1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
//===-- DWARFDebugLine.cpp ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DWARFDebugLine.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace dwarf;
void DWARFDebugLine::Prologue::dump(raw_ostream &OS) const {
OS << "Line table prologue:\n"
<< format(" total_length: 0x%8.8x\n", TotalLength)
<< format(" version: %u\n", Version)
<< format("prologue_length: 0x%8.8x\n", PrologueLength)
<< format("min_inst_length: %u\n", MinInstLength)
<< format("default_is_stmt: %u\n", DefaultIsStmt)
<< format(" line_base: %i\n", LineBase)
<< format(" line_range: %u\n", LineRange)
<< format(" opcode_base: %u\n", OpcodeBase);
for (uint32_t i = 0; i < StandardOpcodeLengths.size(); ++i)
OS << format("standard_opcode_lengths[%s] = %u\n", LNStandardString(i+1),
StandardOpcodeLengths[i]);
if (!IncludeDirectories.empty())
for (uint32_t i = 0; i < IncludeDirectories.size(); ++i)
OS << format("include_directories[%3u] = '", i+1)
<< IncludeDirectories[i] << "'\n";
if (!FileNames.empty()) {
OS << " Dir Mod Time File Len File Name\n"
<< " ---- ---------- ---------- -----------"
"----------------\n";
for (uint32_t i = 0; i < FileNames.size(); ++i) {
const FileNameEntry& fileEntry = FileNames[i];
OS << format("file_names[%3u] %4" PRIu64 " ", i+1, fileEntry.DirIdx)
<< format("0x%8.8" PRIx64 " 0x%8.8" PRIx64 " ",
fileEntry.ModTime, fileEntry.Length)
<< fileEntry.Name << '\n';
}
}
}
void DWARFDebugLine::Row::postAppend() {
BasicBlock = false;
PrologueEnd = false;
EpilogueBegin = false;
}
void DWARFDebugLine::Row::reset(bool default_is_stmt) {
Address = 0;
Line = 1;
Column = 0;
File = 1;
Isa = 0;
IsStmt = default_is_stmt;
BasicBlock = false;
EndSequence = false;
PrologueEnd = false;
EpilogueBegin = false;
}
void DWARFDebugLine::Row::dump(raw_ostream &OS) const {
OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column)
<< format(" %6u %3u ", File, Isa)
<< (IsStmt ? " is_stmt" : "")
<< (BasicBlock ? " basic_block" : "")
<< (PrologueEnd ? " prologue_end" : "")
<< (EpilogueBegin ? " epilogue_begin" : "")
<< (EndSequence ? " end_sequence" : "")
<< '\n';
}
void DWARFDebugLine::LineTable::dump(raw_ostream &OS) const {
Prologue.dump(OS);
OS << '\n';
if (!Rows.empty()) {
OS << "Address Line Column File ISA Flags\n"
<< "------------------ ------ ------ ------ --- -------------\n";
for (std::vector<Row>::const_iterator pos = Rows.begin(),
end = Rows.end(); pos != end; ++pos)
pos->dump(OS);
}
}
DWARFDebugLine::State::~State() {}
void DWARFDebugLine::State::appendRowToMatrix(uint32_t offset) {
if (Sequence::Empty) {
// Record the beginning of instruction sequence.
Sequence::Empty = false;
Sequence::LowPC = Address;
Sequence::FirstRowIndex = row;
}
++row; // Increase the row number.
LineTable::appendRow(*this);
if (EndSequence) {
// Record the end of instruction sequence.
Sequence::HighPC = Address;
Sequence::LastRowIndex = row;
if (Sequence::isValid())
LineTable::appendSequence(*this);
Sequence::reset();
}
Row::postAppend();
}
void DWARFDebugLine::State::finalize() {
row = DoneParsingLineTable;
if (!Sequence::Empty) {
fprintf(stderr, "warning: last sequence in debug line table is not"
"terminated!\n");
}
// Sort all sequences so that address lookup will work faster.
if (!Sequences.empty()) {
std::sort(Sequences.begin(), Sequences.end(), Sequence::orderByLowPC);
// Note: actually, instruction address ranges of sequences should not
// overlap (in shared objects and executables). If they do, the address
// lookup would still work, though, but result would be ambiguous.
// We don't report warning in this case. For example,
// sometimes .so compiled from multiple object files contains a few
// rudimentary sequences for address ranges [0x0, 0xsomething).
}
}
DWARFDebugLine::DumpingState::~DumpingState() {}
void DWARFDebugLine::DumpingState::finalize() {
LineTable::dump(OS);
}
const DWARFDebugLine::LineTable *
DWARFDebugLine::getLineTable(uint32_t offset) const {
LineTableConstIter pos = LineTableMap.find(offset);
if (pos != LineTableMap.end())
return &pos->second;
return 0;
}
const DWARFDebugLine::LineTable *
DWARFDebugLine::getOrParseLineTable(DataExtractor debug_line_data,
uint32_t offset) {
std::pair<LineTableIter, bool> pos =
LineTableMap.insert(LineTableMapTy::value_type(offset, LineTable()));
if (pos.second) {
// Parse and cache the line table for at this offset.
State state;
if (!parseStatementTable(debug_line_data, RelocMap, &offset, state))
return 0;
pos.first->second = state;
}
return &pos.first->second;
}
bool
DWARFDebugLine::parsePrologue(DataExtractor debug_line_data,
uint32_t *offset_ptr, Prologue *prologue) {
const uint32_t prologue_offset = *offset_ptr;
prologue->clear();
prologue->TotalLength = debug_line_data.getU32(offset_ptr);
prologue->Version = debug_line_data.getU16(offset_ptr);
if (prologue->Version != 2)
return false;
prologue->PrologueLength = debug_line_data.getU32(offset_ptr);
const uint32_t end_prologue_offset = prologue->PrologueLength + *offset_ptr;
prologue->MinInstLength = debug_line_data.getU8(offset_ptr);
prologue->DefaultIsStmt = debug_line_data.getU8(offset_ptr);
prologue->LineBase = debug_line_data.getU8(offset_ptr);
prologue->LineRange = debug_line_data.getU8(offset_ptr);
prologue->OpcodeBase = debug_line_data.getU8(offset_ptr);
prologue->StandardOpcodeLengths.reserve(prologue->OpcodeBase-1);
for (uint32_t i = 1; i < prologue->OpcodeBase; ++i) {
uint8_t op_len = debug_line_data.getU8(offset_ptr);
prologue->StandardOpcodeLengths.push_back(op_len);
}
while (*offset_ptr < end_prologue_offset) {
const char *s = debug_line_data.getCStr(offset_ptr);
if (s && s[0])
prologue->IncludeDirectories.push_back(s);
else
break;
}
while (*offset_ptr < end_prologue_offset) {
const char *name = debug_line_data.getCStr(offset_ptr);
if (name && name[0]) {
FileNameEntry fileEntry;
fileEntry.Name = name;
fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
prologue->FileNames.push_back(fileEntry);
} else {
break;
}
}
if (*offset_ptr != end_prologue_offset) {
fprintf(stderr, "warning: parsing line table prologue at 0x%8.8x should"
" have ended at 0x%8.8x but it ended ad 0x%8.8x\n",
prologue_offset, end_prologue_offset, *offset_ptr);
return false;
}
return true;
}
bool
DWARFDebugLine::parseStatementTable(DataExtractor debug_line_data,
const RelocAddrMap *RMap,
uint32_t *offset_ptr, State &state) {
const uint32_t debug_line_offset = *offset_ptr;
Prologue *prologue = &state.Prologue;
if (!parsePrologue(debug_line_data, offset_ptr, prologue)) {
// Restore our offset and return false to indicate failure!
*offset_ptr = debug_line_offset;
return false;
}
const uint32_t end_offset = debug_line_offset + prologue->TotalLength +
sizeof(prologue->TotalLength);
state.reset();
while (*offset_ptr < end_offset) {
uint8_t opcode = debug_line_data.getU8(offset_ptr);
if (opcode == 0) {
// Extended Opcodes always start with a zero opcode followed by
// a uleb128 length so you can skip ones you don't know about
uint32_t ext_offset = *offset_ptr;
uint64_t len = debug_line_data.getULEB128(offset_ptr);
uint32_t arg_size = len - (*offset_ptr - ext_offset);
uint8_t sub_opcode = debug_line_data.getU8(offset_ptr);
switch (sub_opcode) {
case DW_LNE_end_sequence:
// Set the end_sequence register of the state machine to true and
// append a row to the matrix using the current values of the
// state-machine registers. Then reset the registers to the initial
// values specified above. Every statement program sequence must end
// with a DW_LNE_end_sequence instruction which creates a row whose
// address is that of the byte after the last target machine instruction
// of the sequence.
state.EndSequence = true;
state.appendRowToMatrix(*offset_ptr);
state.reset();
break;
case DW_LNE_set_address:
// Takes a single relocatable address as an operand. The size of the
// operand is the size appropriate to hold an address on the target
// machine. Set the address register to the value given by the
// relocatable address. All of the other statement program opcodes
// that affect the address register add a delta to it. This instruction
// stores a relocatable value into it instead.
{
// If this address is in our relocation map, apply the relocation.
RelocAddrMap::const_iterator AI = RMap->find(*offset_ptr);
if (AI != RMap->end()) {
const std::pair<uint8_t, int64_t> &R = AI->second;
state.Address = debug_line_data.getAddress(offset_ptr) + R.second;
} else
state.Address = debug_line_data.getAddress(offset_ptr);
}
break;
case DW_LNE_define_file:
// Takes 4 arguments. The first is a null terminated string containing
// a source file name. The second is an unsigned LEB128 number
// representing the directory index of the directory in which the file
// was found. The third is an unsigned LEB128 number representing the
// time of last modification of the file. The fourth is an unsigned
// LEB128 number representing the length in bytes of the file. The time
// and length fields may contain LEB128(0) if the information is not
// available.
//
// The directory index represents an entry in the include_directories
// section of the statement program prologue. The index is LEB128(0)
// if the file was found in the current directory of the compilation,
// LEB128(1) if it was found in the first directory in the
// include_directories section, and so on. The directory index is
// ignored for file names that represent full path names.
//
// The files are numbered, starting at 1, in the order in which they
// appear; the names in the prologue come before names defined by
// the DW_LNE_define_file instruction. These numbers are used in the
// the file register of the state machine.
{
FileNameEntry fileEntry;
fileEntry.Name = debug_line_data.getCStr(offset_ptr);
fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
prologue->FileNames.push_back(fileEntry);
}
break;
default:
// Length doesn't include the zero opcode byte or the length itself, but
// it does include the sub_opcode, so we have to adjust for that below
(*offset_ptr) += arg_size;
break;
}
} else if (opcode < prologue->OpcodeBase) {
switch (opcode) {
// Standard Opcodes
case DW_LNS_copy:
// Takes no arguments. Append a row to the matrix using the
// current values of the state-machine registers. Then set
// the basic_block register to false.
state.appendRowToMatrix(*offset_ptr);
break;
case DW_LNS_advance_pc:
// Takes a single unsigned LEB128 operand, multiplies it by the
// min_inst_length field of the prologue, and adds the
// result to the address register of the state machine.
state.Address += debug_line_data.getULEB128(offset_ptr) *
prologue->MinInstLength;
break;
case DW_LNS_advance_line:
// Takes a single signed LEB128 operand and adds that value to
// the line register of the state machine.
state.Line += debug_line_data.getSLEB128(offset_ptr);
break;
case DW_LNS_set_file:
// Takes a single unsigned LEB128 operand and stores it in the file
// register of the state machine.
state.File = debug_line_data.getULEB128(offset_ptr);
break;
case DW_LNS_set_column:
// Takes a single unsigned LEB128 operand and stores it in the
// column register of the state machine.
state.Column = debug_line_data.getULEB128(offset_ptr);
break;
case DW_LNS_negate_stmt:
// Takes no arguments. Set the is_stmt register of the state
// machine to the logical negation of its current value.
state.IsStmt = !state.IsStmt;
break;
case DW_LNS_set_basic_block:
// Takes no arguments. Set the basic_block register of the
// state machine to true
state.BasicBlock = true;
break;
case DW_LNS_const_add_pc:
// Takes no arguments. Add to the address register of the state
// machine the address increment value corresponding to special
// opcode 255. The motivation for DW_LNS_const_add_pc is this:
// when the statement program needs to advance the address by a
// small amount, it can use a single special opcode, which occupies
// a single byte. When it needs to advance the address by up to
// twice the range of the last special opcode, it can use
// DW_LNS_const_add_pc followed by a special opcode, for a total
// of two bytes. Only if it needs to advance the address by more
// than twice that range will it need to use both DW_LNS_advance_pc
// and a special opcode, requiring three or more bytes.
{
uint8_t adjust_opcode = 255 - prologue->OpcodeBase;
uint64_t addr_offset = (adjust_opcode / prologue->LineRange) *
prologue->MinInstLength;
state.Address += addr_offset;
}
break;
case DW_LNS_fixed_advance_pc:
// Takes a single uhalf operand. Add to the address register of
// the state machine the value of the (unencoded) operand. This
// is the only extended opcode that takes an argument that is not
// a variable length number. The motivation for DW_LNS_fixed_advance_pc
// is this: existing assemblers cannot emit DW_LNS_advance_pc or
// special opcodes because they cannot encode LEB128 numbers or
// judge when the computation of a special opcode overflows and
// requires the use of DW_LNS_advance_pc. Such assemblers, however,
// can use DW_LNS_fixed_advance_pc instead, sacrificing compression.
state.Address += debug_line_data.getU16(offset_ptr);
break;
case DW_LNS_set_prologue_end:
// Takes no arguments. Set the prologue_end register of the
// state machine to true
state.PrologueEnd = true;
break;
case DW_LNS_set_epilogue_begin:
// Takes no arguments. Set the basic_block register of the
// state machine to true
state.EpilogueBegin = true;
break;
case DW_LNS_set_isa:
// Takes a single unsigned LEB128 operand and stores it in the
// column register of the state machine.
state.Isa = debug_line_data.getULEB128(offset_ptr);
break;
default:
// Handle any unknown standard opcodes here. We know the lengths
// of such opcodes because they are specified in the prologue
// as a multiple of LEB128 operands for each opcode.
{
assert(opcode - 1U < prologue->StandardOpcodeLengths.size());
uint8_t opcode_length = prologue->StandardOpcodeLengths[opcode - 1];
for (uint8_t i=0; i<opcode_length; ++i)
debug_line_data.getULEB128(offset_ptr);
}
break;
}
} else {
// Special Opcodes
// A special opcode value is chosen based on the amount that needs
// to be added to the line and address registers. The maximum line
// increment for a special opcode is the value of the line_base
// field in the header, plus the value of the line_range field,
// minus 1 (line base + line range - 1). If the desired line
// increment is greater than the maximum line increment, a standard
// opcode must be used instead of a special opcode. The "address
// advance" is calculated by dividing the desired address increment
// by the minimum_instruction_length field from the header. The
// special opcode is then calculated using the following formula:
//
// opcode = (desired line increment - line_base) +
// (line_range * address advance) + opcode_base
//
// If the resulting opcode is greater than 255, a standard opcode
// must be used instead.
//
// To decode a special opcode, subtract the opcode_base from the
// opcode itself to give the adjusted opcode. The amount to
// increment the address register is the result of the adjusted
// opcode divided by the line_range multiplied by the
// minimum_instruction_length field from the header. That is:
//
// address increment = (adjusted opcode / line_range) *
// minimum_instruction_length
//
// The amount to increment the line register is the line_base plus
// the result of the adjusted opcode modulo the line_range. That is:
//
// line increment = line_base + (adjusted opcode % line_range)
uint8_t adjust_opcode = opcode - prologue->OpcodeBase;
uint64_t addr_offset = (adjust_opcode / prologue->LineRange) *
prologue->MinInstLength;
int32_t line_offset = prologue->LineBase +
(adjust_opcode % prologue->LineRange);
state.Line += line_offset;
state.Address += addr_offset;
state.appendRowToMatrix(*offset_ptr);
}
}
state.finalize();
return end_offset;
}
uint32_t
DWARFDebugLine::LineTable::lookupAddress(uint64_t address) const {
uint32_t unknown_index = UINT32_MAX;
if (Sequences.empty())
return unknown_index;
// First, find an instruction sequence containing the given address.
DWARFDebugLine::Sequence sequence;
sequence.LowPC = address;
SequenceIter first_seq = Sequences.begin();
SequenceIter last_seq = Sequences.end();
SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
DWARFDebugLine::Sequence::orderByLowPC);
DWARFDebugLine::Sequence found_seq;
if (seq_pos == last_seq) {
found_seq = Sequences.back();
} else if (seq_pos->LowPC == address) {
found_seq = *seq_pos;
} else {
if (seq_pos == first_seq)
return unknown_index;
found_seq = *(seq_pos - 1);
}
if (!found_seq.containsPC(address))
return unknown_index;
// Search for instruction address in the rows describing the sequence.
// Rows are stored in a vector, so we may use arithmetical operations with
// iterators.
DWARFDebugLine::Row row;
row.Address = address;
RowIter first_row = Rows.begin() + found_seq.FirstRowIndex;
RowIter last_row = Rows.begin() + found_seq.LastRowIndex;
RowIter row_pos = std::lower_bound(first_row, last_row, row,
DWARFDebugLine::Row::orderByAddress);
if (row_pos == last_row) {
return found_seq.LastRowIndex - 1;
}
uint32_t index = found_seq.FirstRowIndex + (row_pos - first_row);
if (row_pos->Address > address) {
if (row_pos == first_row)
return unknown_index;
else
index--;
}
return index;
}
bool
DWARFDebugLine::LineTable::lookupAddressRange(uint64_t address,
uint64_t size,
std::vector<uint32_t>& result) const {
if (Sequences.empty())
return false;
uint64_t end_addr = address + size;
// First, find an instruction sequence containing the given address.
DWARFDebugLine::Sequence sequence;
sequence.LowPC = address;
SequenceIter first_seq = Sequences.begin();
SequenceIter last_seq = Sequences.end();
SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
DWARFDebugLine::Sequence::orderByLowPC);
if (seq_pos == last_seq || seq_pos->LowPC != address) {
if (seq_pos == first_seq)
return false;
seq_pos--;
}
if (!seq_pos->containsPC(address))
return false;
SequenceIter start_pos = seq_pos;
// Add the rows from the first sequence to the vector, starting with the
// index we just calculated
while (seq_pos != last_seq && seq_pos->LowPC < end_addr) {
DWARFDebugLine::Sequence cur_seq = *seq_pos;
uint32_t first_row_index;
uint32_t last_row_index;
if (seq_pos == start_pos) {
// For the first sequence, we need to find which row in the sequence is the
// first in our range. Rows are stored in a vector, so we may use
// arithmetical operations with iterators.
DWARFDebugLine::Row row;
row.Address = address;
RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
RowIter row_pos = std::upper_bound(first_row, last_row, row,
DWARFDebugLine::Row::orderByAddress);
// The 'row_pos' iterator references the first row that is greater than
// our start address. Unless that's the first row, we want to start at
// the row before that.
first_row_index = cur_seq.FirstRowIndex + (row_pos - first_row);
if (row_pos != first_row)
--first_row_index;
} else
first_row_index = cur_seq.FirstRowIndex;
// For the last sequence in our range, we need to figure out the last row in
// range. For all other sequences we can go to the end of the sequence.
if (cur_seq.HighPC > end_addr) {
DWARFDebugLine::Row row;
row.Address = end_addr;
RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
RowIter row_pos = std::upper_bound(first_row, last_row, row,
DWARFDebugLine::Row::orderByAddress);
// The 'row_pos' iterator references the first row that is greater than
// our end address. The row before that is the last row we want.
last_row_index = cur_seq.FirstRowIndex + (row_pos - first_row) - 1;
} else
// Contrary to what you might expect, DWARFDebugLine::SequenceLastRowIndex
// isn't a valid index within the current sequence. It's that plus one.
last_row_index = cur_seq.LastRowIndex - 1;
for (uint32_t i = first_row_index; i <= last_row_index; ++i) {
result.push_back(i);
}
++seq_pos;
}
return true;
}
bool
DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
bool NeedsAbsoluteFilePath,
std::string &Result) const {
if (FileIndex == 0 || FileIndex > Prologue.FileNames.size())
return false;
const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1];
const char *FileName = Entry.Name;
if (!NeedsAbsoluteFilePath ||
sys::path::is_absolute(FileName)) {
Result = FileName;
return true;
}
SmallString<16> FilePath;
uint64_t IncludeDirIndex = Entry.DirIdx;
// Be defensive about the contents of Entry.
if (IncludeDirIndex > 0 &&
IncludeDirIndex <= Prologue.IncludeDirectories.size()) {
const char *IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
sys::path::append(FilePath, IncludeDir);
}
sys::path::append(FilePath, FileName);
Result = FilePath.str();
return true;
}
|