aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
blob: e86c1bc2b4530e274527199b002c50607d953747 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file contains both code to deal with invoking "external" functions, but
//  also contains code that implements "exported" external functions.
//
//  External functions in the interpreter are implemented by
//  using the system's dynamic loader to look up the address of the function
//  we want to invoke.  If a function is found, then one of the
//  many lle_* wrapper functions in this file will translate its arguments from
//  GenericValues to the types the function is actually expecting, before the
//  function is called.
//
//===----------------------------------------------------------------------===//

#include "Interpreter.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Support/Streams.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/ManagedStatic.h"
#include <csignal>
#include <map>
#include <cmath>
using std::vector;

using namespace llvm;

typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
static std::map<std::string, ExFunc> FuncNames;

static Interpreter *TheInterpreter;

static char getTypeID(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::VoidTyID:    return 'V';
  case Type::IntegerTyID:
    switch (cast<IntegerType>(Ty)->getBitWidth()) {
      case 1:  return 'o';
      case 8:  return 'B';
      case 16: return 'S';
      case 32: return 'I';
      case 64: return 'L';
      default: return 'N';
    }
  case Type::FloatTyID:   return 'F';
  case Type::DoubleTyID:  return 'D';
  case Type::PointerTyID: return 'P';
  case Type::FunctionTyID:return 'M';
  case Type::StructTyID:  return 'T';
  case Type::ArrayTyID:   return 'A';
  case Type::OpaqueTyID:  return 'O';
  default: return 'U';
  }
}

// Try to find address of external function given a Function object.
// Please note, that interpreter doesn't know how to assemble a
// real call in general case (this is JIT job), that's why it assumes,
// that all external functions has the same (and pretty "general") signature.
// The typical example of such functions are "lle_X_" ones.
static ExFunc lookupFunction(const Function *F) {
  // Function not found, look it up... start by figuring out what the
  // composite function name should be.
  std::string ExtName = "lle_";
  const FunctionType *FT = F->getFunctionType();
  for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
    ExtName += getTypeID(FT->getContainedType(i));
  ExtName += "_" + F->getName();

  ExFunc FnPtr = FuncNames[ExtName];
  if (FnPtr == 0)
    FnPtr = FuncNames["lle_X_"+F->getName()];
  if (FnPtr == 0)  // Try calling a generic function... if it exists...
    FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
            ("lle_X_"+F->getName()).c_str());
  if (FnPtr == 0)
    FnPtr = (ExFunc)(intptr_t)
      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
  if (FnPtr != 0)
    Functions->insert(std::make_pair(F, FnPtr));  // Cache for later
  return FnPtr;
}

GenericValue Interpreter::callExternalFunction(Function *F,
                                     const std::vector<GenericValue> &ArgVals) {
  TheInterpreter = this;

  // Do a lookup to see if the function is in our cache... this should just be a
  // deferred annotation!
  std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
  ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
  if (Fn == 0) {
    cerr << "Tried to execute an unknown external function: "
         << F->getType()->getDescription() << " " << F->getName() << "\n";
    if (F->getName() == "__main")
      return GenericValue();
    abort();
  }

  // TODO: FIXME when types are not const!
  GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
                           ArgVals);
  return Result;
}


//===----------------------------------------------------------------------===//
//  Functions "exported" to the running application...
//
extern "C" {  // Don't add C++ manglings to llvm mangling :)

// void putchar(ubyte)
GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
  cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
  return Args[0];
}

// void _IO_putc(int c, FILE* fp)
GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
#ifdef __linux__
  _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
#else
  assert(0 && "Can't call _IO_putc on this platform");
#endif
  return Args[0];
}

// void atexit(Function*)
GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

// void exit(int)
GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
  TheInterpreter->exitCalled(Args[0]);
  return GenericValue();
}

// void abort(void)
GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
  raise (SIGABRT);
  return GenericValue();
}

// void *malloc(uint)
GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1 && "Malloc expects one argument!");
  assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
  return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
}

// void *calloc(uint, uint)
GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2 && "calloc expects two arguments!");
  assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
  return PTOGV(calloc(Args[0].IntVal.getZExtValue(), 
                      Args[1].IntVal.getZExtValue()));
}

// void *calloc(uint, uint)
GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2 && "calloc expects two arguments!");
  assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
  return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
}

// void free(void *)
GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  free(GVTOP(Args[0]));
  return GenericValue();
}

// int atoi(char *)
GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
  return GV;
}

// double pow(double, double)
GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  GenericValue GV;
  GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
  return GV;
}

// double exp(double)
GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.DoubleVal = exp(Args[0].DoubleVal);
  return GV;
}

// double sqrt(double)
GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.DoubleVal = sqrt(Args[0].DoubleVal);
  return GV;
}

// double log(double)
GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.DoubleVal = log(Args[0].DoubleVal);
  return GV;
}

// double floor(double)
GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.DoubleVal = floor(Args[0].DoubleVal);
  return GV;
}

#ifdef HAVE_RAND48

// double drand48()
GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 0);
  GenericValue GV;
  GV.DoubleVal = drand48();
  return GV;
}

// long lrand48()
GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 0);
  GenericValue GV;
  GV.Int32Val = lrand48();
  return GV;
}

// void srand48(long)
GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  srand48(Args[0].Int32Val);
  return GenericValue();
}

#endif

// int rand()
GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 0);
  GenericValue GV;
  GV.IntVal = APInt(32, rand());
  return GV;
}

// void srand(uint)
GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  srand(Args[0].IntVal.getZExtValue());
  return GenericValue();
}

// int puts(const char*)
GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
  return GV;
}

// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
// output useful.
GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
  char *OutputBuffer = (char *)GVTOP(Args[0]);
  const char *FmtStr = (const char *)GVTOP(Args[1]);
  unsigned ArgNo = 2;

  // printf should return # chars printed.  This is completely incorrect, but
  // close enough for now.
  GenericValue GV; 
  GV.IntVal = APInt(32, strlen(FmtStr));
  while (1) {
    switch (*FmtStr) {
    case 0: return GV;             // Null terminator...
    default:                       // Normal nonspecial character
      sprintf(OutputBuffer++, "%c", *FmtStr++);
      break;
    case '\\': {                   // Handle escape codes
      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
      FmtStr += 2; OutputBuffer += 2;
      break;
    }
    case '%': {                    // Handle format specifiers
      char FmtBuf[100] = "", Buffer[1000] = "";
      char *FB = FmtBuf;
      *FB++ = *FmtStr++;
      char Last = *FB++ = *FmtStr++;
      unsigned HowLong = 0;
      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
             Last != 'p' && Last != 's' && Last != '%') {
        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
        Last = *FB++ = *FmtStr++;
      }
      *FB = 0;

      switch (Last) {
      case '%':
        sprintf(Buffer, FmtBuf); break;
      case 'c':
        sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
        break;
      case 'd': case 'i':
      case 'u': case 'o':
      case 'x': case 'X':
        if (HowLong >= 1) {
          if (HowLong == 1 &&
              TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
              sizeof(long) < sizeof(int64_t)) {
            // Make sure we use %lld with a 64 bit argument because we might be
            // compiling LLI on a 32 bit compiler.
            unsigned Size = strlen(FmtBuf);
            FmtBuf[Size] = FmtBuf[Size-1];
            FmtBuf[Size+1] = 0;
            FmtBuf[Size-1] = 'l';
          }
          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
        } else
          sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
        break;
      case 'e': case 'E': case 'g': case 'G': case 'f':
        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
      case 'p':
        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
      case 's':
        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
      default:  cerr << "<unknown printf code '" << *FmtStr << "'!>";
        ArgNo++; break;
      }
      strcpy(OutputBuffer, Buffer);
      OutputBuffer += strlen(Buffer);
      }
      break;
    }
  }
  return GV;
}

// int printf(sbyte *, ...) - a very rough implementation to make output useful.
GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
  char Buffer[10000];
  vector<GenericValue> NewArgs;
  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
  GenericValue GV = lle_X_sprintf(FT, NewArgs);
  cout << Buffer;
  return GV;
}

static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
                                 void *Arg2, void *Arg3, void *Arg4, void *Arg5,
                                 void *Arg6, void *Arg7, void *Arg8) {
  void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };

  // Loop over the format string, munging read values as appropriate (performs
  // byteswaps as necessary).
  unsigned ArgNo = 0;
  while (*Fmt) {
    if (*Fmt++ == '%') {
      // Read any flag characters that may be present...
      bool Suppress = false;
      bool Half = false;
      bool Long = false;
      bool LongLong = false;  // long long or long double

      while (1) {
        switch (*Fmt++) {
        case '*': Suppress = true; break;
        case 'a': /*Allocate = true;*/ break;  // We don't need to track this
        case 'h': Half = true; break;
        case 'l': Long = true; break;
        case 'q':
        case 'L': LongLong = true; break;
        default:
          if (Fmt[-1] > '9' || Fmt[-1] < '0')   // Ignore field width specs
            goto Out;
        }
      }
    Out:

      // Read the conversion character
      if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
        unsigned Size = 0;
        const Type *Ty = 0;

        switch (Fmt[-1]) {
        case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
        case 'd':
          if (Long || LongLong) {
            Size = 8; Ty = Type::Int64Ty;
          } else if (Half) {
            Size = 4; Ty = Type::Int16Ty;
          } else {
            Size = 4; Ty = Type::Int32Ty;
          }
          break;

        case 'e': case 'g': case 'E':
        case 'f':
          if (Long || LongLong) {
            Size = 8; Ty = Type::DoubleTy;
          } else {
            Size = 4; Ty = Type::FloatTy;
          }
          break;

        case 's': case 'c': case '[':  // No byteswap needed
          Size = 1;
          Ty = Type::Int8Ty;
          break;

        default: break;
        }

        if (Size) {
          GenericValue GV;
          void *Arg = Args[ArgNo++];
          memcpy(&GV, Arg, Size);
          TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
        }
      }
    }
  }
}

// int sscanf(const char *format, ...);
GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");

  char *Args[10];
  for (unsigned i = 0; i < args.size(); ++i)
    Args[i] = (char*)GVTOP(args[i]);

  GenericValue GV;
  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
                        Args[5], Args[6], Args[7], Args[8], Args[9]));
  ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
                       Args[5], Args[6], Args[7], Args[8], Args[9], 0);
  return GV;
}

// int scanf(const char *format, ...);
GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");

  char *Args[10];
  for (unsigned i = 0; i < args.size(); ++i)
    Args[i] = (char*)GVTOP(args[i]);

  GenericValue GV;
  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
                        Args[5], Args[6], Args[7], Args[8], Args[9]));
  ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
                       Args[5], Args[6], Args[7], Args[8], Args[9]);
  return GV;
}


// int clock(void) - Profiling implementation
GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
  extern unsigned int clock(void);
  GenericValue GV; 
  GV.IntVal = APInt(32, clock());
  return GV;
}


//===----------------------------------------------------------------------===//
// String Functions...
//===----------------------------------------------------------------------===//

// int strcmp(const char *S1, const char *S2);
GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  GenericValue Ret;
  Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
  return Ret;
}

// char *strcat(char *Dest, const char *src);
GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
  return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
}

// char *strcpy(char *Dest, const char *src);
GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
  return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
}

static GenericValue size_t_to_GV (size_t n) {
  GenericValue Ret;
  if (sizeof (size_t) == sizeof (uint64_t)) {
    Ret.IntVal = APInt(64, n);
  } else {
    assert (sizeof (size_t) == sizeof (unsigned int));
    Ret.IntVal = APInt(32, n);
  }
  return Ret;
}

static size_t GV_to_size_t (GenericValue GV) {
  size_t count;
  if (sizeof (size_t) == sizeof (uint64_t)) {
    count = (size_t)GV.IntVal.getZExtValue();
  } else {
    assert (sizeof (size_t) == sizeof (unsigned int));
    count = (size_t)GV.IntVal.getZExtValue();
  }
  return count;
}

// size_t strlen(const char *src);
GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
  return size_t_to_GV (strlenResult);
}

// char *strdup(const char *src);
GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
  return PTOGV(strdup((char*)GVTOP(Args[0])));
}

// char *__strdup(const char *src);
GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
  return PTOGV(strdup((char*)GVTOP(Args[0])));
}

// void *memset(void *S, int C, size_t N)
GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 3);
  size_t count = GV_to_size_t (Args[2]);
  assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
  return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), 
                      count));
}

// void *memcpy(void *Dest, void *src, size_t Size);
GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 3);
  assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
  size_t count = GV_to_size_t (Args[2]);
  return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
}

//===----------------------------------------------------------------------===//
// IO Functions...
//===----------------------------------------------------------------------===//

// getFILE - Turn a pointer in the host address space into a legit pointer in
// the interpreter address space.  This is an identity transformation.
#define getFILE(ptr) ((FILE*)ptr)

// FILE *fopen(const char *filename, const char *mode);
GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
  return PTOGV(fopen((const char *)GVTOP(Args[0]),
                     (const char *)GVTOP(Args[1])));
}

// int fclose(FILE *F);
GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
  return GV;
}

// int feof(FILE *stream);
GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;

  GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
  return GV;
}

// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 4);
  size_t result;

  result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
                 GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
  return size_t_to_GV (result);
}

// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 4);
  size_t result;

  result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
                  GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
  return size_t_to_GV (result);
}

// char *fgets(char *s, int n, FILE *stream);
GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 3);
  return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
                     getFILE(GVTOP(Args[2]))));
}

// FILE *freopen(const char *path, const char *mode, FILE *stream);
GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 3);
  assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
  return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
                       getFILE(GVTOP(Args[2]))));
}

// int fflush(FILE *stream);
GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
  return GV;
}

// int getc(FILE *stream);
GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
  return GV;
}

// int _IO_getc(FILE *stream);
GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
  return lle_X_getc(F, Args);
}

// int fputc(int C, FILE *stream);
GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  GenericValue GV;
  GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), 
                              getFILE(GVTOP(Args[1]))));
  return GV;
}

// int ungetc(int C, FILE *stream);
GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 2);
  GenericValue GV;
  GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), 
                               getFILE(GVTOP(Args[1]))));
  return GV;
}

// int ferror (FILE *stream);
GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() == 1);
  GenericValue GV;
  GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
  return GV;
}

// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
// useful.
GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
  assert(Args.size() >= 2);
  char Buffer[10000];
  vector<GenericValue> NewArgs;
  NewArgs.push_back(PTOGV(Buffer));
  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
  GenericValue GV = lle_X_sprintf(FT, NewArgs);

  fputs(Buffer, getFILE(GVTOP(Args[0])));
  return GV;
}

} // End extern "C"


void Interpreter::initializeExternalFunctions() {
  FuncNames["lle_X_putchar"]      = lle_X_putchar;
  FuncNames["lle_X__IO_putc"]     = lle_X__IO_putc;
  FuncNames["lle_X_exit"]         = lle_X_exit;
  FuncNames["lle_X_abort"]        = lle_X_abort;
  FuncNames["lle_X_malloc"]       = lle_X_malloc;
  FuncNames["lle_X_calloc"]       = lle_X_calloc;
  FuncNames["lle_X_realloc"]      = lle_X_realloc;
  FuncNames["lle_X_free"]         = lle_X_free;
  FuncNames["lle_X_atoi"]         = lle_X_atoi;
  FuncNames["lle_X_pow"]          = lle_X_pow;
  FuncNames["lle_X_exp"]          = lle_X_exp;
  FuncNames["lle_X_log"]          = lle_X_log;
  FuncNames["lle_X_floor"]        = lle_X_floor;
  FuncNames["lle_X_srand"]        = lle_X_srand;
  FuncNames["lle_X_rand"]         = lle_X_rand;
#ifdef HAVE_RAND48
  FuncNames["lle_X_drand48"]      = lle_X_drand48;
  FuncNames["lle_X_srand48"]      = lle_X_srand48;
  FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
#endif
  FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
  FuncNames["lle_X_puts"]         = lle_X_puts;
  FuncNames["lle_X_printf"]       = lle_X_printf;
  FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
  FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
  FuncNames["lle_X_scanf"]        = lle_X_scanf;
  FuncNames["lle_i_clock"]        = lle_i_clock;

  FuncNames["lle_X_strcmp"]       = lle_X_strcmp;
  FuncNames["lle_X_strcat"]       = lle_X_strcat;
  FuncNames["lle_X_strcpy"]       = lle_X_strcpy;
  FuncNames["lle_X_strlen"]       = lle_X_strlen;
  FuncNames["lle_X___strdup"]     = lle_X___strdup;
  FuncNames["lle_X_memset"]       = lle_X_memset;
  FuncNames["lle_X_memcpy"]       = lle_X_memcpy;

  FuncNames["lle_X_fopen"]        = lle_X_fopen;
  FuncNames["lle_X_fclose"]       = lle_X_fclose;
  FuncNames["lle_X_feof"]         = lle_X_feof;
  FuncNames["lle_X_fread"]        = lle_X_fread;
  FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
  FuncNames["lle_X_fgets"]        = lle_X_fgets;
  FuncNames["lle_X_fflush"]       = lle_X_fflush;
  FuncNames["lle_X_fgetc"]        = lle_X_getc;
  FuncNames["lle_X_getc"]         = lle_X_getc;
  FuncNames["lle_X__IO_getc"]     = lle_X__IO_getc;
  FuncNames["lle_X_fputc"]        = lle_X_fputc;
  FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
  FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
  FuncNames["lle_X_freopen"]      = lle_X_freopen;
}