aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
blob: 7e6a1f04f0d4648f21766d3a01c90bd318e163ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
//===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/Object/MachOObject.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;

// Empty out-of-line virtual destructor as the key function.
RTDyldMemoryManager::~RTDyldMemoryManager() {}

namespace llvm {
class RuntimeDyldImpl {
  unsigned CPUType;
  unsigned CPUSubtype;

  // The MemoryManager to load objects into.
  RTDyldMemoryManager *MemMgr;

  // Master symbol table. As modules are loaded and external symbols are
  // resolved, their addresses are stored here.
  StringMap<uint64_t> SymbolTable;

  // FIXME: Should have multiple data blocks, one for each loaded chunk of
  //        compiled code.
  sys::MemoryBlock Data;

  bool HasError;
  std::string ErrorStr;

  // Set the error state and record an error string.
  bool Error(const Twine &Msg) {
    ErrorStr = Msg.str();
    HasError = true;
    return true;
  }

  bool resolveRelocation(uint32_t BaseSection, macho::RelocationEntry RE,
                         SmallVectorImpl<void *> &SectionBases,
                         SmallVectorImpl<StringRef> &SymbolNames);
  bool resolveX86_64Relocation(intptr_t Address, intptr_t Value, bool isPCRel,
                               unsigned Type, unsigned Size);
  bool resolveARMRelocation(intptr_t Address, intptr_t Value, bool isPCRel,
                            unsigned Type, unsigned Size);

  bool loadSegment32(const MachOObject *Obj,
                     const MachOObject::LoadCommandInfo *SegmentLCI,
                     const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
  bool loadSegment64(const MachOObject *Obj,
                     const MachOObject::LoadCommandInfo *SegmentLCI,
                     const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);

public:
  RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}

  bool loadObject(MemoryBuffer *InputBuffer);

  uint64_t getSymbolAddress(StringRef Name) {
    // Use lookup() rather than [] because we don't want to add an entry
    // if there isn't one already, which the [] operator does.
    return SymbolTable.lookup(Name);
  }

  sys::MemoryBlock getMemoryBlock() { return Data; }

  // Is the linker in an error state?
  bool hasError() { return HasError; }

  // Mark the error condition as handled and continue.
  void clearError() { HasError = false; }

  // Get the error message.
  StringRef getErrorString() { return ErrorStr; }
};

// FIXME: Relocations for targets other than x86_64.
bool RuntimeDyldImpl::
resolveRelocation(uint32_t BaseSection, macho::RelocationEntry RE,
                  SmallVectorImpl<void *> &SectionBases,
                  SmallVectorImpl<StringRef> &SymbolNames) {
  // struct relocation_info {
  //   int32_t r_address;
  //   uint32_t r_symbolnum:24,
  //            r_pcrel:1,
  //            r_length:2,
  //            r_extern:1,
  //            r_type:4;
  // };
  uint32_t SymbolNum = RE.Word1 & 0xffffff; // 24-bit value
  bool isPCRel = (RE.Word1 >> 24) & 1;
  unsigned Log2Size = (RE.Word1 >> 25) & 3;
  bool isExtern = (RE.Word1 >> 27) & 1;
  unsigned Type = (RE.Word1 >> 28) & 0xf;
  if (RE.Word0 & macho::RF_Scattered)
    return Error("NOT YET IMPLEMENTED: scattered relocations.");

  // The address requiring a relocation.
  intptr_t Address = (intptr_t)SectionBases[BaseSection] + RE.Word0;

  // Figure out the target address of the relocation. If isExtern is true,
  // this relocation references the symbol table, otherwise it references
  // a section in the same object, numbered from 1 through NumSections
  // (SectionBases is [0, NumSections-1]).
  intptr_t Value;
  if (isExtern) {
    StringRef Name = SymbolNames[SymbolNum];
    if (SymbolTable.lookup(Name)) {
      // The symbol is in our symbol table, so we can resolve it directly.
      Value = (intptr_t)SymbolTable[Name];
    } else {
      return Error("NOT YET IMPLEMENTED: relocations to pre-compiled code.");
    }
    DEBUG(dbgs() << "Resolve relocation(" << Type << ") from '" << Name
                 << "' to " << format("0x%x", Address) << ".\n");
  } else {
    // For non-external relocations, the SymbolNum is actual a section number
    // as described above.
    Value = (intptr_t)SectionBases[SymbolNum - 1];
  }

  unsigned Size = 1 << Log2Size;
  switch (CPUType) {
  default: assert(0 && "Unsupported CPU type!");
  case mach::CTM_x86_64:
    return resolveX86_64Relocation(Address, Value, isPCRel, Type, Size);
  case mach::CTM_ARM:
    return resolveARMRelocation(Address, Value, isPCRel, Type, Size);
  }
  llvm_unreachable("");
}

bool RuntimeDyldImpl::resolveX86_64Relocation(intptr_t Address, intptr_t Value,
                                              bool isPCRel, unsigned Type,
                                              unsigned Size) {
  // If the relocation is PC-relative, the value to be encoded is the
  // pointer difference.
  if (isPCRel)
    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
    // address. Is that expected? Only for branches, perhaps?
    Value -= Address + 4;

  switch(Type) {
  default:
    llvm_unreachable("Invalid relocation type!");
  case macho::RIT_X86_64_Unsigned:
  case macho::RIT_X86_64_Branch: {
    // Mask in the target value a byte at a time (we don't have an alignment
    // guarantee for the target address, so this is safest).
    uint8_t *p = (uint8_t*)Address;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)Value;
      Value >>= 8;
    }
    return false;
  }
  case macho::RIT_X86_64_Signed:
  case macho::RIT_X86_64_GOTLoad:
  case macho::RIT_X86_64_GOT:
  case macho::RIT_X86_64_Subtractor:
  case macho::RIT_X86_64_Signed1:
  case macho::RIT_X86_64_Signed2:
  case macho::RIT_X86_64_Signed4:
  case macho::RIT_X86_64_TLV:
    return Error("Relocation type not implemented yet!");
  }
  return false;
}

bool RuntimeDyldImpl::resolveARMRelocation(intptr_t Address, intptr_t Value,
                                           bool isPCRel, unsigned Type,
                                           unsigned Size) {
  // If the relocation is PC-relative, the value to be encoded is the
  // pointer difference.
  if (isPCRel) {
    Value -= Address;
    // ARM PCRel relocations have an effective-PC offset of two instructions
    // (four bytes in Thumb mode, 8 bytes in ARM mode).
    // FIXME: For now, assume ARM mode.
    Value -= 8;
  }

  switch(Type) {
  default:
  case macho::RIT_Vanilla: {
    llvm_unreachable("Invalid relocation type!");
    // Mask in the target value a byte at a time (we don't have an alignment
    // guarantee for the target address, so this is safest).
    uint8_t *p = (uint8_t*)Address;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)Value;
      Value >>= 8;
    }
    break;
  }
  case macho::RIT_Pair:
  case macho::RIT_Difference:
  case macho::RIT_ARM_LocalDifference:
  case macho::RIT_ARM_PreboundLazyPointer:
  case macho::RIT_ARM_Branch24Bit: {
    // Mask the value into the target address. We know instructions are
    // 32-bit aligned, so we can do it all at once.
    uint32_t *p = (uint32_t*)Address;
    // The low two bits of the value are not encoded.
    Value >>= 2;
    // Mask the value to 24 bits.
    Value &= 0xffffff;
    // FIXME: If the destination is a Thumb function (and the instruction
    // is a non-predicated BL instruction), we need to change it to a BLX
    // instruction instead.

    // Insert the value into the instruction.
    *p = (*p & ~0xffffff) | Value;
    break;
  }
  case macho::RIT_ARM_ThumbBranch22Bit:
  case macho::RIT_ARM_ThumbBranch32Bit:
  case macho::RIT_ARM_Half:
  case macho::RIT_ARM_HalfDifference:
    return Error("Relocation type not implemented yet!");
  }
  return false;
}

bool RuntimeDyldImpl::
loadSegment32(const MachOObject *Obj,
              const MachOObject::LoadCommandInfo *SegmentLCI,
              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
  InMemoryStruct<macho::SegmentLoadCommand> Segment32LC;
  Obj->ReadSegmentLoadCommand(*SegmentLCI, Segment32LC);
  if (!Segment32LC)
    return Error("unable to load segment load command");

  // Map the segment into memory.
  std::string ErrorStr;
  Data = sys::Memory::AllocateRWX(Segment32LC->VMSize, 0, &ErrorStr);
  if (!Data.base())
    return Error("unable to allocate memory block: '" + ErrorStr + "'");
  memcpy(Data.base(), Obj->getData(Segment32LC->FileOffset,
                                   Segment32LC->FileSize).data(),
         Segment32LC->FileSize);
  memset((char*)Data.base() + Segment32LC->FileSize, 0,
         Segment32LC->VMSize - Segment32LC->FileSize);

  // Bind the section indices to addresses and record the relocations we
  // need to resolve.
  typedef std::pair<uint32_t, macho::RelocationEntry> RelocationMap;
  SmallVector<RelocationMap, 64> Relocations;

  SmallVector<void *, 16> SectionBases;
  for (unsigned i = 0; i != Segment32LC->NumSections; ++i) {
    InMemoryStruct<macho::Section> Sect;
    Obj->ReadSection(*SegmentLCI, i, Sect);
    if (!Sect)
      return Error("unable to load section: '" + Twine(i) + "'");

    // Remember any relocations the section has so we can resolve them later.
    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
      InMemoryStruct<macho::RelocationEntry> RE;
      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
      Relocations.push_back(RelocationMap(j, *RE));
    }

    // FIXME: Improve check.
//    if (Sect->Flags != 0x80000400)
//      return Error("unsupported section type!");

    SectionBases.push_back((char*) Data.base() + Sect->Address);
  }

  // Bind all the symbols to address. Keep a record of the names for use
  // by relocation resolution.
  SmallVector<StringRef, 64> SymbolNames;
  for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
    InMemoryStruct<macho::SymbolTableEntry> STE;
    Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
    if (!STE)
      return Error("unable to read symbol: '" + Twine(i) + "'");
    // Get the symbol name.
    StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
    SymbolNames.push_back(Name);

    // Just skip undefined symbols. They'll be loaded from whatever
    // module they come from (or system dylib) when we resolve relocations
    // involving them.
    if (STE->SectionIndex == 0)
      continue;

    unsigned Index = STE->SectionIndex - 1;
    if (Index >= Segment32LC->NumSections)
      return Error("invalid section index for symbol: '" + Twine() + "'");

    // Get the section base address.
    void *SectionBase = SectionBases[Index];

    // Get the symbol address.
    uint64_t Address = (uint64_t)SectionBase + STE->Value;

    // FIXME: Check the symbol type and flags.
    if (STE->Type != 0xF)
      return Error("unexpected symbol type!");
    if (STE->Flags != 0x0)
      return Error("unexpected symbol type!");

    DEBUG(dbgs() << "Symbol: '" << Name << "' @ " << Address << "\n");

    SymbolTable[Name] = Address;
  }

  // Now resolve any relocations.
  for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    if (resolveRelocation(Relocations[i].first, Relocations[i].second,
                          SectionBases, SymbolNames))
      return true;
  }

  // We've loaded the section; now mark the functions in it as executable.
  // FIXME: We really should use the MemoryManager for this.
  sys::Memory::setRangeExecutable(Data.base(), Data.size());

  return false;
}


bool RuntimeDyldImpl::
loadSegment64(const MachOObject *Obj,
              const MachOObject::LoadCommandInfo *SegmentLCI,
              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
  InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
  Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
  if (!Segment64LC)
    return Error("unable to load segment load command");

  // Map the segment into memory.
  std::string ErrorStr;
  Data = sys::Memory::AllocateRWX(Segment64LC->VMSize, 0, &ErrorStr);
  if (!Data.base())
    return Error("unable to allocate memory block: '" + ErrorStr + "'");
  memcpy(Data.base(), Obj->getData(Segment64LC->FileOffset,
                                   Segment64LC->FileSize).data(),
         Segment64LC->FileSize);
  memset((char*)Data.base() + Segment64LC->FileSize, 0,
         Segment64LC->VMSize - Segment64LC->FileSize);

  // Bind the section indices to addresses and record the relocations we
  // need to resolve.
  typedef std::pair<uint32_t, macho::RelocationEntry> RelocationMap;
  SmallVector<RelocationMap, 64> Relocations;

  SmallVector<void *, 16> SectionBases;
  for (unsigned i = 0; i != Segment64LC->NumSections; ++i) {
    InMemoryStruct<macho::Section64> Sect;
    Obj->ReadSection64(*SegmentLCI, i, Sect);
    if (!Sect)
      return Error("unable to load section: '" + Twine(i) + "'");

    // Remember any relocations the section has so we can resolve them later.
    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
      InMemoryStruct<macho::RelocationEntry> RE;
      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
      Relocations.push_back(RelocationMap(j, *RE));
    }

    // FIXME: Improve check.
    if (Sect->Flags != 0x80000400)
      return Error("unsupported section type!");

    SectionBases.push_back((char*) Data.base() + Sect->Address);
  }

  // Bind all the symbols to address. Keep a record of the names for use
  // by relocation resolution.
  SmallVector<StringRef, 64> SymbolNames;
  for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
    InMemoryStruct<macho::Symbol64TableEntry> STE;
    Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
    if (!STE)
      return Error("unable to read symbol: '" + Twine(i) + "'");
    // Get the symbol name.
    StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
    SymbolNames.push_back(Name);

    // Just skip undefined symbols. They'll be loaded from whatever
    // module they come from (or system dylib) when we resolve relocations
    // involving them.
    if (STE->SectionIndex == 0)
      continue;

    unsigned Index = STE->SectionIndex - 1;
    if (Index >= Segment64LC->NumSections)
      return Error("invalid section index for symbol: '" + Twine() + "'");

    // Get the section base address.
    void *SectionBase = SectionBases[Index];

    // Get the symbol address.
    uint64_t Address = (uint64_t) SectionBase + STE->Value;

    // FIXME: Check the symbol type and flags.
    if (STE->Type != 0xF)
      return Error("unexpected symbol type!");
    if (STE->Flags != 0x0)
      return Error("unexpected symbol type!");

    DEBUG(dbgs() << "Symbol: '" << Name << "' @ " << Address << "\n");
    SymbolTable[Name] = Address;
  }

  // Now resolve any relocations.
  for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    if (resolveRelocation(Relocations[i].first, Relocations[i].second,
                          SectionBases, SymbolNames))
      return true;
  }

  // We've loaded the section; now mark the functions in it as executable.
  // FIXME: We really should use the MemoryManager for this.
  sys::Memory::setRangeExecutable(Data.base(), Data.size());

  return false;
}

bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) {
  // If the linker is in an error state, don't do anything.
  if (hasError())
    return true;
  // Load the Mach-O wrapper object.
  std::string ErrorStr;
  OwningPtr<MachOObject> Obj(
    MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
  if (!Obj)
    return Error("unable to load object: '" + ErrorStr + "'");

  // Get the CPU type information from the header.
  const macho::Header &Header = Obj->getHeader();

  // FIXME: Error checking that the loaded object is compatible with
  //        the system we're running on.
  CPUType = Header.CPUType;
  CPUSubtype = Header.CPUSubtype;

  // Validate that the load commands match what we expect.
  const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
    *DysymtabLCI = 0;
  for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
    const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
    switch (LCI.Command.Type) {
    case macho::LCT_Segment:
    case macho::LCT_Segment64:
      if (SegmentLCI)
        return Error("unexpected input object (multiple segments)");
      SegmentLCI = &LCI;
      break;
    case macho::LCT_Symtab:
      if (SymtabLCI)
        return Error("unexpected input object (multiple symbol tables)");
      SymtabLCI = &LCI;
      break;
    case macho::LCT_Dysymtab:
      if (DysymtabLCI)
        return Error("unexpected input object (multiple symbol tables)");
      DysymtabLCI = &LCI;
      break;
    default:
      return Error("unexpected input object (unexpected load command");
    }
  }

  if (!SymtabLCI)
    return Error("no symbol table found in object");
  if (!SegmentLCI)
    return Error("no symbol table found in object");

  // Read and register the symbol table data.
  InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
  Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
  if (!SymtabLC)
    return Error("unable to load symbol table load command");
  Obj->RegisterStringTable(*SymtabLC);

  // Read the dynamic link-edit information, if present (not present in static
  // objects).
  if (DysymtabLCI) {
    InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
    Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
    if (!DysymtabLC)
      return Error("unable to load dynamic link-exit load command");

    // FIXME: We don't support anything interesting yet.
//    if (DysymtabLC->LocalSymbolsIndex != 0)
//      return Error("NOT YET IMPLEMENTED: local symbol entries");
//    if (DysymtabLC->ExternalSymbolsIndex != 0)
//      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
//    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
//      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
  }

  // Load the segment load command.
  if (SegmentLCI->Command.Type == macho::LCT_Segment) {
    if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
      return true;
  } else {
    if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
      return true;
  }

  return false;
}


//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) {
  Dyld = new RuntimeDyldImpl(MM);
}

RuntimeDyld::~RuntimeDyld() {
  delete Dyld;
}

bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
  return Dyld->loadObject(InputBuffer);
}

uint64_t RuntimeDyld::getSymbolAddress(StringRef Name) {
  return Dyld->getSymbolAddress(Name);
}

sys::MemoryBlock RuntimeDyld::getMemoryBlock() {
  return Dyld->getMemoryBlock();
}

StringRef RuntimeDyld::getErrorString() {
  return Dyld->getErrorString();
}

} // end namespace llvm