aboutsummaryrefslogtreecommitdiffstats
path: root/lib/DebugInfo/DWARFDebugAranges.cpp
blob: 591d4bde712412197859d8eebe7d6f28472d9d3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
//===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "DWARFDebugAranges.h"
#include "DWARFCompileUnit.h"
#include "DWARFContext.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
using namespace llvm;

void DWARFDebugAranges::extract(DataExtractor DebugArangesData) {
  if (!DebugArangesData.isValidOffset(0))
    return;
  uint32_t Offset = 0;
  typedef std::vector<DWARFDebugArangeSet> RangeSetColl;
  RangeSetColl Sets;
  DWARFDebugArangeSet Set;
  uint32_t TotalRanges = 0;

  while (Set.extract(DebugArangesData, &Offset)) {
    Sets.push_back(Set);
    TotalRanges += Set.getNumDescriptors();
  }
  if (TotalRanges == 0)
    return;

  Aranges.reserve(TotalRanges);
  for (RangeSetColl::const_iterator I = Sets.begin(), E = Sets.end(); I != E;
       ++I) {
    uint32_t CUOffset = I->getCompileUnitDIEOffset();

    for (uint32_t i = 0, n = I->getNumDescriptors(); i < n; ++i) {
      const DWARFDebugArangeSet::Descriptor *ArangeDescPtr =
          I->getDescriptor(i);
      uint64_t LowPC = ArangeDescPtr->Address;
      uint64_t HighPC = LowPC + ArangeDescPtr->Length;
      appendRange(CUOffset, LowPC, HighPC);
    }
  }
}

void DWARFDebugAranges::generate(DWARFContext *CTX) {
  clear();
  if (!CTX)
    return;

  // Extract aranges from .debug_aranges section.
  DataExtractor ArangesData(CTX->getARangeSection(), CTX->isLittleEndian(), 0);
  extract(ArangesData);

  // Generate aranges from DIEs: even if .debug_aranges section is present,
  // it may describe only a small subset of compilation units, so we need to
  // manually build aranges for the rest of them.
  for (uint32_t i = 0, n = CTX->getNumCompileUnits(); i < n; ++i) {
    if (DWARFCompileUnit *CU = CTX->getCompileUnitAtIndex(i)) {
      uint32_t CUOffset = CU->getOffset();
      if (ParsedCUOffsets.insert(CUOffset).second)
        CU->buildAddressRangeTable(this, true, CUOffset);
    }
  }

  sortAndMinimize();
}

void DWARFDebugAranges::appendRange(uint32_t CUOffset, uint64_t LowPC,
                                    uint64_t HighPC) {
  if (!Aranges.empty()) {
    if (Aranges.back().CUOffset == CUOffset &&
        Aranges.back().HighPC() == LowPC) {
      Aranges.back().setHighPC(HighPC);
      return;
    }
  }
  Aranges.push_back(Range(LowPC, HighPC, CUOffset));
}

void DWARFDebugAranges::sortAndMinimize() {
  const size_t orig_arange_size = Aranges.size();
  // Size of one? If so, no sorting is needed
  if (orig_arange_size <= 1)
    return;
  // Sort our address range entries
  std::stable_sort(Aranges.begin(), Aranges.end());

  // Most address ranges are contiguous from function to function
  // so our new ranges will likely be smaller. We calculate the size
  // of the new ranges since although std::vector objects can be resized,
  // the will never reduce their allocated block size and free any excesss
  // memory, so we might as well start a brand new collection so it is as
  // small as possible.

  // First calculate the size of the new minimal arange vector
  // so we don't have to do a bunch of re-allocations as we
  // copy the new minimal stuff over to the new collection.
  size_t minimal_size = 1;
  for (size_t i = 1; i < orig_arange_size; ++i) {
    if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i]))
      ++minimal_size;
  }

  // If the sizes are the same, then no consecutive aranges can be
  // combined, we are done.
  if (minimal_size == orig_arange_size)
    return;

  // Else, make a new RangeColl that _only_ contains what we need.
  RangeColl minimal_aranges;
  minimal_aranges.resize(minimal_size);
  uint32_t j = 0;
  minimal_aranges[j] = Aranges[0];
  for (size_t i = 1; i < orig_arange_size; ++i) {
    if (Range::SortedOverlapCheck(minimal_aranges[j], Aranges[i])) {
      minimal_aranges[j].setHighPC(Aranges[i].HighPC());
    } else {
      // Only increment j if we aren't merging
      minimal_aranges[++j] = Aranges[i];
    }
  }
  assert(j+1 == minimal_size);

  // Now swap our new minimal aranges into place. The local
  // minimal_aranges will then contian the old big collection
  // which will get freed.
  minimal_aranges.swap(Aranges);
}

uint32_t DWARFDebugAranges::findAddress(uint64_t Address) const {
  if (!Aranges.empty()) {
    Range range(Address);
    RangeCollIterator begin = Aranges.begin();
    RangeCollIterator end = Aranges.end();
    RangeCollIterator pos =
        std::lower_bound(begin, end, range);

    if (pos != end && pos->containsAddress(Address)) {
      return pos->CUOffset;
    } else if (pos != begin) {
      --pos;
      if (pos->containsAddress(Address))
        return pos->CUOffset;
    }
  }
  return -1U;
}