aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/JIT/JITEmitter.cpp
blob: 4a6cd715a5800111cbee35d841ab6d9abd1bb575 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a MachineCodeEmitter object that is used by the JIT to
// write machine code to memory and remember where relocatable values are.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "JIT.h"
#include "llvm/Constant.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/System/Memory.h"
#include <algorithm>
#include <iostream>
using namespace llvm;

namespace {
  Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
  Statistic<> NumRelos("jit", "Number of relocations applied");
  JIT *TheJIT = 0;
}


//===----------------------------------------------------------------------===//
// JITMemoryManager code.
//
namespace {
  /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
  /// sane way.  This splits a large block of MAP_NORESERVE'd memory into two
  /// sections, one for function stubs, one for the functions themselves.  We
  /// have to do this because we may need to emit a function stub while in the
  /// middle of emitting a function, and we don't know how large the function we
  /// are emitting is.  This never bothers to release the memory, because when
  /// we are ready to destroy the JIT, the program exits.
  class JITMemoryManager {
    std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
    unsigned char *FunctionBase; // Start of the function body area
    unsigned char *CurStubPtr, *CurFunctionPtr;
    unsigned char *GOTBase;      // Target Specific reserved memory

    // centralize memory block allocation
    sys::MemoryBlock getNewMemoryBlock(unsigned size);
  public:
    JITMemoryManager(bool useGOT);
    ~JITMemoryManager();

    inline unsigned char *allocateStub(unsigned StubSize);
    inline unsigned char *startFunctionBody();
    inline void endFunctionBody(unsigned char *FunctionEnd);
    
    unsigned char *getGOTBase() const {
      return GOTBase;
    }
    bool isManagingGOT() const {
      return GOTBase != NULL;
    }
  };
}

JITMemoryManager::JITMemoryManager(bool useGOT) {
  // Allocate a 16M block of memory for functions
  sys::MemoryBlock FunBlock = getNewMemoryBlock(16 << 20);

  FunctionBase = reinterpret_cast<unsigned char*>(FunBlock.base());

  // Allocate stubs backwards from the base, allocate functions forward
  // from the base.
  CurStubPtr = CurFunctionPtr = FunctionBase + 512*1024;// Use 512k for stubs

  // Allocate the GOT.
  GOTBase = NULL;
  if (useGOT) GOTBase = (unsigned char*)malloc(sizeof(void*) * 8192);
}

JITMemoryManager::~JITMemoryManager() {
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
    sys::Memory::ReleaseRWX(Blocks[i]);
  Blocks.clear();
}

unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
  CurStubPtr -= StubSize;
  if (CurStubPtr < FunctionBase) {
    // FIXME: allocate a new block
    std::cerr << "JIT ran out of memory for function stubs!\n";
    abort();
  }
  return CurStubPtr;
}

unsigned char *JITMemoryManager::startFunctionBody() {
  return CurFunctionPtr;
}

void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) {
  assert(FunctionEnd > CurFunctionPtr);
  CurFunctionPtr = FunctionEnd;
}

sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
  try {
    const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
    sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld);
    Blocks.push_back(B);
    return B;
  } catch (std::string &err) {
    std::cerr << "Allocation failed when allocating new memory in the JIT\n";
    std::cerr << err << "\n";
    abort();
  }
}

//===----------------------------------------------------------------------===//
// JIT lazy compilation code.
//
namespace {
  class JITResolverState {
  private:
    /// FunctionToStubMap - Keep track of the stub created for a particular
    /// function so that we can reuse them if necessary.
    std::map<Function*, void*> FunctionToStubMap;

    /// StubToFunctionMap - Keep track of the function that each stub
    /// corresponds to.
    std::map<void*, Function*> StubToFunctionMap;

  public:
    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return FunctionToStubMap;
    }

    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return StubToFunctionMap;
    }
  };

  /// JITResolver - Keep track of, and resolve, call sites for functions that
  /// have not yet been compiled.
  class JITResolver {
    /// MCE - The MachineCodeEmitter to use to emit stubs with.
    MachineCodeEmitter &MCE;

    /// LazyResolverFn - The target lazy resolver function that we actually
    /// rewrite instructions to use.
    TargetJITInfo::LazyResolverFn LazyResolverFn;

    JITResolverState state;

    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
    /// external functions.
    std::map<void*, void*> ExternalFnToStubMap;

    //map addresses to indexes in the GOT
    std::map<void*, unsigned> revGOTMap;
    unsigned nextGOTIndex;

  public:
    JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) {
      LazyResolverFn =
        TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
    }

    /// getFunctionStub - This returns a pointer to a function stub, creating
    /// one on demand as needed.
    void *getFunctionStub(Function *F);

    /// getExternalFunctionStub - Return a stub for the function at the
    /// specified address, created lazily on demand.
    void *getExternalFunctionStub(void *FnAddr);

    /// AddCallbackAtLocation - If the target is capable of rewriting an
    /// instruction without the use of a stub, record the location of the use so
    /// we know which function is being used at the location.
    void *AddCallbackAtLocation(Function *F, void *Location) {
      MutexGuard locked(TheJIT->lock);
      /// Get the target-specific JIT resolver function.
      state.getStubToFunctionMap(locked)[Location] = F;
      return (void*)LazyResolverFn;
    }

    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    /// and address.  This function only manages slots, it does not manage the
    /// contents of the slots or the memory associated with the GOT.
    unsigned getGOTIndexForAddr(void* addr);

    /// JITCompilerFn - This function is called to resolve a stub to a compiled
    /// address.  If the LLVM Function corresponding to the stub has not yet
    /// been compiled, this function compiles it first.
    static void *JITCompilerFn(void *Stub);
  };
}

/// getJITResolver - This function returns the one instance of the JIT resolver.
///
static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
  static JITResolver TheJITResolver(*MCE);
  return TheJITResolver;
}

/// getFunctionStub - This returns a pointer to a function stub, creating
/// one on demand as needed.
void *JITResolver::getFunctionStub(Function *F) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this function, recycle it.
  void *&Stub = state.getFunctionToStubMap(locked)[F];
  if (Stub) return Stub;

  // Call the lazy resolver function unless we already KNOW it is an external
  // function, in which case we just skip the lazy resolution step.
  void *Actual = (void*)LazyResolverFn;
  if (F->isExternal() && F->hasExternalLinkage())
    Actual = TheJIT->getPointerToFunction(F);

  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
  // resolver function.
  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);

  if (Actual != (void*)LazyResolverFn) {
    // If we are getting the stub for an external function, we really want the
    // address of the stub in the GlobalAddressMap for the JIT, not the address
    // of the external function.
    TheJIT->updateGlobalMapping(F, Stub);
  }

  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
                  << F->getName() << "'\n");

  // Finally, keep track of the stub-to-Function mapping so that the
  // JITCompilerFn knows which function to compile!
  state.getStubToFunctionMap(locked)[Stub] = F;
  return Stub;
}

/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
  // If we already have a stub for this function, recycle it.
  void *&Stub = ExternalFnToStubMap[FnAddr];
  if (Stub) return Stub;

  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE);
  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub
        << "] for external function at '" << FnAddr << "'\n");
  return Stub;
}

unsigned JITResolver::getGOTIndexForAddr(void* addr) {
  unsigned idx = revGOTMap[addr];
  if (!idx) {
    idx = ++nextGOTIndex;
    revGOTMap[addr] = idx;
    DEBUG(std::cerr << "Adding GOT entry " << idx
          << " for addr " << addr << "\n");
    //    ((void**)MemMgr.getGOTBase())[idx] = addr;
  }
  return idx;
}

/// JITCompilerFn - This function is called when a lazy compilation stub has
/// been entered.  It looks up which function this stub corresponds to, compiles
/// it if necessary, then returns the resultant function pointer.
void *JITResolver::JITCompilerFn(void *Stub) {
  JITResolver &JR = getJITResolver();

  MutexGuard locked(TheJIT->lock);

  // The address given to us for the stub may not be exactly right, it might be
  // a little bit after the stub.  As such, use upper_bound to find it.
  std::map<void*, Function*>::iterator I =
    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
         "This is not a known stub!");
  Function *F = (--I)->second;

  // We might like to remove the stub from the StubToFunction map.
  // We can't do that! Multiple threads could be stuck, waiting to acquire the
  // lock above. As soon as the 1st function finishes compiling the function,
  // the next one will be released, and needs to be able to find the function it
  // needs to call.
  //JR.state.getStubToFunctionMap(locked).erase(I);

  DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
                  << "' In stub ptr = " << Stub << " actual ptr = "
                  << I->first << "\n");

  void *Result = TheJIT->getPointerToFunction(F);

  // We don't need to reuse this stub in the future, as F is now compiled.
  JR.state.getFunctionToStubMap(locked).erase(F);

  // FIXME: We could rewrite all references to this stub if we knew them.

  // What we will do is set the compiled function address to map to the
  // same GOT entry as the stub so that later clients may update the GOT
  // if they see it still using the stub address.
  // Note: this is done so the Resolver doesn't have to manage GOT memory
  // Do this without allocating map space if the target isn't using a GOT
  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
    JR.revGOTMap[Result] = JR.revGOTMap[Stub];

  return Result;
}


// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function.  If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
  // If we have already code generated the function, just return the address.
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;

  // Get a stub if the target supports it
  return getJITResolver(MCE).getFunctionStub(F);
}



//===----------------------------------------------------------------------===//
// JITEmitter code.
//
namespace {
  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
  /// used to output functions to memory for execution.
  class JITEmitter : public MachineCodeEmitter {
    JITMemoryManager MemMgr;

    // When outputting a function stub in the context of some other function, we
    // save BufferBegin/BufferEnd/CurBufferPtr here.
    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;

    /// Relocations - These are the relocations that the function needs, as
    /// emitted.
    std::vector<MachineRelocation> Relocations;
    
    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    /// It is filled in by the StartMachineBasicBlock callback and queried by
    /// the getMachineBasicBlockAddress callback.
    std::vector<intptr_t> MBBLocations;

    /// ConstantPool - The constant pool for the current function.
    ///
    MachineConstantPool *ConstantPool;

    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    ///
    void *ConstantPoolBase;

    /// ConstantPool - The constant pool for the current function.
    ///
    MachineJumpTableInfo *JumpTable;
    
    /// JumpTableBase - A pointer to the first entry in the jump table.
    ///
    void *JumpTableBase;
public:
    JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) {
      TheJIT = &jit;
      DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n");
    }

    virtual void startFunction(MachineFunction &F);
    virtual bool finishFunction(MachineFunction &F);
    
    void emitConstantPool(MachineConstantPool *MCP);
    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    
    virtual void startFunctionStub(unsigned StubSize);
    virtual void* finishFunctionStub(const Function *F);

    virtual void addRelocation(const MachineRelocation &MR) {
      Relocations.push_back(MR);
    }
    
    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
        MBBLocations.resize((MBB->getNumber()+1)*2);
      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    }

    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
    
    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
      assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 
             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
      return MBBLocations[MBB->getNumber()];
    }


  private:
    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
  };
}

MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
  return new JITEmitter(jit);
}

void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
                                     bool DoesntNeedStub) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    /// FIXME: If we straightened things out, this could actually emit the
    /// global immediately instead of queuing it for codegen later!
    return TheJIT->getOrEmitGlobalVariable(GV);
  }

  // If we have already compiled the function, return a pointer to its body.
  Function *F = cast<Function>(V);
  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
  if (ResultPtr) return ResultPtr;

  if (F->hasExternalLinkage() && F->isExternal()) {
    // If this is an external function pointer, we can force the JIT to
    // 'compile' it, which really just adds it to the map.
    if (DoesntNeedStub)
      return TheJIT->getPointerToFunction(F);

    return getJITResolver(this).getFunctionStub(F);
  }

  // Okay, the function has not been compiled yet, if the target callback
  // mechanism is capable of rewriting the instruction directly, prefer to do
  // that instead of emitting a stub.
  if (DoesntNeedStub)
    return getJITResolver(this).AddCallbackAtLocation(F, Reference);

  // Otherwise, we have to emit a lazy resolving stub.
  return getJITResolver(this).getFunctionStub(F);
}

void JITEmitter::startFunction(MachineFunction &F) {
  BufferBegin = CurBufferPtr = MemMgr.startFunctionBody();
  
  /// FIXME: implement out of space handling correctly!
  BufferEnd = (unsigned char*)(intptr_t)~0ULL;
  
  emitConstantPool(F.getConstantPool());
  initJumpTableInfo(F.getJumpTableInfo());

  // About to start emitting the machine code for the function.
  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
  
  MBBLocations.clear();
}

bool JITEmitter::finishFunction(MachineFunction &F) {
  emitJumpTableInfo(F.getJumpTableInfo());
  
  MemMgr.endFunctionBody(CurBufferPtr);
  NumBytes += getCurrentPCOffset();

  if (!Relocations.empty()) {
    NumRelos += Relocations.size();

    // Resolve the relocations to concrete pointers.
    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
      MachineRelocation &MR = Relocations[i];
      void *ResultPtr;
      if (MR.isString()) {
        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());

        // If the target REALLY wants a stub for this function, emit it now.
        if (!MR.doesntNeedFunctionStub())
          ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr);
      } else if (MR.isGlobalValue())
        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
                                       BufferBegin+MR.getMachineCodeOffset(),
                                       MR.doesntNeedFunctionStub());
      else //ConstantPoolIndex
        ResultPtr =
       (void*)(intptr_t)getConstantPoolEntryAddress(MR.getConstantPoolIndex());

      MR.setResultPointer(ResultPtr);

      // if we are managing the GOT and the relocation wants an index,
      // give it one
      if (MemMgr.isManagingGOT() && !MR.isConstantPoolIndex() &&
          MR.isGOTRelative()) {
        unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr);
        MR.setGOTIndex(idx);
        if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
          DEBUG(std::cerr << "GOT was out of date for " << ResultPtr
                << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
                << "\n");
          ((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
        }
      }
    }

    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
                                  Relocations.size(), MemMgr.getGOTBase());
  }

  //Update the GOT entry for F to point to the new code.
  if(MemMgr.isManagingGOT()) {
    unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin);
    if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
      DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin
            << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n");
      ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
    }
  }

  DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)BufferBegin
                  << "] Function: " << F.getFunction()->getName()
                  << ": " << getCurrentPCOffset() << " bytes of text, "
                  << Relocations.size() << " relocations\n");
  Relocations.clear();
  return false;
}

void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  if (Constants.empty()) return;

  unsigned Size = Constants.back().Offset;
  Size += TheJIT->getTargetData()->getTypeSize(Constants.back().Val->getType());

  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
  ConstantPool = MCP;

  if (ConstantPoolBase == 0) return;  // Buffer overflow.

  // Initialize the memory for all of the constant pool entries.
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
    TheJIT->InitializeMemory(Constants[i].Val, CAddr);
  }
}

void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;
  
  unsigned NumEntries = 0;
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
    NumEntries += JT[i].MBBs.size();

  unsigned EntrySize = MJTI->getEntrySize();

  // Just allocate space for all the jump tables now.  We will fix up the actual
  // MBB entries in the tables after we emit the code for each block, since then
  // we will know the final locations of the MBBs in memory.
  JumpTable = MJTI;
  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
}

void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty() || JumpTableBase == 0) return;

  unsigned Offset = 0;
  assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
  
  // For each jump table, map each target in the jump table to the address of 
  // an emitted MachineBasicBlock.
  intptr_t *SlotPtr = (intptr_t*)JumpTableBase;

  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
    const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
    // Store the address of the basic block for this jump table slot in the
    // memory we allocated for the jump table in 'initJumpTableInfo'
    for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
      *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
  }
}

void JITEmitter::startFunctionStub(unsigned StubSize) {
  SavedBufferBegin = BufferBegin;
  SavedBufferEnd = BufferEnd;
  SavedCurBufferPtr = CurBufferPtr;
  
  BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize);
  BufferEnd = BufferBegin+StubSize+1;
}

void *JITEmitter::finishFunctionStub(const Function *F) {
  NumBytes += getCurrentPCOffset();
  std::swap(SavedBufferBegin, BufferBegin);
  BufferEnd = SavedBufferEnd;
  CurBufferPtr = SavedCurBufferPtr;
  return SavedBufferBegin;
}

// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
// in the constant pool that was last emitted with the 'emitConstantPool'
// method.
//
intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
  assert(ConstantNum < ConstantPool->getConstants().size() &&
         "Invalid ConstantPoolIndex!");
  return (intptr_t)ConstantPoolBase +
         ConstantPool->getConstants()[ConstantNum].Offset;
}

// getJumpTableEntryAddress - Return the address of the JumpTable with index
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
//
intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
  assert(Index < JT.size() && "Invalid jump table index!");
  
  unsigned Offset = 0;
  unsigned EntrySize = JumpTable->getEntrySize();
  
  for (unsigned i = 0; i < Index; ++i)
    Offset += JT[i].MBBs.size() * EntrySize;
  
  return (intptr_t)((char *)JumpTableBase + Offset);
}

// getPointerToNamedFunction - This function is used as a global wrapper to
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
// need to resolve function(s) that are being mis-codegenerated, so we need to
// resolve their addresses at runtime, and this is the way to do it.
extern "C" {
  void *getPointerToNamedFunction(const char *Name) {
    Module &M = TheJIT->getModule();
    if (Function *F = M.getNamedFunction(Name))
      return TheJIT->getPointerToFunction(F);
    return TheJIT->getPointerToNamedFunction(Name);
  }
}