1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "Interpreter/Interpreter.h"
#include "JIT/JIT.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/DynamicLinker.h"
using namespace llvm;
namespace {
Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
Statistic<> NumGlobals ("lli", "Number of global vars initialized");
}
ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
CurMod(*P->getModule()), MP(P) {
assert(P && "ModuleProvider is null?");
}
ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
assert(M && "Module is null?");
}
ExecutionEngine::~ExecutionEngine() {
delete MP;
}
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
/// at the specified address.
///
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
// If we haven't computed the reverse mapping yet, do so first.
if (GlobalAddressReverseMap.empty()) {
for (std::map<const GlobalValue*, void *>::iterator I =
GlobalAddressMap.begin(), E = GlobalAddressMap.end(); I != E; ++I)
GlobalAddressReverseMap.insert(std::make_pair(I->second, I->first));
}
std::map<void *, const GlobalValue*>::iterator I =
GlobalAddressReverseMap.find(Addr);
return I != GlobalAddressReverseMap.end() ? I->second : 0;
}
// CreateArgv - Turn a vector of strings into a nice argv style array of
// pointers to null terminated strings.
//
static void *CreateArgv(ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
unsigned PtrSize = EE->getTargetData().getPointerSize();
char *Result = new char[(InputArgv.size()+1)*PtrSize];
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
const Type *SBytePtr = PointerType::get(Type::SByteTy);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Result[i] = (PointerTy)Dest;
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
SBytePtr);
}
// Null terminate it
EE->StoreValueToMemory(PTOGV(0),
(GenericValue*)(Result+InputArgv.size()*PtrSize),
SBytePtr);
return Result;
}
/// runFunctionAsMain - This is a helper function which wraps runFunction to
/// handle the common task of starting up main with the specified argc, argv,
/// and envp parameters.
int ExecutionEngine::runFunctionAsMain(Function *Fn,
const std::vector<std::string> &argv,
const char * const * envp) {
std::vector<GenericValue> GVArgs;
GenericValue GVArgc;
GVArgc.IntVal = argv.size();
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
if (NumArgs) {
GVArgs.push_back(GVArgc); // Arg #0 = argc.
if (NumArgs > 1) {
GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
assert(((char **)GVTOP(GVArgs[1]))[0] &&
"argv[0] was null after CreateArgv");
if (NumArgs > 2) {
std::vector<std::string> EnvVars;
for (unsigned i = 0; envp[i]; ++i)
EnvVars.push_back(envp[i]);
GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
}
}
}
return runFunction(Fn, GVArgs).IntVal;
}
/// If possible, create a JIT, unless the caller specifically requests an
/// Interpreter or there's an error. If even an Interpreter cannot be created,
/// NULL is returned.
///
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
bool ForceInterpreter,
IntrinsicLowering *IL) {
ExecutionEngine *EE = 0;
// Unless the interpreter was explicitly selected, try making a JIT.
if (!ForceInterpreter)
EE = JIT::create(MP, IL);
// If we can't make a JIT, make an interpreter instead.
if (EE == 0) {
try {
Module *M = MP->materializeModule();
try {
EE = Interpreter::create(M, IL);
} catch (...) {
std::cerr << "Error creating the interpreter!\n";
}
} catch (std::string& errmsg) {
std::cerr << "Error reading the bytecode file: " << errmsg << "\n";
} catch (...) {
std::cerr << "Error reading the bytecode file!\n";
}
}
if (EE == 0) delete IL;
return EE;
}
/// getPointerToGlobal - This returns the address of the specified global
/// value. This may involve code generation if it's a function.
///
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
return getPointerToFunction(F);
assert(GlobalAddressMap[GV] && "Global hasn't had an address allocated yet?");
return GlobalAddressMap[GV];
}
/// FIXME: document
///
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue Result;
if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
Result = getConstantValue(CE->getOperand(0));
std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
uint64_t Offset =
TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
Result.LongVal += Offset;
return Result;
}
case Instruction::Cast: {
// We only need to handle a few cases here. Almost all casts will
// automatically fold, just the ones involving pointers won't.
//
Constant *Op = CE->getOperand(0);
GenericValue GV = getConstantValue(Op);
// Handle cast of pointer to pointer...
if (Op->getType()->getTypeID() == C->getType()->getTypeID())
return GV;
// Handle a cast of pointer to any integral type...
if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
return GV;
// Handle cast of integer to a pointer...
if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral())
switch (Op->getType()->getTypeID()) {
case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal);
case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal);
case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal);
case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal);
case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal);
case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal);
case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal);
case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal);
case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal);
default: assert(0 && "Unknown integral type!");
}
break;
}
case Instruction::Add:
switch (CE->getOperand(0)->getType()->getTypeID()) {
default: assert(0 && "Bad add type!"); abort();
case Type::LongTyID:
case Type::ULongTyID:
Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
getConstantValue(CE->getOperand(1)).LongVal;
break;
case Type::IntTyID:
case Type::UIntTyID:
Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal +
getConstantValue(CE->getOperand(1)).IntVal;
break;
case Type::ShortTyID:
case Type::UShortTyID:
Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal +
getConstantValue(CE->getOperand(1)).ShortVal;
break;
case Type::SByteTyID:
case Type::UByteTyID:
Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal +
getConstantValue(CE->getOperand(1)).SByteVal;
break;
case Type::FloatTyID:
Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
getConstantValue(CE->getOperand(1)).FloatVal;
break;
case Type::DoubleTyID:
Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
getConstantValue(CE->getOperand(1)).DoubleVal;
break;
}
return Result;
default:
break;
}
std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
abort();
}
switch (C->getType()->getTypeID()) {
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
#undef GET_CONST_VAL
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C))
Result.PointerVal = 0;
else if (const Function *F = dyn_cast<Function>(C))
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
else
assert(0 && "Unknown constant pointer type!");
break;
default:
std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
abort();
}
return Result;
}
/// FIXME: document
///
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty) {
if (getTargetData().isLittleEndian()) {
switch (Ty->getTypeID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
break;
Store4BytesLittleEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Store4BytesLittleEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
break;
default:
std::cout << "Cannot store value of type " << *Ty << "!\n";
}
} else {
switch (Ty->getTypeID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
break;
Store4BytesBigEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Store4BytesBigEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
break;
default:
std::cout << "Cannot store value of type " << *Ty << "!\n";
}
}
}
/// FIXME: document
///
GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
const Type *Ty) {
GenericValue Result;
if (getTargetData().isLittleEndian()) {
switch (Ty->getTypeID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8);
break;
Load4BytesLittleEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
((unsigned)Ptr->Untyped[1] << 8) |
((unsigned)Ptr->Untyped[2] << 16) |
((unsigned)Ptr->Untyped[3] << 24);
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Load4BytesLittleEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
((uint64_t)Ptr->Untyped[1] << 8) |
((uint64_t)Ptr->Untyped[2] << 16) |
((uint64_t)Ptr->Untyped[3] << 24) |
((uint64_t)Ptr->Untyped[4] << 32) |
((uint64_t)Ptr->Untyped[5] << 40) |
((uint64_t)Ptr->Untyped[6] << 48) |
((uint64_t)Ptr->Untyped[7] << 56);
break;
default:
std::cout << "Cannot load value of type " << *Ty << "!\n";
abort();
}
} else {
switch (Ty->getTypeID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
((unsigned)Ptr->Untyped[0] << 8);
break;
Load4BytesBigEndian:
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
((unsigned)Ptr->Untyped[2] << 8) |
((unsigned)Ptr->Untyped[1] << 16) |
((unsigned)Ptr->Untyped[0] << 24);
break;
case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
goto Load4BytesBigEndian;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
((uint64_t)Ptr->Untyped[6] << 8) |
((uint64_t)Ptr->Untyped[5] << 16) |
((uint64_t)Ptr->Untyped[4] << 24) |
((uint64_t)Ptr->Untyped[3] << 32) |
((uint64_t)Ptr->Untyped[2] << 40) |
((uint64_t)Ptr->Untyped[1] << 48) |
((uint64_t)Ptr->Untyped[0] << 56);
break;
default:
std::cout << "Cannot load value of type " << *Ty << "!\n";
abort();
}
}
return Result;
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
} else if (isa<ConstantAggregateZero>(Init)) {
unsigned Size = getTargetData().getTypeSize(Init->getType());
memset(Addr, 0, Size);
return;
}
switch (Init->getType()->getTypeID()) {
case Type::ArrayTyID: {
const ConstantArray *CPA = cast<ConstantArray>(Init);
unsigned ElementSize =
getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL =
getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]);
return;
}
default:
std::cerr << "Bad Type: " << *Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {
const TargetData &TD = getTargetData();
// Loop over all of the global variables in the program, allocating the memory
// to hold them.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal()) {
// Get the type of the global...
const Type *Ty = I->getType()->getElementType();
// Allocate some memory for it!
unsigned Size = TD.getTypeSize(Ty);
addGlobalMapping(I, new char[Size]);
} else {
// External variable reference. Try to use the dynamic loader to
// get a pointer to it.
if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str()))
addGlobalMapping(I, SymAddr);
else {
std::cerr << "Could not resolve external global address: "
<< I->getName() << "\n";
abort();
}
}
// Now that all of the globals are set up in memory, loop through them all and
// initialize their contents.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal())
EmitGlobalVariable(I);
}
// EmitGlobalVariable - This method emits the specified global variable to the
// address specified in GlobalAddresses, or allocates new memory if it's not
// already in the map.
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
void *GA = getPointerToGlobalIfAvailable(GV);
DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
const Type *ElTy = GV->getType()->getElementType();
if (GA == 0) {
// If it's not already specified, allocate memory for the global.
GA = new char[getTargetData().getTypeSize(ElTy)];
addGlobalMapping(GV, GA);
}
InitializeMemory(GV->getInitializer(), GA);
NumInitBytes += getTargetData().getTypeSize(ElTy);
++NumGlobals;
}
|