aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/VirtRegMap.cpp
blob: d0fd62a6f9d8cc5dea64c8faf7356666591929ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumSpills, "Number of register spills");
STATISTIC(NumReMats, "Number of re-materialization");
STATISTIC(NumDRM   , "Number of re-materializable defs elided");
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumReused, "Number of values reused");
STATISTIC(NumDSE   , "Number of dead stores elided");
STATISTIC(NumDCE   , "Number of copies elided");

namespace {
  enum SpillerName { simple, local };

  static cl::opt<SpillerName>
  SpillerOpt("spiller",
             cl::desc("Spiller to use: (default: local)"),
             cl::Prefix,
             cl::values(clEnumVal(simple, "  simple spiller"),
                        clEnumVal(local,  "  local spiller"),
                        clEnumValEnd),
             cl::init(local));
}

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

VirtRegMap::VirtRegMap(MachineFunction &mf)
  : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) {
  grow();
}

void VirtRegMap::grow() {
  unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
  Virt2PhysMap.grow(LastVirtReg);
  Virt2StackSlotMap.grow(LastVirtReg);
  Virt2ReMatIdMap.grow(LastVirtReg);
  Virt2SplitMap.grow(LastVirtReg);
  Virt2SplitKillMap.grow(LastVirtReg);
  ReMatMap.grow(LastVirtReg);
}

int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
                                                        RC->getAlignment());
  Virt2StackSlotMap[virtReg] = frameIndex;
  ++NumSpills;
  return frameIndex;
}

void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  assert((frameIndex >= 0 ||
          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
         "illegal fixed frame index");
  Virt2StackSlotMap[virtReg] = frameIndex;
}

int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign re-mat id to already spilled register");
  Virt2ReMatIdMap[virtReg] = ReMatId;
  return ReMatId++;
}

void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign re-mat id to already spilled register");
  Virt2ReMatIdMap[virtReg] = id;
}

void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
                            MachineInstr *NewMI, ModRef MRInfo) {
  // Move previous memory references folded to new instruction.
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
    MI2VirtMap.erase(I++);
  }

  // add new memory reference
  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
}

void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
}

void VirtRegMap::print(std::ostream &OS) const {
  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();

  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";

  }

  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
  OS << '\n';
}

void VirtRegMap::dump() const {
  print(DOUT);
}


//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//

Spiller::~Spiller() {}

namespace {
  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
  };
}

bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
  DOUT << "********** REWRITE MACHINE CODE **********\n";
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
  const TargetMachine &TM = MF.getTarget();
  const MRegisterInfo &MRI = *TM.getRegisterInfo();

  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
  // each vreg once (in the case where a spilled vreg is used by multiple
  // operands).  This is always smaller than the number of operands to the
  // current machine instr, so it should be small.
  std::vector<unsigned> LoadedRegs;

  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
       MBBI != E; ++MBBI) {
    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
    MachineBasicBlock &MBB = *MBBI;
    for (MachineBasicBlock::iterator MII = MBB.begin(),
           E = MBB.end(); MII != E; ++MII) {
      MachineInstr &MI = *MII;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (MO.isRegister() && MO.getReg())
          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
            unsigned VirtReg = MO.getReg();
            unsigned PhysReg = VRM.getPhys(VirtReg);
            if (!VRM.isAssignedReg(VirtReg)) {
              int StackSlot = VRM.getStackSlot(VirtReg);
              const TargetRegisterClass* RC =
                MF.getSSARegMap()->getRegClass(VirtReg);

              if (MO.isUse() &&
                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
                  == LoadedRegs.end()) {
                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
                LoadedRegs.push_back(VirtReg);
                ++NumLoads;
                DOUT << '\t' << *prior(MII);
              }

              if (MO.isDef()) {
                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
                                        StackSlot, RC);
                ++NumStores;
              }
            }
            MF.setPhysRegUsed(PhysReg);
            MI.getOperand(i).setReg(PhysReg);
          } else {
            MF.setPhysRegUsed(MO.getReg());
          }
      }

      DOUT << '\t' << MI;
      LoadedRegs.clear();
    }
  }
  return true;
}

//===----------------------------------------------------------------------===//
//  Local Spiller Implementation
//===----------------------------------------------------------------------===//

namespace {
  class AvailableSpills;

  /// LocalSpiller - This spiller does a simple pass over the machine basic
  /// block to attempt to keep spills in registers as much as possible for
  /// blocks that have low register pressure (the vreg may be spilled due to
  /// register pressure in other blocks).
  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
    SSARegMap *RegMap;
    const MRegisterInfo *MRI;
    const TargetInstrInfo *TII;
  public:
    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
      RegMap = MF.getSSARegMap();
      MRI = MF.getTarget().getRegisterInfo();
      TII = MF.getTarget().getInstrInfo();
      DOUT << "\n**** Local spiller rewriting function '"
           << MF.getFunction()->getName() << "':\n";
      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!) ****\n";
      DEBUG(MF.dump());

      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
           MBB != E; ++MBB)
        RewriteMBB(*MBB, VRM);

      DOUT << "**** Post Machine Instrs ****\n";
      DEBUG(MF.dump());

      return true;
    }
  private:
    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &MII,
                           std::vector<MachineInstr*> &MaybeDeadStores,
                           AvailableSpills &Spills, BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps,
                           VirtRegMap &VRM);
    void SpillRegToStackSlot(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator &MII,
                             int Idx, unsigned PhysReg, int StackSlot,
                             const TargetRegisterClass *RC,
                             bool isAvailable, MachineInstr *&LastStore,
                             AvailableSpills &Spills,
                             SmallSet<MachineInstr*, 4> &ReMatDefs,
                             BitVector &RegKills,
                             std::vector<MachineOperand*> &KillOps,
                             VirtRegMap &VRM);
    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
  };
}

/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
/// top down, keep track of which spills slots or remat are available in each
/// register.
///
/// Note that not all physregs are created equal here.  In particular, some
/// physregs are reloads that we are allowed to clobber or ignore at any time.
/// Other physregs are values that the register allocated program is using that
/// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
/// per-stack-slot / remat id basis as the low bit in the value of the
/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
/// this bit and addAvailable sets it if.
namespace {
class VISIBILITY_HIDDEN AvailableSpills {
  const MRegisterInfo *MRI;
  const TargetInstrInfo *TII;

  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
  // or remat'ed virtual register values that are still available, due to being
  // loaded or stored to, but not invalidated yet.
  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
    
  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
  // indicating which stack slot values are currently held by a physreg.  This
  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
  // physreg is modified.
  std::multimap<unsigned, int> PhysRegsAvailable;
  
  void disallowClobberPhysRegOnly(unsigned PhysReg);

  void ClobberPhysRegOnly(unsigned PhysReg);
public:
  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
    : MRI(mri), TII(tii) {
  }
  
  const MRegisterInfo *getRegInfo() const { return MRI; }

  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
  /// available in a  physical register, return that PhysReg, otherwise
  /// return 0.
  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
    std::map<int, unsigned>::const_iterator I =
      SpillSlotsOrReMatsAvailable.find(Slot);
    if (I != SpillSlotsOrReMatsAvailable.end()) {
      return I->second >> 1;  // Remove the CanClobber bit.
    }
    return 0;
  }

  /// addAvailable - Mark that the specified stack slot / remat is available in
  /// the specified physreg.  If CanClobber is true, the physreg can be modified
  /// at any time without changing the semantics of the program.
  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
                    bool CanClobber = true) {
    // If this stack slot is thought to be available in some other physreg, 
    // remove its record.
    ModifyStackSlotOrReMat(SlotOrReMat);
    
    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
  
    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
    else
      DOUT << "Remembering SS#" << SlotOrReMat;
    DOUT << " in physreg " << MRI->getName(Reg) << "\n";
  }

  /// canClobberPhysReg - Return true if the spiller is allowed to change the 
  /// value of the specified stackslot register if it desires.  The specified
  /// stack slot must be available in a physreg for this query to make sense.
  bool canClobberPhysReg(int SlotOrReMat) const {
    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
           "Value not available!");
    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
  }

  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
  /// stackslot register. The register is still available but is no longer
  /// allowed to be modifed.
  void disallowClobberPhysReg(unsigned PhysReg);
  
  /// ClobberPhysReg - This is called when the specified physreg changes
  /// value.  We use this to invalidate any info about stuff that lives in
  /// it and any of its aliases.
  void ClobberPhysReg(unsigned PhysReg);

  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
  /// slot changes.  This removes information about which register the previous
  /// value for this slot lives in (as the previous value is dead now).
  void ModifyStackSlotOrReMat(int SlotOrReMat);
};
}

/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
/// stackslot register. The register is still available but is no longer
/// allowed to be modifed.
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int SlotOrReMat = I->second;
    I++;
    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
    DOUT << "PhysReg " << MRI->getName(PhysReg)
         << " copied, it is available for use but can no longer be modified\n";
  }
}

/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
/// stackslot register and its aliases. The register and its aliases may
/// still available but is no longer allowed to be modifed.
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    disallowClobberPhysRegOnly(*AS);
  disallowClobberPhysRegOnly(PhysReg);
}

/// ClobberPhysRegOnly - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in it.
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int SlotOrReMat = I->second;
    PhysRegsAvailable.erase(I++);
    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
    DOUT << "PhysReg " << MRI->getName(PhysReg)
         << " clobbered, invalidating ";
    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
    else
      DOUT << "SS#" << SlotOrReMat << "\n";
  }
}

/// ClobberPhysReg - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    ClobberPhysRegOnly(*AS);
  ClobberPhysRegOnly(PhysReg);
}

/// ModifyStackSlotOrReMat - This method is called when the value in a stack
/// slot changes.  This removes information about which register the previous
/// value for this slot lives in (as the previous value is dead now).
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
  std::map<int, unsigned>::iterator It =
    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
  if (It == SpillSlotsOrReMatsAvailable.end()) return;
  unsigned Reg = It->second >> 1;
  SpillSlotsOrReMatsAvailable.erase(It);
  
  // This register may hold the value of multiple stack slots, only remove this
  // stack slot from the set of values the register contains.
  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
  for (; ; ++I) {
    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
           "Map inverse broken!");
    if (I->second == SlotOrReMat) break;
  }
  PhysRegsAvailable.erase(I);
}



/// InvalidateKills - MI is going to be deleted. If any of its operands are
/// marked kill, then invalidate the information.
static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
                            std::vector<MachineOperand*> &KillOps,
                            SmallVector<unsigned, 2> *KillRegs = NULL) {
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
      continue;
    unsigned Reg = MO.getReg();
    if (KillRegs)
      KillRegs->push_back(Reg);
    if (KillOps[Reg] == &MO) {
      RegKills.reset(Reg);
      KillOps[Reg] = NULL;
    }
  }
}

/// InvalidateRegDef - If the def operand of the specified def MI is now dead
/// (since it's spill instruction is removed), mark it isDead. Also checks if
/// the def MI has other definition operands that are not dead. Returns it by
/// reference.
static bool InvalidateRegDef(MachineBasicBlock::iterator I,
                             MachineInstr &NewDef, unsigned Reg,
                             bool &HasLiveDef) {
  // Due to remat, it's possible this reg isn't being reused. That is,
  // the def of this reg (by prev MI) is now dead.
  MachineInstr *DefMI = I;
  MachineOperand *DefOp = NULL;
  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = DefMI->getOperand(i);
    if (MO.isRegister() && MO.isDef()) {
      if (MO.getReg() == Reg)
        DefOp = &MO;
      else if (!MO.isDead())
        HasLiveDef = true;
    }
  }
  if (!DefOp)
    return false;

  bool FoundUse = false, Done = false;
  MachineBasicBlock::iterator E = NewDef;
  ++I; ++E;
  for (; !Done && I != E; ++I) {
    MachineInstr *NMI = I;
    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
      MachineOperand &MO = NMI->getOperand(j);
      if (!MO.isRegister() || MO.getReg() != Reg)
        continue;
      if (MO.isUse())
        FoundUse = true;
      Done = true; // Stop after scanning all the operands of this MI.
    }
  }
  if (!FoundUse) {
    // Def is dead!
    DefOp->setIsDead();
    return true;
  }
  return false;
}

/// UpdateKills - Track and update kill info. If a MI reads a register that is
/// marked kill, then it must be due to register reuse. Transfer the kill info
/// over.
static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
                        std::vector<MachineOperand*> &KillOps) {
  const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isRegister() || !MO.isUse())
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0)
      continue;
    
    if (RegKills[Reg]) {
      // That can't be right. Register is killed but not re-defined and it's
      // being reused. Let's fix that.
      KillOps[Reg]->unsetIsKill();
      if (i < TID->numOperands &&
          TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
        // Unless it's a two-address operand, this is the new kill.
        MO.setIsKill();
    }

    if (MO.isKill()) {
      RegKills.set(Reg);
      KillOps[Reg] = &MO;
    }
  }

  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isRegister() || !MO.isDef())
      continue;
    unsigned Reg = MO.getReg();
    RegKills.reset(Reg);
    KillOps[Reg] = NULL;
  }
}


// ReusedOp - For each reused operand, we keep track of a bit of information, in
// case we need to rollback upon processing a new operand.  See comments below.
namespace {
  struct ReusedOp {
    // The MachineInstr operand that reused an available value.
    unsigned Operand;

    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
    unsigned StackSlotOrReMat;

    // PhysRegReused - The physical register the value was available in.
    unsigned PhysRegReused;

    // AssignedPhysReg - The physreg that was assigned for use by the reload.
    unsigned AssignedPhysReg;
    
    // VirtReg - The virtual register itself.
    unsigned VirtReg;

    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
             unsigned vreg)
      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
        AssignedPhysReg(apr), VirtReg(vreg) {}
  };
  
  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
  /// is reused instead of reloaded.
  class VISIBILITY_HIDDEN ReuseInfo {
    MachineInstr &MI;
    std::vector<ReusedOp> Reuses;
    BitVector PhysRegsClobbered;
  public:
    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
      PhysRegsClobbered.resize(mri->getNumRegs());
    }
    
    bool hasReuses() const {
      return !Reuses.empty();
    }
    
    /// addReuse - If we choose to reuse a virtual register that is already
    /// available instead of reloading it, remember that we did so.
    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
                  unsigned PhysRegReused, unsigned AssignedPhysReg,
                  unsigned VirtReg) {
      // If the reload is to the assigned register anyway, no undo will be
      // required.
      if (PhysRegReused == AssignedPhysReg) return;
      
      // Otherwise, remember this.
      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
                                AssignedPhysReg, VirtReg));
    }

    void markClobbered(unsigned PhysReg) {
      PhysRegsClobbered.set(PhysReg);
    }

    bool isClobbered(unsigned PhysReg) const {
      return PhysRegsClobbered.test(PhysReg);
    }
    
    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
    /// is some other operand that is using the specified register, either pick
    /// a new register to use, or evict the previous reload and use this reg. 
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
                             AvailableSpills &Spills,
                             std::vector<MachineInstr*> &MaybeDeadStores,
                             SmallSet<unsigned, 8> &Rejected,
                             BitVector &RegKills,
                             std::vector<MachineOperand*> &KillOps,
                             VirtRegMap &VRM) {
      if (Reuses.empty()) return PhysReg;  // This is most often empty.

      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
        ReusedOp &Op = Reuses[ro];
        // If we find some other reuse that was supposed to use this register
        // exactly for its reload, we can change this reload to use ITS reload
        // register. That is, unless its reload register has already been
        // considered and subsequently rejected because it has also been reused
        // by another operand.
        if (Op.PhysRegReused == PhysReg &&
            Rejected.count(Op.AssignedPhysReg) == 0) {
          // Yup, use the reload register that we didn't use before.
          unsigned NewReg = Op.AssignedPhysReg;
          Rejected.insert(PhysReg);
          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
                                 RegKills, KillOps, VRM);
        } else {
          // Otherwise, we might also have a problem if a previously reused
          // value aliases the new register.  If so, codegen the previous reload
          // and use this one.          
          unsigned PRRU = Op.PhysRegReused;
          const MRegisterInfo *MRI = Spills.getRegInfo();
          if (MRI->areAliases(PRRU, PhysReg)) {
            // Okay, we found out that an alias of a reused register
            // was used.  This isn't good because it means we have
            // to undo a previous reuse.
            MachineBasicBlock *MBB = MI->getParent();
            const TargetRegisterClass *AliasRC =
              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);

            // Copy Op out of the vector and remove it, we're going to insert an
            // explicit load for it.
            ReusedOp NewOp = Op;
            Reuses.erase(Reuses.begin()+ro);

            // Ok, we're going to try to reload the assigned physreg into the
            // slot that we were supposed to in the first place.  However, that
            // register could hold a reuse.  Check to see if it conflicts or
            // would prefer us to use a different register.
            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
                                                  MI, Spills, MaybeDeadStores,
                                              Rejected, RegKills, KillOps, VRM);
            
            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
              MRI->reMaterialize(*MBB, MI, NewPhysReg,
                                 VRM.getReMaterializedMI(NewOp.VirtReg));
              ++NumReMats;
            } else {
              MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
                                        NewOp.StackSlotOrReMat, AliasRC);
              // Any stores to this stack slot are not dead anymore.
              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
              ++NumLoads;
            }
            Spills.ClobberPhysReg(NewPhysReg);
            Spills.ClobberPhysReg(NewOp.PhysRegReused);
            
            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
            
            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
            MachineBasicBlock::iterator MII = MI;
            --MII;
            UpdateKills(*MII, RegKills, KillOps);
            DOUT << '\t' << *MII;
            
            DOUT << "Reuse undone!\n";
            --NumReused;
            
            // Finally, PhysReg is now available, go ahead and use it.
            return PhysReg;
          }
        }
      }
      return PhysReg;
    }

    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
    /// 'Rejected' set to remember which registers have been considered and
    /// rejected for the reload. This avoids infinite looping in case like
    /// this:
    /// t1 := op t2, t3
    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
    /// t1 <- desires r1
    ///       sees r1 is taken by t2, tries t2's reload register r0
    ///       sees r0 is taken by t3, tries t3's reload register r1
    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
                             AvailableSpills &Spills,
                             std::vector<MachineInstr*> &MaybeDeadStores,
                             BitVector &RegKills,
                             std::vector<MachineOperand*> &KillOps,
                             VirtRegMap &VRM) {
      SmallSet<unsigned, 8> Rejected;
      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
                             RegKills, KillOps, VRM);
    }
  };
}

/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
/// instruction. e.g.
///     xorl  %edi, %eax
///     movl  %eax, -32(%ebp)
///     movl  -36(%ebp), %eax
///	orl   %eax, -32(%ebp)
/// ==>
///     xorl  %edi, %eax
///     orl   -36(%ebp), %eax
///     mov   %eax, -32(%ebp)
/// This enables unfolding optimization for a subsequent instruction which will
/// also eliminate the newly introduced store instruction.
bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator &MII,
                                    std::vector<MachineInstr*> &MaybeDeadStores,
                                     AvailableSpills &Spills,
                                     BitVector &RegKills,
                                     std::vector<MachineOperand*> &KillOps,
                                     VirtRegMap &VRM) {
  MachineFunction &MF = *MBB.getParent();
  MachineInstr &MI = *MII;
  unsigned UnfoldedOpc = 0;
  unsigned UnfoldPR = 0;
  unsigned UnfoldVR = 0;
  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
    // Only transform a MI that folds a single register.
    if (UnfoldedOpc)
      return false;
    UnfoldVR = I->second.first;
    VirtRegMap::ModRef MR = I->second.second;
    if (VRM.isAssignedReg(UnfoldVR))
      continue;
    // If this reference is not a use, any previous store is now dead.
    // Otherwise, the store to this stack slot is not dead anymore.
    FoldedSS = VRM.getStackSlot(UnfoldVR);
    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
    if (DeadStore && (MR & VirtRegMap::isModRef)) {
      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
      if (!PhysReg ||
          DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1)
        continue;
      UnfoldPR = PhysReg;
      UnfoldedOpc = MRI->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
                                                    false, true);
    }
  }

  if (!UnfoldedOpc)
    return false;

  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
      continue;
    unsigned VirtReg = MO.getReg();
    if (MRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
      continue;
    if (VRM.isAssignedReg(VirtReg)) {
      unsigned PhysReg = VRM.getPhys(VirtReg);
      if (PhysReg && MRI->regsOverlap(PhysReg, UnfoldPR))
        return false;
    } else if (VRM.isReMaterialized(VirtReg))
      continue;
    int SS = VRM.getStackSlot(VirtReg);
    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
    if (PhysReg) {
      if (MRI->regsOverlap(PhysReg, UnfoldPR))
        return false;
      continue;
    }
    PhysReg = VRM.getPhys(VirtReg);
    if (!MRI->regsOverlap(PhysReg, UnfoldPR))
      continue;

    // Ok, we'll need to reload the value into a register which makes
    // it impossible to perform the store unfolding optimization later.
    // Let's see if it is possible to fold the load if the store is
    // unfolded. This allows us to perform the store unfolding
    // optimization.
    SmallVector<MachineInstr*, 4> NewMIs;
    if (MRI->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
      assert(NewMIs.size() == 1);
      MachineInstr *NewMI = NewMIs.back();
      NewMIs.clear();
      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg);
      assert(Idx != -1);
      SmallVector<unsigned, 2> Ops;
      Ops.push_back(Idx);
      MachineInstr *FoldedMI = MRI->foldMemoryOperand(NewMI, Ops, SS);
      if (FoldedMI) {
        if (!VRM.hasPhys(UnfoldVR))
          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
        MII = MBB.insert(MII, FoldedMI);
        VRM.RemoveMachineInstrFromMaps(&MI);
        MBB.erase(&MI);
        return true;
      }
      delete NewMI;
    }
  }
  return false;
}

/// findSuperReg - Find the SubReg's super-register of given register class
/// where its SubIdx sub-register is SubReg.
static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
                             unsigned SubIdx, const MRegisterInfo *MRI) {
  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
       I != E; ++I) {
    unsigned Reg = *I;
    if (MRI->getSubReg(Reg, SubIdx) == SubReg)
      return Reg;
  }
  return 0;
}

/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
/// the last store to the same slot is now dead. If so, remove the last store.
void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator &MII,
                                  int Idx, unsigned PhysReg, int StackSlot,
                                  const TargetRegisterClass *RC,
                                  bool isAvailable, MachineInstr *&LastStore,
                                  AvailableSpills &Spills,
                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
                                  BitVector &RegKills,
                                  std::vector<MachineOperand*> &KillOps,
                                  VirtRegMap &VRM) {
  MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
  DOUT << "Store:\t" << *next(MII);

  // If there is a dead store to this stack slot, nuke it now.
  if (LastStore) {
    DOUT << "Removed dead store:\t" << *LastStore;
    ++NumDSE;
    SmallVector<unsigned, 2> KillRegs;
    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
    MachineBasicBlock::iterator PrevMII = LastStore;
    bool CheckDef = PrevMII != MBB.begin();
    if (CheckDef)
      --PrevMII;
    MBB.erase(LastStore);
    VRM.RemoveMachineInstrFromMaps(LastStore);
    if (CheckDef) {
      // Look at defs of killed registers on the store. Mark the defs
      // as dead since the store has been deleted and they aren't
      // being reused.
      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
        bool HasOtherDef = false;
        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
          MachineInstr *DeadDef = PrevMII;
          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
            // FIXME: This assumes a remat def does not have side
            // effects.
            MBB.erase(DeadDef);
            VRM.RemoveMachineInstrFromMaps(DeadDef);
            ++NumDRM;
          }
        }
      }
    }
  }

  LastStore = next(MII);

  // If the stack slot value was previously available in some other
  // register, change it now.  Otherwise, make the register available,
  // in PhysReg.
  Spills.ModifyStackSlotOrReMat(StackSlot);
  Spills.ClobberPhysReg(PhysReg);
  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
  ++NumStores;
}

/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them.  If possible, avid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
  DOUT << MBB.getBasicBlock()->getName() << ":\n";

  MachineFunction &MF = *MBB.getParent();

  // Spills - Keep track of which spilled values are available in physregs so
  // that we can choose to reuse the physregs instead of emitting reloads.
  AvailableSpills Spills(MRI, TII);
  
  // MaybeDeadStores - When we need to write a value back into a stack slot,
  // keep track of the inserted store.  If the stack slot value is never read
  // (because the value was used from some available register, for example), and
  // subsequently stored to, the original store is dead.  This map keeps track
  // of inserted stores that are not used.  If we see a subsequent store to the
  // same stack slot, the original store is deleted.
  std::vector<MachineInstr*> MaybeDeadStores;
  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);

  // ReMatDefs - These are rematerializable def MIs which are not deleted.
  SmallSet<MachineInstr*, 4> ReMatDefs;

  // Keep track of kill information.
  BitVector RegKills(MRI->getNumRegs());
  std::vector<MachineOperand*>  KillOps;
  KillOps.resize(MRI->getNumRegs(), NULL);

  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
       MII != E; ) {
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;

    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
    bool Erased = false;
    bool BackTracked = false;
    if (PrepForUnfoldOpti(MBB, MII,
                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
      NextMII = next(MII);

    MachineInstr &MI = *MII;
    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();

    // Insert restores here if asked to.
    if (VRM.isRestorePt(&MI)) {
      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
        unsigned VirtReg = RestoreRegs[i];
        if (!VRM.getPreSplitReg(VirtReg))
          continue; // Split interval spilled again.
        unsigned Phys = VRM.getPhys(VirtReg);
        MF.setPhysRegUsed(Phys);
        if (VRM.isReMaterialized(VirtReg)) {
          MRI->reMaterialize(MBB, &MI, Phys,
                             VRM.getReMaterializedMI(VirtReg));
          ++NumReMats;
        } else {
          const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
          MRI->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg), RC);
          ++NumLoads;
        }
        // This invalidates Phys.
        Spills.ClobberPhysReg(Phys);
        UpdateKills(*prior(MII), RegKills, KillOps);
        DOUT << '\t' << *prior(MII);
      }
    }

    // Insert spills here if asked to.
    if (VRM.isSpillPt(&MI)) {
      std::vector<std::pair<unsigned,bool> > &SpillRegs =
        VRM.getSpillPtSpills(&MI);
      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
        unsigned VirtReg = SpillRegs[i].first;
        bool isKill = SpillRegs[i].second;
        if (!VRM.getPreSplitReg(VirtReg))
          continue; // Split interval spilled again.
        const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
        unsigned Phys = VRM.getPhys(VirtReg);
        int StackSlot = VRM.getStackSlot(VirtReg);
        MRI->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
        MachineInstr *StoreMI = next(MII);
        DOUT << "Store:\t" << StoreMI;
        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
      }
      NextMII = next(MII);
    }

    /// ReusedOperands - Keep track of operand reuse in case we need to undo
    /// reuse.
    ReuseInfo ReusedOperands(MI, MRI);
    // Process all of the spilled uses and all non spilled reg references.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isRegister() || MO.getReg() == 0)
        continue;   // Ignore non-register operands.
      
      unsigned VirtReg = MO.getReg();
      if (MRegisterInfo::isPhysicalRegister(VirtReg)) {
        // Ignore physregs for spilling, but remember that it is used by this
        // function.
        MF.setPhysRegUsed(VirtReg);
        continue;
      }
      
      assert(MRegisterInfo::isVirtualRegister(VirtReg) &&
             "Not a virtual or a physical register?");

      unsigned SubIdx = MO.getSubReg();
      if (VRM.isAssignedReg(VirtReg)) {
        // This virtual register was assigned a physreg!
        unsigned Phys = VRM.getPhys(VirtReg);
        MF.setPhysRegUsed(Phys);
        if (MO.isDef())
          ReusedOperands.markClobbered(Phys);
        unsigned RReg = SubIdx ? MRI->getSubReg(Phys, SubIdx) : Phys;
        MI.getOperand(i).setReg(RReg);
        continue;
      }
      
      // This virtual register is now known to be a spilled value.
      if (!MO.isUse())
        continue;  // Handle defs in the loop below (handle use&def here though)

      bool DoReMat = VRM.isReMaterialized(VirtReg);
      int SSorRMId = DoReMat
        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
      int ReuseSlot = SSorRMId;

      // Check to see if this stack slot is available.
      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);

      // If this is a sub-register use, make sure the reuse register is in the
      // right register class. For example, for x86 not all of the 32-bit
      // registers have accessible sub-registers.
      // Similarly so for EXTRACT_SUBREG. Consider this:
      // EDI = op
      // MOV32_mr fi#1, EDI
      // ...
      //       = EXTRACT_SUBREG fi#1
      // fi#1 is available in EDI, but it cannot be reused because it's not in
      // the right register file.
      if (PhysReg &&
          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
        if (!RC->contains(PhysReg))
          PhysReg = 0;
      }

      if (PhysReg) {
        // This spilled operand might be part of a two-address operand.  If this
        // is the case, then changing it will necessarily require changing the 
        // def part of the instruction as well.  However, in some cases, we
        // aren't allowed to modify the reused register.  If none of these cases
        // apply, reuse it.
        bool CanReuse = true;
        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
        if (ti != -1 &&
            MI.getOperand(ti).isRegister() && 
            MI.getOperand(ti).getReg() == VirtReg) {
          // Okay, we have a two address operand.  We can reuse this physreg as
          // long as we are allowed to clobber the value and there isn't an
          // earlier def that has already clobbered the physreg.
          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
            !ReusedOperands.isClobbered(PhysReg);
        }
        
        if (CanReuse) {
          // If this stack slot value is already available, reuse it!
          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
          else
            DOUT << "Reusing SS#" << ReuseSlot;
          DOUT << " from physreg "
               << MRI->getName(PhysReg) << " for vreg"
               << VirtReg <<" instead of reloading into physreg "
               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
          MI.getOperand(i).setReg(RReg);

          // The only technical detail we have is that we don't know that
          // PhysReg won't be clobbered by a reloaded stack slot that occurs
          // later in the instruction.  In particular, consider 'op V1, V2'.
          // If V1 is available in physreg R0, we would choose to reuse it
          // here, instead of reloading it into the register the allocator
          // indicated (say R1).  However, V2 might have to be reloaded
          // later, and it might indicate that it needs to live in R0.  When
          // this occurs, we need to have information available that
          // indicates it is safe to use R1 for the reload instead of R0.
          //
          // To further complicate matters, we might conflict with an alias,
          // or R0 and R1 might not be compatible with each other.  In this
          // case, we actually insert a reload for V1 in R1, ensuring that
          // we can get at R0 or its alias.
          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
                                  VRM.getPhys(VirtReg), VirtReg);
          if (ti != -1)
            // Only mark it clobbered if this is a use&def operand.
            ReusedOperands.markClobbered(PhysReg);
          ++NumReused;

          if (MI.getOperand(i).isKill() &&
              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
            // This was the last use and the spilled value is still available
            // for reuse. That means the spill was unnecessary!
            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
            if (DeadStore) {
              DOUT << "Removed dead store:\t" << *DeadStore;
              InvalidateKills(*DeadStore, RegKills, KillOps);
              VRM.RemoveMachineInstrFromMaps(DeadStore);
              MBB.erase(DeadStore);
              MaybeDeadStores[ReuseSlot] = NULL;
              ++NumDSE;
            }
          }
          continue;
        }  // CanReuse
        
        // Otherwise we have a situation where we have a two-address instruction
        // whose mod/ref operand needs to be reloaded.  This reload is already
        // available in some register "PhysReg", but if we used PhysReg as the
        // operand to our 2-addr instruction, the instruction would modify
        // PhysReg.  This isn't cool if something later uses PhysReg and expects
        // to get its initial value.
        //
        // To avoid this problem, and to avoid doing a load right after a store,
        // we emit a copy from PhysReg into the designated register for this
        // operand.
        unsigned DesignatedReg = VRM.getPhys(VirtReg);
        assert(DesignatedReg && "Must map virtreg to physreg!");

        // Note that, if we reused a register for a previous operand, the
        // register we want to reload into might not actually be
        // available.  If this occurs, use the register indicated by the
        // reuser.
        if (ReusedOperands.hasReuses())
          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
        
        // If the mapped designated register is actually the physreg we have
        // incoming, we don't need to inserted a dead copy.
        if (DesignatedReg == PhysReg) {
          // If this stack slot value is already available, reuse it!
          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
          else
            DOUT << "Reusing SS#" << ReuseSlot;
          DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
               << VirtReg
               << " instead of reloading into same physreg.\n";
          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
          MI.getOperand(i).setReg(RReg);
          ReusedOperands.markClobbered(RReg);
          ++NumReused;
          continue;
        }
        
        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
        MF.setPhysRegUsed(DesignatedReg);
        ReusedOperands.markClobbered(DesignatedReg);
        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);

        MachineInstr *CopyMI = prior(MII);
        UpdateKills(*CopyMI, RegKills, KillOps);

        // This invalidates DesignatedReg.
        Spills.ClobberPhysReg(DesignatedReg);
        
        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
        unsigned RReg =
          SubIdx ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
        MI.getOperand(i).setReg(RReg);
        DOUT << '\t' << *prior(MII);
        ++NumReused;
        continue;
      } // if (PhysReg)
      
      // Otherwise, reload it and remember that we have it.
      PhysReg = VRM.getPhys(VirtReg);
      assert(PhysReg && "Must map virtreg to physreg!");

      // Note that, if we reused a register for a previous operand, the
      // register we want to reload into might not actually be
      // available.  If this occurs, use the register indicated by the
      // reuser.
      if (ReusedOperands.hasReuses())
        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
      
      MF.setPhysRegUsed(PhysReg);
      ReusedOperands.markClobbered(PhysReg);
      if (DoReMat) {
        MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
        ++NumReMats;
      } else {
        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
        ++NumLoads;
      }
      // This invalidates PhysReg.
      Spills.ClobberPhysReg(PhysReg);

      // Any stores to this stack slot are not dead anymore.
      if (!DoReMat)
        MaybeDeadStores[SSorRMId] = NULL;
      Spills.addAvailable(SSorRMId, &MI, PhysReg);
      // Assumes this is the last use. IsKill will be unset if reg is reused
      // unless it's a two-address operand.
      if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
        MI.getOperand(i).setIsKill();
      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
      MI.getOperand(i).setReg(RReg);
      UpdateKills(*prior(MII), RegKills, KillOps);
      DOUT << '\t' << *prior(MII);
    }

    DOUT << '\t' << MI;


    // If we have folded references to memory operands, make sure we clear all
    // physical registers that may contain the value of the spilled virtual
    // register
    SmallSet<int, 2> FoldedSS;
    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
      unsigned VirtReg = I->second.first;
      VirtRegMap::ModRef MR = I->second.second;
      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;

      int SS = VRM.getStackSlot(VirtReg);
      if (SS == VirtRegMap::NO_STACK_SLOT)
        continue;
      FoldedSS.insert(SS);
      DOUT << " - StackSlot: " << SS << "\n";
      
      // If this folded instruction is just a use, check to see if it's a
      // straight load from the virt reg slot.
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
        int FrameIdx;
        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
        if (DestReg && FrameIdx == SS) {
          // If this spill slot is available, turn it into a copy (or nothing)
          // instead of leaving it as a load!
          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
            DOUT << "Promoted Load To Copy: " << MI;
            if (DestReg != InReg) {
              const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
              MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
              // Revisit the copy so we make sure to notice the effects of the
              // operation on the destreg (either needing to RA it if it's 
              // virtual or needing to clobber any values if it's physical).
              NextMII = &MI;
              --NextMII;  // backtrack to the copy.
              BackTracked = true;
            } else
              DOUT << "Removing now-noop copy: " << MI;

            VRM.RemoveMachineInstrFromMaps(&MI);
            MBB.erase(&MI);
            Erased = true;
            goto ProcessNextInst;
          }
        } else {
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
          SmallVector<MachineInstr*, 4> NewMIs;
          if (PhysReg &&
              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
            MBB.insert(MII, NewMIs[0]);
            VRM.RemoveMachineInstrFromMaps(&MI);
            MBB.erase(&MI);
            Erased = true;
            --NextMII;  // backtrack to the unfolded instruction.
            BackTracked = true;
            goto ProcessNextInst;
          }
        }
      }

      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      MachineInstr* DeadStore = MaybeDeadStores[SS];
      if (DeadStore) {
        bool isDead = !(MR & VirtRegMap::isRef);
        MachineInstr *NewStore = NULL;
        if (MR & VirtRegMap::isModRef) {
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
          SmallVector<MachineInstr*, 4> NewMIs;
          // We can reuse this physreg as long as we are allowed to clobber
          // the value and there isn't an earlier def that has already clobbered the
          // physreg.
          if (PhysReg &&
              DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 &&
              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
            MBB.insert(MII, NewMIs[0]);
            NewStore = NewMIs[1];
            MBB.insert(MII, NewStore);
            VRM.RemoveMachineInstrFromMaps(&MI);
            MBB.erase(&MI);
            Erased = true;
            --NextMII;
            --NextMII;  // backtrack to the unfolded instruction.
            BackTracked = true;
            isDead = true;
          }
        }

        if (isDead) {  // Previous store is dead.
          // If we get here, the store is dead, nuke it now.
          DOUT << "Removed dead store:\t" << *DeadStore;
          InvalidateKills(*DeadStore, RegKills, KillOps);
          VRM.RemoveMachineInstrFromMaps(DeadStore);
          MBB.erase(DeadStore);
          if (!NewStore)
            ++NumDSE;
        }

        MaybeDeadStores[SS] = NULL;
        if (NewStore) {
          // Treat this store as a spill merged into a copy. That makes the
          // stack slot value available.
          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
          goto ProcessNextInst;
        }
      }

      // If the spill slot value is available, and this is a new definition of
      // the value, the value is not available anymore.
      if (MR & VirtRegMap::isMod) {
        // Notice that the value in this stack slot has been modified.
        Spills.ModifyStackSlotOrReMat(SS);
        
        // If this is *just* a mod of the value, check to see if this is just a
        // store to the spill slot (i.e. the spill got merged into the copy). If
        // so, realize that the vreg is available now, and add the store to the
        // MaybeDeadStore info.
        int StackSlot;
        if (!(MR & VirtRegMap::isRef)) {
          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
                   "Src hasn't been allocated yet?");
            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
            // this as a potentially dead store in case there is a subsequent
            // store into the stack slot without a read from it.
            MaybeDeadStores[StackSlot] = &MI;

            // If the stack slot value was previously available in some other
            // register, change it now.  Otherwise, make the register available,
            // in PhysReg.
            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
          }
        }
      }
    }

    // Process all of the spilled defs.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
        continue;

      unsigned VirtReg = MO.getReg();
      if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        unsigned Src, Dst;
        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
          ++NumDCE;
          DOUT << "Removing now-noop copy: " << MI;
          MBB.erase(&MI);
          Erased = true;
          VRM.RemoveMachineInstrFromMaps(&MI);
          Spills.disallowClobberPhysReg(VirtReg);
          goto ProcessNextInst;
        }
          
        // If it's not a no-op copy, it clobbers the value in the destreg.
        Spills.ClobberPhysReg(VirtReg);
        ReusedOperands.markClobbered(VirtReg);
 
        // Check to see if this instruction is a load from a stack slot into
        // a register.  If so, this provides the stack slot value in the reg.
        int FrameIdx;
        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
          assert(DestReg == VirtReg && "Unknown load situation!");

          // If it is a folded reference, then it's not safe to clobber.
          bool Folded = FoldedSS.count(FrameIdx);
          // Otherwise, if it wasn't available, remember that it is now!
          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
          goto ProcessNextInst;
        }
            
        continue;
      }

      unsigned SubIdx = MO.getSubReg();
      bool DoReMat = VRM.isReMaterialized(VirtReg);
      if (DoReMat)
        ReMatDefs.insert(&MI);

      // The only vregs left are stack slot definitions.
      int StackSlot = VRM.getStackSlot(VirtReg);
      const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);

      // If this def is part of a two-address operand, make sure to execute
      // the store from the correct physical register.
      unsigned PhysReg;
      int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
      if (TiedOp != -1) {
        PhysReg = MI.getOperand(TiedOp).getReg();
        if (SubIdx) {
          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, MRI);
          assert(SuperReg && MRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
                 "Can't find corresponding super-register!");
          PhysReg = SuperReg;
        }
      } else {
        PhysReg = VRM.getPhys(VirtReg);
        if (ReusedOperands.isClobbered(PhysReg)) {
          // Another def has taken the assigned physreg. It must have been a
          // use&def which got it due to reuse. Undo the reuse!
          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
        }
      }

      MF.setPhysRegUsed(PhysReg);
      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
      ReusedOperands.markClobbered(RReg);
      MI.getOperand(i).setReg(RReg);

      if (!MO.isDead()) {
        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
        NextMII = next(MII);

        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        {
          unsigned Src, Dst;
          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
            ++NumDCE;
            DOUT << "Removing now-noop copy: " << MI;
            MBB.erase(&MI);
            Erased = true;
            VRM.RemoveMachineInstrFromMaps(&MI);
            UpdateKills(*LastStore, RegKills, KillOps);
            goto ProcessNextInst;
          }
        }
      }    
    }
  ProcessNextInst:
    if (!Erased && !BackTracked) {
      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
        UpdateKills(*II, RegKills, KillOps);
    }
    MII = NextMII;
  }
}

llvm::Spiller* llvm::createSpiller() {
  switch (SpillerOpt) {
  default: assert(0 && "Unreachable!");
  case local:
    return new LocalSpiller();
  case simple:
    return new SimpleSpiller();
  }
}