmallPtrSet<MachineInstr*, 8> Processed;
  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
       mbbi != mbbe; ++mbbi) {
    unsigned Dist = 0;
    DistanceMap.clear();
    SrcRegMap.clear();
    DstRegMap.clear();
    Processed.clear();
    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
         mi != me; ) {
      MachineBasicBlock::iterator nmi = llvm::next(mi);
      const TargetInstrDesc &TID = mi->getDesc();
      bool FirstTied = true;

      DistanceMap.insert(std::make_pair(mi, ++Dist));

      ProcessCopy(&*mi, &*mbbi, Processed);

      // First scan through all the tied register uses in this instruction
      // and record a list of pairs of tied operands for each register.
      unsigned NumOps = mi->isInlineAsm()
        ? mi->getNumOperands() : TID.getNumOperands();
      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
        unsigned DstIdx = 0;
        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
          continue;

        if (FirstTied) {
          FirstTied = false;
          ++NumTwoAddressInstrs;
          DEBUG(dbgs() << '\t' << *mi);
        }

        assert(mi->getOperand(SrcIdx).isReg() &&
               mi->getOperand(SrcIdx).getReg() &&
               mi->getOperand(SrcIdx).isUse() &&
               "two address instruction invalid");

        unsigned regB = mi->getOperand(SrcIdx).getReg();
        TiedOperandMap::iterator OI = TiedOperands.find(regB);
        if (OI == TiedOperands.end()) {
          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
        }
        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
      }

      // Now iterate over the information collected above.
      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
             OE = TiedOperands.end(); OI != OE; ++OI) {
        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;

        // If the instruction has a single pair of tied operands, try some
        // transformations that may either eliminate the tied operands or
        // improve the opportunities for coalescing away the register copy.
        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
          unsigned SrcIdx = TiedPairs[0].first;
          unsigned DstIdx = TiedPairs[0].second;

          // If the registers are already equal, nothing needs to be done.
          if (mi->getOperand(SrcIdx).getReg() ==
              mi->getOperand(DstIdx).getReg())
            break; // Done with this instruction.

          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
            break; // The tied operands have been eliminated.
        }

        bool RemovedKillFlag = false;
        bool AllUsesCopied = true;
        unsigned LastCopiedReg = 0;
        unsigned regB = OI->first;
        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
          unsigned SrcIdx = TiedPairs[tpi].first;
          unsigned DstIdx = TiedPairs[tpi].second;
          unsigned regA = mi->getOperand(DstIdx).getReg();
          // Grab regB from the instruction because it may have changed if the
          // instruction was commuted.
          regB = mi->getOperand(SrcIdx).getReg();

          if (regA == regB) {
            // The register is tied to multiple destinations (or else we would
            // not have continued this far), but this use of the register
            // already matches the tied destination.  Leave it.
            AllUsesCopied = false;
            continue;
          }
          LastCopiedReg = regA;

          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
                 "cannot make instruction into two-address form");

#ifndef NDEBUG
          // First, verify that we don't have a use of "a" in the instruction
          // (a = b + a for example) because our transformation will not
          // work. This should never occur because we are in SSA form.
          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
            assert(i == DstIdx ||
                   !mi->getOperand(i).isReg() ||
                   mi->getOperand(i).getReg() != regA);
#endif

          // Emit a copy or rematerialize the definition.
          const TargetRegisterClass *rc = MRI->getRegClass(regB);
          MachineInstr *DefMI = MRI->getVRegDef(regB);
          // If it's safe and profitable, remat the definition instead of
          // copying it.
          if (DefMI &&
              DefMI->getDesc().isAsCheapAsAMove() &&
              DefMI->isSafeToReMat(TII, regB, AA) &&
              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
            ReMatRegs.set(regB);
            ++NumReMats;
          } else {
            bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
            (void)Emitted;
            assert(Emitted && "Unable to issue a copy instruction!\n");
          }

          MachineBasicBlock::iterator prevMI = prior(mi);
          // Update DistanceMap.
          DistanceMap.insert(std::make_pair(prevMI, Dist));
          DistanceMap[mi] = ++Dist;

          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);

          MachineOperand &MO = mi->getOperand(SrcIdx);
          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
                 "inconsistent operand info for 2-reg pass");
          if (MO.isKill()) {
            MO.setIsKill(false);
            RemovedKillFlag = true;
          }
          MO.setReg(regA);
        }

        if (AllUsesCopied) {
          // Replace other (un-tied) uses of regB with LastCopiedReg.
          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
            MachineOperand &MO = mi->getOperand(i);
            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
              if (MO.isKill()) {
                MO.setIsKill(false);
                RemovedKillFlag = true;
              }
              MO.setReg(LastCopiedReg);
            }
          }

          // Update live variables for regB.
          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
            LV->addVirtualRegisterKilled(regB, prior(mi));

        } else if (RemovedKillFlag) {
          // Some tied uses of regB matched their destination registers, so
          // regB is still used in this instruction, but a kill flag was
          // removed from a different tied use of regB, so now we need to add
          // a kill flag to one of the remaining uses of regB.
          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
            MachineOperand &MO = mi->getOperand(i);
            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
              MO.setIsKill(true);
              break;
            }
          }
        }
          
        MadeChange = true;

        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
      }

      // Clear TiedOperands here instead of at the top of the loop
      // since most instructions do not have tied operands.
      TiedOperands.clear();
      mi = nmi;
    }
  }

  // Some remat'ed instructions are dead.
  int VReg = ReMatRegs.find_first();
  while (VReg != -1) {
    if (MRI->use_empty(VReg)) {
      MachineInstr *DefMI = MRI->getVRegDef(VReg);
      DefMI->eraseFromParent();
    }
    VReg = ReMatRegs.find_next(VReg);
  }

  return MadeChange;
}