aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
blob: 29dac39f5054758b4c7745a935fe0e8ec7827e5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a JITDwarfEmitter object that is used by the JIT to
// write dwarf tables to memory.
//
//===----------------------------------------------------------------------===//

#include "JITDwarfEmitter.h"
#include "JIT.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/DataLayout.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;

JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}


unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
                                               JITCodeEmitter& jce,
                                               unsigned char* StartFunction,
                                               unsigned char* EndFunction,
                                               unsigned char* &EHFramePtr) {
  assert(MMI && "MachineModuleInfo not registered!");

  const TargetMachine& TM = F.getTarget();
  TD = TM.getDataLayout();
  stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection();
  RI = TM.getRegisterInfo();
  MAI = TM.getMCAsmInfo();
  JCE = &jce;

  unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
                                                     EndFunction);

  unsigned char* Result = 0;

  const std::vector<const Function *> Personalities = MMI->getPersonalities();
  EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);

  Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
                       StartFunction, EndFunction, ExceptionTable);

  return Result;
}


void
JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
                                const std::vector<MachineMove> &Moves) const {
  unsigned PointerSize = TD->getPointerSize();
  int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
          PointerSize : -PointerSize;
  MCSymbol *BaseLabel = 0;

  for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
    const MachineMove &Move = Moves[i];
    MCSymbol *Label = Move.getLabel();

    // Throw out move if the label is invalid.
    if (Label && (*JCE->getLabelLocations())[Label] == 0)
      continue;

    intptr_t LabelPtr = 0;
    if (Label) LabelPtr = JCE->getLabelAddress(Label);

    const MachineLocation &Dst = Move.getDestination();
    const MachineLocation &Src = Move.getSource();

    // Advance row if new location.
    if (BaseLabelPtr && Label && BaseLabel != Label) {
      JCE->emitByte(dwarf::DW_CFA_advance_loc4);
      JCE->emitInt32(LabelPtr - BaseLabelPtr);

      BaseLabel = Label;
      BaseLabelPtr = LabelPtr;
    }

    // If advancing cfa.
    if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
      if (!Src.isReg()) {
        if (Src.getReg() == MachineLocation::VirtualFP) {
          JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
        } else {
          JCE->emitByte(dwarf::DW_CFA_def_cfa);
          JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
        }

        JCE->emitULEB128Bytes(-Src.getOffset());
      } else {
        llvm_unreachable("Machine move not supported yet.");
      }
    } else if (Src.isReg() &&
      Src.getReg() == MachineLocation::VirtualFP) {
      if (Dst.isReg()) {
        JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
        JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
      } else {
        llvm_unreachable("Machine move not supported yet.");
      }
    } else {
      unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
      int Offset = Dst.getOffset() / stackGrowth;

      if (Offset < 0) {
        JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
        JCE->emitULEB128Bytes(Reg);
        JCE->emitSLEB128Bytes(Offset);
      } else if (Reg < 64) {
        JCE->emitByte(dwarf::DW_CFA_offset + Reg);
        JCE->emitULEB128Bytes(Offset);
      } else {
        JCE->emitByte(dwarf::DW_CFA_offset_extended);
        JCE->emitULEB128Bytes(Reg);
        JCE->emitULEB128Bytes(Offset);
      }
    }
  }
}

/// SharedTypeIds - How many leading type ids two landing pads have in common.
static unsigned SharedTypeIds(const LandingPadInfo *L,
                              const LandingPadInfo *R) {
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
  unsigned LSize = LIds.size(), RSize = RIds.size();
  unsigned MinSize = LSize < RSize ? LSize : RSize;
  unsigned Count = 0;

  for (; Count != MinSize; ++Count)
    if (LIds[Count] != RIds[Count])
      return Count;

  return Count;
}


/// PadLT - Order landing pads lexicographically by type id.
static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
  unsigned LSize = LIds.size(), RSize = RIds.size();
  unsigned MinSize = LSize < RSize ? LSize : RSize;

  for (unsigned i = 0; i != MinSize; ++i)
    if (LIds[i] != RIds[i])
      return LIds[i] < RIds[i];

  return LSize < RSize;
}

namespace {

/// ActionEntry - Structure describing an entry in the actions table.
struct ActionEntry {
  int ValueForTypeID; // The value to write - may not be equal to the type id.
  int NextAction;
  struct ActionEntry *Previous;
};

/// PadRange - Structure holding a try-range and the associated landing pad.
struct PadRange {
  // The index of the landing pad.
  unsigned PadIndex;
  // The index of the begin and end labels in the landing pad's label lists.
  unsigned RangeIndex;
};

typedef DenseMap<MCSymbol*, PadRange> RangeMapType;

/// CallSiteEntry - Structure describing an entry in the call-site table.
struct CallSiteEntry {
  MCSymbol *BeginLabel; // zero indicates the start of the function.
  MCSymbol *EndLabel;   // zero indicates the end of the function.
  MCSymbol *PadLabel;   // zero indicates that there is no landing pad.
  unsigned Action;
};

}

unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
                                         unsigned char* StartFunction,
                                         unsigned char* EndFunction) const {
  assert(MMI && "MachineModuleInfo not registered!");

  // Map all labels and get rid of any dead landing pads.
  MMI->TidyLandingPads(JCE->getLabelLocations());

  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
  if (PadInfos.empty()) return 0;

  // Sort the landing pads in order of their type ids.  This is used to fold
  // duplicate actions.
  SmallVector<const LandingPadInfo *, 64> LandingPads;
  LandingPads.reserve(PadInfos.size());
  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    LandingPads.push_back(&PadInfos[i]);
  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);

  // Negative type ids index into FilterIds, positive type ids index into
  // TypeInfos.  The value written for a positive type id is just the type
  // id itself.  For a negative type id, however, the value written is the
  // (negative) byte offset of the corresponding FilterIds entry.  The byte
  // offset is usually equal to the type id, because the FilterIds entries
  // are written using a variable width encoding which outputs one byte per
  // entry as long as the value written is not too large, but can differ.
  // This kind of complication does not occur for positive type ids because
  // type infos are output using a fixed width encoding.
  // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
  SmallVector<int, 16> FilterOffsets;
  FilterOffsets.reserve(FilterIds.size());
  int Offset = -1;
  for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
    E = FilterIds.end(); I != E; ++I) {
    FilterOffsets.push_back(Offset);
    Offset -= MCAsmInfo::getULEB128Size(*I);
  }

  // Compute the actions table and gather the first action index for each
  // landing pad site.
  SmallVector<ActionEntry, 32> Actions;
  SmallVector<unsigned, 64> FirstActions;
  FirstActions.reserve(LandingPads.size());

  int FirstAction = 0;
  unsigned SizeActions = 0;
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LP = LandingPads[i];
    const std::vector<int> &TypeIds = LP->TypeIds;
    const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
    unsigned SizeSiteActions = 0;

    if (NumShared < TypeIds.size()) {
      unsigned SizeAction = 0;
      ActionEntry *PrevAction = 0;

      if (NumShared) {
        const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
        assert(Actions.size());
        PrevAction = &Actions.back();
        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
          SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
          SizeAction += -PrevAction->NextAction;
          PrevAction = PrevAction->Previous;
        }
      }

      // Compute the actions.
      for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
        int TypeID = TypeIds[I];
        assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);

        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
        SizeSiteActions += SizeAction;

        ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
        Actions.push_back(Action);

        PrevAction = &Actions.back();
      }

      // Record the first action of the landing pad site.
      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
    } // else identical - re-use previous FirstAction

    FirstActions.push_back(FirstAction);

    // Compute this sites contribution to size.
    SizeActions += SizeSiteActions;
  }

  // Compute the call-site table.  Entries must be ordered by address.
  SmallVector<CallSiteEntry, 64> CallSites;

  RangeMapType PadMap;
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LandingPad = LandingPads[i];
    for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
      PadRange P = { i, j };
      PadMap[BeginLabel] = P;
    }
  }

  bool MayThrow = false;
  MCSymbol *LastLabel = 0;
  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
        I != E; ++I) {
    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
          MI != E; ++MI) {
      if (!MI->isLabel()) {
        MayThrow |= MI->isCall();
        continue;
      }

      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
      assert(BeginLabel && "Invalid label!");

      if (BeginLabel == LastLabel)
        MayThrow = false;

      RangeMapType::iterator L = PadMap.find(BeginLabel);

      if (L == PadMap.end())
        continue;

      PadRange P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];

      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
              "Inconsistent landing pad map!");

      // If some instruction between the previous try-range and this one may
      // throw, create a call-site entry with no landing pad for the region
      // between the try-ranges.
      if (MayThrow) {
        CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
        CallSites.push_back(Site);
      }

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      CallSiteEntry Site = {BeginLabel, LastLabel,
        LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};

      assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
              "Invalid landing pad!");

      // Try to merge with the previous call-site.
      if (CallSites.size()) {
        CallSiteEntry &Prev = CallSites.back();
        if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
          // Extend the range of the previous entry.
          Prev.EndLabel = Site.EndLabel;
          continue;
        }
      }

      // Otherwise, create a new call-site.
      CallSites.push_back(Site);
    }
  }
  // If some instruction between the previous try-range and the end of the
  // function may throw, create a call-site entry with no landing pad for the
  // region following the try-range.
  if (MayThrow) {
    CallSiteEntry Site = {LastLabel, 0, 0, 0};
    CallSites.push_back(Site);
  }

  // Final tallies.
  unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
                                            sizeof(int32_t) + // Site length.
                                            sizeof(int32_t)); // Landing pad.
  for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);

  unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();

  unsigned TypeOffset = sizeof(int8_t) + // Call site format
                        // Call-site table length
                        MCAsmInfo::getULEB128Size(SizeSites) +
                        SizeSites + SizeActions + SizeTypes;

  // Begin the exception table.
  JCE->emitAlignmentWithFill(4, 0);
  // Asm->EOL("Padding");

  unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();

  // Emit the header.
  JCE->emitByte(dwarf::DW_EH_PE_omit);
  // Asm->EOL("LPStart format (DW_EH_PE_omit)");
  JCE->emitByte(dwarf::DW_EH_PE_absptr);
  // Asm->EOL("TType format (DW_EH_PE_absptr)");
  JCE->emitULEB128Bytes(TypeOffset);
  // Asm->EOL("TType base offset");
  JCE->emitByte(dwarf::DW_EH_PE_udata4);
  // Asm->EOL("Call site format (DW_EH_PE_udata4)");
  JCE->emitULEB128Bytes(SizeSites);
  // Asm->EOL("Call-site table length");

  // Emit the landing pad site information.
  for (unsigned i = 0; i < CallSites.size(); ++i) {
    CallSiteEntry &S = CallSites[i];
    intptr_t BeginLabelPtr = 0;
    intptr_t EndLabelPtr = 0;

    if (!S.BeginLabel) {
      BeginLabelPtr = (intptr_t)StartFunction;
      JCE->emitInt32(0);
    } else {
      BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
      JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
    }

    // Asm->EOL("Region start");

    if (!S.EndLabel)
      EndLabelPtr = (intptr_t)EndFunction;
    else
      EndLabelPtr = JCE->getLabelAddress(S.EndLabel);

    JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
    //Asm->EOL("Region length");

    if (!S.PadLabel) {
      JCE->emitInt32(0);
    } else {
      unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
      JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
    }
    // Asm->EOL("Landing pad");

    JCE->emitULEB128Bytes(S.Action);
    // Asm->EOL("Action");
  }

  // Emit the actions.
  for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
    ActionEntry &Action = Actions[I];

    JCE->emitSLEB128Bytes(Action.ValueForTypeID);
    //Asm->EOL("TypeInfo index");
    JCE->emitSLEB128Bytes(Action.NextAction);
    //Asm->EOL("Next action");
  }

  // Emit the type ids.
  for (unsigned M = TypeInfos.size(); M; --M) {
    const GlobalVariable *GV = TypeInfos[M - 1];

    if (GV) {
      if (TD->getPointerSize() == sizeof(int32_t))
        JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
      else
        JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
    } else {
      if (TD->getPointerSize() == sizeof(int32_t))
        JCE->emitInt32(0);
      else
        JCE->emitInt64(0);
    }
    // Asm->EOL("TypeInfo");
  }

  // Emit the filter typeids.
  for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
    unsigned TypeID = FilterIds[j];
    JCE->emitULEB128Bytes(TypeID);
    //Asm->EOL("Filter TypeInfo index");
  }

  JCE->emitAlignmentWithFill(4, 0);

  return DwarfExceptionTable;
}

unsigned char*
JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
  unsigned PointerSize = TD->getPointerSize();
  int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
          PointerSize : -PointerSize;

  unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
  // EH Common Frame header
  JCE->allocateSpace(4, 0);
  unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
  JCE->emitInt32((int)0);
  JCE->emitByte(dwarf::DW_CIE_VERSION);
  JCE->emitString(Personality ? "zPLR" : "zR");
  JCE->emitULEB128Bytes(1);
  JCE->emitSLEB128Bytes(stackGrowth);
  JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));

  if (Personality) {
    // Augmentation Size: 3 small ULEBs of one byte each, and the personality
    // function which size is PointerSize.
    JCE->emitULEB128Bytes(3 + PointerSize);

    // We set the encoding of the personality as direct encoding because we use
    // the function pointer. The encoding is not relative because the current
    // PC value may be bigger than the personality function pointer.
    if (PointerSize == 4) {
      JCE->emitByte(dwarf::DW_EH_PE_sdata4);
      JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
    } else {
      JCE->emitByte(dwarf::DW_EH_PE_sdata8);
      JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
    }

    // LSDA encoding: This must match the encoding used in EmitEHFrame ()
    if (PointerSize == 4)
      JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
    else
      JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8);
    JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
  } else {
    JCE->emitULEB128Bytes(1);
    JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
  }

  EmitFrameMoves(0, MAI->getInitialFrameState());

  JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);

  JCE->emitInt32At((uintptr_t*)StartCommonPtr,
                   (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
                               FrameCommonBeginPtr));

  return StartCommonPtr;
}


unsigned char*
JITDwarfEmitter::EmitEHFrame(const Function* Personality,
                             unsigned char* StartCommonPtr,
                             unsigned char* StartFunction,
                             unsigned char* EndFunction,
                             unsigned char* ExceptionTable) const {
  unsigned PointerSize = TD->getPointerSize();

  // EH frame header.
  unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
  JCE->allocateSpace(4, 0);
  unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
  // FDE CIE Offset
  JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
  JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
  JCE->emitInt32(EndFunction - StartFunction);

  // If there is a personality and landing pads then point to the language
  // specific data area in the exception table.
  if (Personality) {
    JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);

    if (PointerSize == 4) {
      if (!MMI->getLandingPads().empty())
        JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
      else
        JCE->emitInt32((int)0);
    } else {
      if (!MMI->getLandingPads().empty())
        JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
      else
        JCE->emitInt64((int)0);
    }
  } else {
    JCE->emitULEB128Bytes(0);
  }

  // Indicate locations of function specific  callee saved registers in
  // frame.
  EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());

  JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);

  // Indicate the size of the table
  JCE->emitInt32At((uintptr_t*)StartEHPtr,
                   (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
                               StartEHPtr));

  // Double zeroes for the unwind runtime
  if (PointerSize == 8) {
    JCE->emitInt64(0);
    JCE->emitInt64(0);
  } else {
    JCE->emitInt32(0);
    JCE->emitInt32(0);
  }

  return StartEHPtr;
}