aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
blob: 61bc119d305bafb760bc5f27164bda4a5440ad73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DefaultJITMemoryManager class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Config/config.h"
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>

#if defined(__linux__)
#if defined(HAVE_SYS_STAT_H)
#include <sys/stat.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#endif

using namespace llvm;

STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");

JITMemoryManager::~JITMemoryManager() {}

//===----------------------------------------------------------------------===//
// Memory Block Implementation.
//===----------------------------------------------------------------------===//

namespace {
  /// MemoryRangeHeader - For a range of memory, this is the header that we put
  /// on the block of memory.  It is carefully crafted to be one word of memory.
  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
  /// which starts with this.
  struct FreeRangeHeader;
  struct MemoryRangeHeader {
    /// ThisAllocated - This is true if this block is currently allocated.  If
    /// not, this can be converted to a FreeRangeHeader.
    unsigned ThisAllocated : 1;

    /// PrevAllocated - Keep track of whether the block immediately before us is
    /// allocated.  If not, the word immediately before this header is the size
    /// of the previous block.
    unsigned PrevAllocated : 1;

    /// BlockSize - This is the size in bytes of this memory block,
    /// including this header.
    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);


    /// getBlockAfter - Return the memory block immediately after this one.
    ///
    MemoryRangeHeader &getBlockAfter() const {
      return *(MemoryRangeHeader*)((char*)this+BlockSize);
    }

    /// getFreeBlockBefore - If the block before this one is free, return it,
    /// otherwise return null.
    FreeRangeHeader *getFreeBlockBefore() const {
      if (PrevAllocated) return 0;
      intptr_t PrevSize = ((intptr_t *)this)[-1];
      return (FreeRangeHeader*)((char*)this-PrevSize);
    }

    /// FreeBlock - Turn an allocated block into a free block, adjusting
    /// bits in the object headers, and adding an end of region memory block.
    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);

    /// TrimAllocationToSize - If this allocated block is significantly larger
    /// than NewSize, split it into two pieces (where the former is NewSize
    /// bytes, including the header), and add the new block to the free list.
    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
                                          uint64_t NewSize);
  };

  /// FreeRangeHeader - For a memory block that isn't already allocated, this
  /// keeps track of the current block and has a pointer to the next free block.
  /// Free blocks are kept on a circularly linked list.
  struct FreeRangeHeader : public MemoryRangeHeader {
    FreeRangeHeader *Prev;
    FreeRangeHeader *Next;

    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
    /// smaller than this size cannot be created.
    static unsigned getMinBlockSize() {
      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
    }

    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
    /// known to be the size of the free block.  Set it for this block.
    void SetEndOfBlockSizeMarker() {
      void *EndOfBlock = (char*)this + BlockSize;
      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
    }

    FreeRangeHeader *RemoveFromFreeList() {
      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
      Next->Prev = Prev;
      return Prev->Next = Next;
    }

    void AddToFreeList(FreeRangeHeader *FreeList) {
      Next = FreeList;
      Prev = FreeList->Prev;
      Prev->Next = this;
      Next->Prev = this;
    }

    /// GrowBlock - The block after this block just got deallocated.  Merge it
    /// into the current block.
    void GrowBlock(uintptr_t NewSize);

    /// AllocateBlock - Mark this entire block allocated, updating freelists
    /// etc.  This returns a pointer to the circular free-list.
    FreeRangeHeader *AllocateBlock();
  };
}


/// AllocateBlock - Mark this entire block allocated, updating freelists
/// etc.  This returns a pointer to the circular free-list.
FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
         "Cannot allocate an allocated block!");
  // Mark this block allocated.
  ThisAllocated = 1;
  getBlockAfter().PrevAllocated = 1;

  // Remove it from the free list.
  return RemoveFromFreeList();
}

/// FreeBlock - Turn an allocated block into a free block, adjusting
/// bits in the object headers, and adding an end of region memory block.
/// If possible, coalesce this block with neighboring blocks.  Return the
/// FreeRangeHeader to allocate from.
FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
  assert(ThisAllocated && "This block is already free!");
  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");

  FreeRangeHeader *FreeListToReturn = FreeList;

  // If the block after this one is free, merge it into this block.
  if (!FollowingBlock->ThisAllocated) {
    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
    // "FreeList" always needs to be a valid free block.  If we're about to
    // coalesce with it, update our notion of what the free list is.
    if (&FollowingFreeBlock == FreeList) {
      FreeList = FollowingFreeBlock.Next;
      FreeListToReturn = 0;
      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
    }
    FollowingFreeBlock.RemoveFromFreeList();

    // Include the following block into this one.
    BlockSize += FollowingFreeBlock.BlockSize;
    FollowingBlock = &FollowingFreeBlock.getBlockAfter();

    // Tell the block after the block we are coalescing that this block is
    // allocated.
    FollowingBlock->PrevAllocated = 1;
  }

  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");

  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
  }

  // Otherwise, mark this block free.
  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
  FollowingBlock->PrevAllocated = 0;
  FreeBlock.ThisAllocated = 0;

  // Link this into the linked list of free blocks.
  FreeBlock.AddToFreeList(FreeList);

  // Add a marker at the end of the block, indicating the size of this free
  // block.
  FreeBlock.SetEndOfBlockSizeMarker();
  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
}

/// GrowBlock - The block after this block just got deallocated.  Merge it
/// into the current block.
void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
  assert(NewSize > BlockSize && "Not growing block?");
  BlockSize = NewSize;
  SetEndOfBlockSizeMarker();
  getBlockAfter().PrevAllocated = 0;
}

/// TrimAllocationToSize - If this allocated block is significantly larger
/// than NewSize, split it into two pieces (where the former is NewSize
/// bytes, including the header), and add the new block to the free list.
FreeRangeHeader *MemoryRangeHeader::
TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
         "Cannot deallocate part of an allocated block!");

  // Don't allow blocks to be trimmed below minimum required size
  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);

  // Round up size for alignment of header.
  unsigned HeaderAlign = __alignof(FreeRangeHeader);
  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);

  // Size is now the size of the block we will remove from the start of the
  // current block.
  assert(NewSize <= BlockSize &&
         "Allocating more space from this block than exists!");

  // If splitting this block will cause the remainder to be too small, do not
  // split the block.
  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
    return FreeList;

  // Otherwise, we splice the required number of bytes out of this block, form
  // a new block immediately after it, then mark this block allocated.
  MemoryRangeHeader &FormerNextBlock = getBlockAfter();

  // Change the size of this block.
  BlockSize = NewSize;

  // Get the new block we just sliced out and turn it into a free block.
  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
  NewNextBlock.ThisAllocated = 0;
  NewNextBlock.PrevAllocated = 1;
  NewNextBlock.SetEndOfBlockSizeMarker();
  FormerNextBlock.PrevAllocated = 0;
  NewNextBlock.AddToFreeList(FreeList);
  return &NewNextBlock;
}

//===----------------------------------------------------------------------===//
// Memory Block Implementation.
//===----------------------------------------------------------------------===//

namespace {

  class DefaultJITMemoryManager;

  class JITSlabAllocator : public SlabAllocator {
    DefaultJITMemoryManager &JMM;
  public:
    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
    virtual ~JITSlabAllocator() { }
    virtual MemSlab *Allocate(size_t Size);
    virtual void Deallocate(MemSlab *Slab);
  };

  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
  /// This splits a large block of MAP_NORESERVE'd memory into two
  /// sections, one for function stubs, one for the functions themselves.  We
  /// have to do this because we may need to emit a function stub while in the
  /// middle of emitting a function, and we don't know how large the function we
  /// are emitting is.
  class DefaultJITMemoryManager : public JITMemoryManager {

    // Whether to poison freed memory.
    bool PoisonMemory;

    /// LastSlab - This points to the last slab allocated and is used as the
    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
    /// stubs, data, and code contiguously in memory.  In general, however, this
    /// is not possible because the NearBlock parameter is ignored on Windows
    /// platforms and even on Unix it works on a best-effort pasis.
    sys::MemoryBlock LastSlab;

    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
    // confuse them with the blocks of memory described above.
    std::vector<sys::MemoryBlock> CodeSlabs;
    JITSlabAllocator BumpSlabAllocator;
    BumpPtrAllocator StubAllocator;
    BumpPtrAllocator DataAllocator;

    // Circular list of free blocks.
    FreeRangeHeader *FreeMemoryList;

    // When emitting code into a memory block, this is the block.
    MemoryRangeHeader *CurBlock;

    uint8_t *GOTBase;     // Target Specific reserved memory
  public:
    DefaultJITMemoryManager();
    ~DefaultJITMemoryManager();

    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
    /// last slab it allocated, so that subsequent allocations follow it.
    sys::MemoryBlock allocateNewSlab(size_t size);

    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
    /// least this much unless more is requested.
    static const size_t DefaultCodeSlabSize;

    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
    /// an allocation above SizeThreshold.
    static const size_t DefaultSlabSize;

    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
    /// should allocate a separate slab.
    static const size_t DefaultSizeThreshold;

    /// getPointerToNamedFunction - This method returns the address of the
    /// specified function by using the dlsym function call.
    virtual void *getPointerToNamedFunction(const std::string &Name,
                                            bool AbortOnFailure = true);

    void AllocateGOT();

    // Testing methods.
    virtual bool CheckInvariants(std::string &ErrorStr);
    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }

    /// startFunctionBody - When a function starts, allocate a block of free
    /// executable memory, returning a pointer to it and its actual size.
    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {

      FreeRangeHeader* candidateBlock = FreeMemoryList;
      FreeRangeHeader* head = FreeMemoryList;
      FreeRangeHeader* iter = head->Next;

      uintptr_t largest = candidateBlock->BlockSize;

      // Search for the largest free block
      while (iter != head) {
        if (iter->BlockSize > largest) {
          largest = iter->BlockSize;
          candidateBlock = iter;
        }
        iter = iter->Next;
      }

      largest = largest - sizeof(MemoryRangeHeader);

      // If this block isn't big enough for the allocation desired, allocate
      // another block of memory and add it to the free list.
      if (largest < ActualSize ||
          largest <= FreeRangeHeader::getMinBlockSize()) {
        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
      }

      // Select this candidate block for allocation
      CurBlock = candidateBlock;

      // Allocate the entire memory block.
      FreeMemoryList = candidateBlock->AllocateBlock();
      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
      return (uint8_t *)(CurBlock + 1);
    }

    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
    /// memory from the OS and add it to the free list.  Returns the new
    /// FreeRangeHeader at the base of the slab.
    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
      // If the user needs at least MinSize free memory, then we account for
      // two MemoryRangeHeaders: the one in the user's block, and the one at the
      // end of the slab.
      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
      sys::MemoryBlock B = allocateNewSlab(SlabSize);
      CodeSlabs.push_back(B);
      char *MemBase = (char*)(B.base());

      // Put a tiny allocated block at the end of the memory chunk, so when
      // FreeBlock calls getBlockAfter it doesn't fall off the end.
      MemoryRangeHeader *EndBlock =
          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
      EndBlock->ThisAllocated = 1;
      EndBlock->PrevAllocated = 0;
      EndBlock->BlockSize = sizeof(MemoryRangeHeader);

      // Start out with a vast new block of free memory.
      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
      NewBlock->ThisAllocated = 0;
      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
      NewBlock->PrevAllocated = 1;
      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
      NewBlock->SetEndOfBlockSizeMarker();
      NewBlock->AddToFreeList(FreeMemoryList);

      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
             "The block was too small!");
      return NewBlock;
    }

    /// endFunctionBody - The function F is now allocated, and takes the memory
    /// in the range [FunctionStart,FunctionEnd).
    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
                         uint8_t *FunctionEnd) {
      assert(FunctionEnd > FunctionStart);
      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
             "Mismatched function start/end!");

      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;

      // Release the memory at the end of this block that isn't needed.
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    }

    /// allocateSpace - Allocate a memory block of the given size.  This method
    /// cannot be called between calls to startFunctionBody and endFunctionBody.
    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
      CurBlock = FreeMemoryList;
      FreeMemoryList = FreeMemoryList->AllocateBlock();

      uint8_t *result = (uint8_t *)(CurBlock + 1);

      if (Alignment == 0) Alignment = 1;
      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
               ~(intptr_t)(Alignment-1));

      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);

      return result;
    }

    /// allocateStub - Allocate memory for a function stub.
    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
                          unsigned Alignment) {
      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
    }

    /// allocateGlobal - Allocate memory for a global.
    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    }

    /// allocateCodeSection - Allocate memory for a code section.
    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
                                 unsigned SectionID) {
      // Grow the required block size to account for the block header
      Size += sizeof(*CurBlock);

      // FIXME: Alignement handling.
      FreeRangeHeader* candidateBlock = FreeMemoryList;
      FreeRangeHeader* head = FreeMemoryList;
      FreeRangeHeader* iter = head->Next;

      uintptr_t largest = candidateBlock->BlockSize;

      // Search for the largest free block.
      while (iter != head) {
        if (iter->BlockSize > largest) {
          largest = iter->BlockSize;
          candidateBlock = iter;
        }
        iter = iter->Next;
      }

      largest = largest - sizeof(MemoryRangeHeader);

      // If this block isn't big enough for the allocation desired, allocate
      // another block of memory and add it to the free list.
      if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
        candidateBlock = allocateNewCodeSlab((size_t)Size);
      }

      // Select this candidate block for allocation
      CurBlock = candidateBlock;

      // Allocate the entire memory block.
      FreeMemoryList = candidateBlock->AllocateBlock();
      // Release the memory at the end of this block that isn't needed.
      FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
      return (uint8_t *)(CurBlock + 1);
    }

    /// allocateDataSection - Allocate memory for a data section.
    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
                                 unsigned SectionID) {
      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    }

    /// startExceptionTable - Use startFunctionBody to allocate memory for the
    /// function's exception table.
    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
      return startFunctionBody(F, ActualSize);
    }

    /// endExceptionTable - The exception table of F is now allocated,
    /// and takes the memory in the range [TableStart,TableEnd).
    void endExceptionTable(const Function *F, uint8_t *TableStart,
                           uint8_t *TableEnd, uint8_t* FrameRegister) {
      assert(TableEnd > TableStart);
      assert(TableStart == (uint8_t *)(CurBlock+1) &&
             "Mismatched table start/end!");

      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;

      // Release the memory at the end of this block that isn't needed.
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    }

    uint8_t *getGOTBase() const {
      return GOTBase;
    }

    void deallocateBlock(void *Block) {
      // Find the block that is allocated for this function.
      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
      assert(MemRange->ThisAllocated && "Block isn't allocated!");

      // Fill the buffer with garbage!
      if (PoisonMemory) {
        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
      }

      // Free the memory.
      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
    }

    /// deallocateFunctionBody - Deallocate all memory for the specified
    /// function body.
    void deallocateFunctionBody(void *Body) {
      if (Body) deallocateBlock(Body);
    }

    /// deallocateExceptionTable - Deallocate memory for the specified
    /// exception table.
    void deallocateExceptionTable(void *ET) {
      if (ET) deallocateBlock(ET);
    }

    /// setMemoryWritable - When code generation is in progress,
    /// the code pages may need permissions changed.
    void setMemoryWritable()
    {
      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
        sys::Memory::setWritable(CodeSlabs[i]);
    }
    /// setMemoryExecutable - When code generation is done and we're ready to
    /// start execution, the code pages may need permissions changed.
    void setMemoryExecutable()
    {
      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
        sys::Memory::setExecutable(CodeSlabs[i]);
    }

    /// setPoisonMemory - Controls whether we write garbage over freed memory.
    ///
    void setPoisonMemory(bool poison) {
      PoisonMemory = poison;
    }
  };
}

MemSlab *JITSlabAllocator::Allocate(size_t Size) {
  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
  MemSlab *Slab = (MemSlab*)B.base();
  Slab->Size = B.size();
  Slab->NextPtr = 0;
  return Slab;
}

void JITSlabAllocator::Deallocate(MemSlab *Slab) {
  sys::MemoryBlock B(Slab, Slab->Size);
  sys::Memory::ReleaseRWX(B);
}

DefaultJITMemoryManager::DefaultJITMemoryManager()
  :
#ifdef NDEBUG
    PoisonMemory(false),
#else
    PoisonMemory(true),
#endif
    LastSlab(0, 0),
    BumpSlabAllocator(*this),
    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {

  // Allocate space for code.
  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
  CodeSlabs.push_back(MemBlock);
  uint8_t *MemBase = (uint8_t*)MemBlock.base();

  // We set up the memory chunk with 4 mem regions, like this:
  //  [ START
  //    [ Free      #0 ] -> Large space to allocate functions from.
  //    [ Allocated #1 ] -> Tiny space to separate regions.
  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
  //  END ]
  //
  // The last three blocks are never deallocated or touched.

  // Add MemoryRangeHeader to the end of the memory region, indicating that
  // the space after the block of memory is allocated.  This is block #3.
  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
  Mem3->ThisAllocated = 1;
  Mem3->PrevAllocated = 0;
  Mem3->BlockSize     = sizeof(MemoryRangeHeader);

  /// Add a tiny free region so that the free list always has one entry.
  FreeRangeHeader *Mem2 =
    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
  Mem2->ThisAllocated = 0;
  Mem2->PrevAllocated = 1;
  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
  Mem2->SetEndOfBlockSizeMarker();
  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
  Mem2->Next = Mem2;

  /// Add a tiny allocated region so that Mem2 is never coalesced away.
  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
  Mem1->ThisAllocated = 1;
  Mem1->PrevAllocated = 0;
  Mem1->BlockSize     = sizeof(MemoryRangeHeader);

  // Add a FreeRangeHeader to the start of the function body region, indicating
  // that the space is free.  Mark the previous block allocated so we never look
  // at it.
  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
  Mem0->ThisAllocated = 0;
  Mem0->PrevAllocated = 1;
  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
  Mem0->SetEndOfBlockSizeMarker();
  Mem0->AddToFreeList(Mem2);

  // Start out with the freelist pointing to Mem0.
  FreeMemoryList = Mem0;

  GOTBase = NULL;
}

void DefaultJITMemoryManager::AllocateGOT() {
  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
  GOTBase = new uint8_t[sizeof(void*) * 8192];
  HasGOT = true;
}

DefaultJITMemoryManager::~DefaultJITMemoryManager() {
  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    sys::Memory::ReleaseRWX(CodeSlabs[i]);

  delete[] GOTBase;
}

sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
  // Allocate a new block close to the last one.
  std::string ErrMsg;
  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
  if (B.base() == 0) {
    report_fatal_error("Allocation failed when allocating new memory in the"
                       " JIT\n" + Twine(ErrMsg));
  }
  LastSlab = B;
  ++NumSlabs;
  // Initialize the slab to garbage when debugging.
  if (PoisonMemory) {
    memset(B.base(), 0xCD, B.size());
  }
  return B;
}

/// CheckInvariants - For testing only.  Return "" if all internal invariants
/// are preserved, and a helpful error message otherwise.  For free and
/// allocated blocks, make sure that adding BlockSize gives a valid block.
/// For free blocks, make sure they're in the free list and that their end of
/// block size marker is correct.  This function should return an error before
/// accessing bad memory.  This function is defined here instead of in
/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
/// implementation details of DefaultJITMemoryManager.
bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
  raw_string_ostream Err(ErrorStr);

  // Construct a the set of FreeRangeHeader pointers so we can query it
  // efficiently.
  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
  FreeRangeHeader* FreeHead = FreeMemoryList;
  FreeRangeHeader* FreeRange = FreeHead;

  do {
    // Check that the free range pointer is in the blocks we've allocated.
    bool Found = false;
    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
         E = CodeSlabs.end(); I != E && !Found; ++I) {
      char *Start = (char*)I->base();
      char *End = Start + I->size();
      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
    }
    if (!Found) {
      Err << "Corrupt free list; points to " << FreeRange;
      return false;
    }

    if (FreeRange->Next->Prev != FreeRange) {
      Err << "Next and Prev pointers do not match.";
      return false;
    }

    // Otherwise, add it to the set.
    FreeHdrSet.insert(FreeRange);
    FreeRange = FreeRange->Next;
  } while (FreeRange != FreeHead);

  // Go over each block, and look at each MemoryRangeHeader.
  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
       E = CodeSlabs.end(); I != E; ++I) {
    char *Start = (char*)I->base();
    char *End = Start + I->size();

    // Check each memory range.
    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
         Start <= (char*)Hdr && (char*)Hdr < End;
         Hdr = &Hdr->getBlockAfter()) {
      if (Hdr->ThisAllocated == 0) {
        // Check that this range is in the free list.
        if (!FreeHdrSet.count(Hdr)) {
          Err << "Found free header at " << Hdr << " that is not in free list.";
          return false;
        }

        // Now make sure the size marker at the end of the block is correct.
        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
          Err << "Block size in header points out of current MemoryBlock.";
          return false;
        }
        if (Hdr->BlockSize != *Marker) {
          Err << "End of block size marker (" << *Marker << ") "
              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
          return false;
        }
      }

      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
        return false;
      } else if (!LastHdr && !Hdr->PrevAllocated) {
        Err << "The first header should have PrevAllocated true.";
        return false;
      }

      // Remember the last header.
      LastHdr = Hdr;
    }
  }

  // All invariants are preserved.
  return true;
}

//===----------------------------------------------------------------------===//
// getPointerToNamedFunction() implementation.
//===----------------------------------------------------------------------===//

// AtExitHandlers - List of functions to call when the program exits,
// registered with the atexit() library function.
static std::vector<void (*)()> AtExitHandlers;

/// runAtExitHandlers - Run any functions registered by the program's
/// calls to atexit(3), which we intercept and store in
/// AtExitHandlers.
///
static void runAtExitHandlers() {
  while (!AtExitHandlers.empty()) {
    void (*Fn)() = AtExitHandlers.back();
    AtExitHandlers.pop_back();
    Fn();
  }
}

//===----------------------------------------------------------------------===//
// Function stubs that are invoked instead of certain library calls
//
// Force the following functions to be linked in to anything that uses the
// JIT. This is a hack designed to work around the all-too-clever Glibc
// strategy of making these functions work differently when inlined vs. when
// not inlined, and hiding their real definitions in a separate archive file
// that the dynamic linker can't see. For more info, search for
// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
#if defined(__linux__)
/* stat functions are redirecting to __xstat with a version number.  On x86-64
 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
 * available as an exported symbol, so we have to add it explicitly.
 */
namespace {
class StatSymbols {
public:
  StatSymbols() {
    sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
    sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
    sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
    sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
    sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
    sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
    sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
    sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
    sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
    sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
    sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
  }
};
}
static StatSymbols initStatSymbols;
#endif // __linux__

// jit_exit - Used to intercept the "exit" library call.
static void jit_exit(int Status) {
  runAtExitHandlers();   // Run atexit handlers...
  exit(Status);
}

// jit_atexit - Used to intercept the "atexit" library call.
static int jit_atexit(void (*Fn)()) {
  AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
  return 0;  // Always successful
}

static int jit_noop() {
  return 0;
}

//===----------------------------------------------------------------------===//
//
/// getPointerToNamedFunction - This method returns the address of the specified
/// function by using the dynamic loader interface.  As such it is only useful
/// for resolving library symbols, not code generated symbols.
///
void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
                                                         bool AbortOnFailure) {
  // Check to see if this is one of the functions we want to intercept.  Note,
  // we cast to intptr_t here to silence a -pedantic warning that complains
  // about casting a function pointer to a normal pointer.
  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;

  // We should not invoke parent's ctors/dtors from generated main()!
  // On Mingw and Cygwin, the symbol __main is resolved to
  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
  // (and register wrong callee's dtors with atexit(3)).
  // We expect ExecutionEngine::runStaticConstructorsDestructors()
  // is called before ExecutionEngine::runFunctionAsMain() is called.
  if (Name == "__main") return (void*)(intptr_t)&jit_noop;

  const char *NameStr = Name.c_str();
  // If this is an asm specifier, skip the sentinal.
  if (NameStr[0] == 1) ++NameStr;

  // If it's an external function, look it up in the process image...
  void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
  if (Ptr) return Ptr;

  // If it wasn't found and if it starts with an underscore ('_') character,
  // try again without the underscore.
  if (NameStr[0] == '_') {
    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
    if (Ptr) return Ptr;
  }

  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
  // are references to hidden visibility symbols that dlsym cannot resolve.
  // If we have one of these, strip off $LDBLStub and try again.
#if defined(__APPLE__) && defined(__ppc__)
  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
      memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
    // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
    // This mirrors logic in libSystemStubs.a.
    std::string Prefix = std::string(Name.begin(), Name.end()-9);
    if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
      return Ptr;
    if (void *Ptr = getPointerToNamedFunction(Prefix, false))
      return Ptr;
  }
#endif

  if (AbortOnFailure) {
    report_fatal_error("Program used external function '"+Name+
                      "' which could not be resolved!");
  }
  return 0;
}



JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
  return new DefaultJITMemoryManager();
}

// Allocate memory for code in 512K slabs.
const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;

// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;

// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;