aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
blob: 0f3ca0f2f3921551bbe4a019c313e4623cafca36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#include "RuntimeDyldELF.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"

using namespace llvm;
using namespace llvm::object;

#define DEBUG_TYPE "dyld"

static inline std::error_code check(std::error_code Err) {
  if (Err) {
    report_fatal_error(Err.message());
  }
  return Err;
}

namespace {

template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)

  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;

  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;

  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;

public:
  DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);

  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);

  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);

  // Methods for type inquiry through isa, cast and dyn_cast
  static inline bool classof(const Binary *v) {
    return (isa<ELFObjectFile<ELFT>>(v) &&
            classof(cast<ELFObjectFile<ELFT>>(v)));
  }
  static inline bool classof(const ELFObjectFile<ELFT> *v) {
    return v->isDyldType();
  }

};



// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory.  Ultimately, the Binary parent class will take ownership of
// this MemoryBuffer object but not the underlying memory.
template <class ELFT>
DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
    : ELFObjectFile<ELFT>(Wrapper, EC) {
  this->isDyldELFObject = true;
}

template <class ELFT>
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
                                               uint64_t Addr) {
  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
  Elf_Shdr *shdr =
      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  shdr->sh_addr = static_cast<addr_type>(Addr);
}

template <class ELFT>
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
                                              uint64_t Addr) {

  Elf_Sym *sym = const_cast<Elf_Sym *>(
      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  sym->st_value = static_cast<addr_type>(Addr);
}

class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
public:
  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
                      unsigned EndIdx)
    : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}

  OwningBinary<ObjectFile>
  getObjectForDebug(const ObjectFile &Obj) const override;
};

template <typename ELFT>
std::unique_ptr<DyldELFObject<ELFT>>
createRTDyldELFObject(MemoryBufferRef Buffer,
                      const LoadedELFObjectInfo &L,
                      std::error_code &ec) {
  typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;

  std::unique_ptr<DyldELFObject<ELFT>> Obj =
    llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);

  // Iterate over all sections in the object.
  for (const auto &Sec : Obj->sections()) {
    StringRef SectionName;
    Sec.getName(SectionName);
    if (SectionName != "") {
      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
        // This assumes that the address passed in matches the target address
        // bitness. The template-based type cast handles everything else.
        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
      }
    }
  }

  return Obj;
}

OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
                                              const LoadedELFObjectInfo &L) {
  assert(Obj.isELF() && "Not an ELF object file.");

  std::unique_ptr<MemoryBuffer> Buffer =
    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());

  std::error_code ec;

  std::unique_ptr<ObjectFile> DebugObj;
  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
    typedef ELFType<support::little, 2, false> ELF32LE;
    DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
  } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
    typedef ELFType<support::big, 2, false> ELF32BE;
    DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
  } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
    typedef ELFType<support::big, 2, true> ELF64BE;
    DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
  } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
    typedef ELFType<support::little, 2, true> ELF64LE;
    DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
  } else
    llvm_unreachable("Unexpected ELF format");

  assert(!ec && "Could not construct copy ELF object file");

  return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
}

OwningBinary<ObjectFile>
LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
  return createELFDebugObject(Obj, *this);
}

} // namespace

namespace llvm {

RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
RuntimeDyldELF::~RuntimeDyldELF() {}

void RuntimeDyldELF::registerEHFrames() {
  if (!MemMgr)
    return;
  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
    SID EHFrameSID = UnregisteredEHFrameSections[i];
    uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
    size_t EHFrameSize = Sections[EHFrameSID].Size;
    MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
    RegisteredEHFrameSections.push_back(EHFrameSID);
  }
  UnregisteredEHFrameSections.clear();
}

void RuntimeDyldELF::deregisterEHFrames() {
  if (!MemMgr)
    return;
  for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
    SID EHFrameSID = RegisteredEHFrameSections[i];
    uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
    size_t EHFrameSize = Sections[EHFrameSID].Size;
    MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
  }
  RegisteredEHFrameSections.clear();
}

std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
  unsigned SectionStartIdx, SectionEndIdx;
  std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
  return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
                                                SectionEndIdx);
}

void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
                                             uint64_t Offset, uint64_t Value,
                                             uint32_t Type, int64_t Addend,
                                             uint64_t SymOffset) {
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_X86_64_64: {
    support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
                 << format("%p\n", Section.Address + Offset));
    break;
  }
  case ELF::R_X86_64_32:
  case ELF::R_X86_64_32S: {
    Value += Addend;
    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
           (Type == ELF::R_X86_64_32S &&
            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
                 << format("%p\n", Section.Address + Offset));
    break;
  }
  case ELF::R_X86_64_GOTPCREL: {
    // findGOTEntry returns the 'G + GOT' part of the relocation calculation
    // based on the load/target address of the GOT (not the current/local addr).
    uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
    uint64_t FinalAddress = Section.LoadAddress + Offset;
    // The processRelocationRef method combines the symbol offset and the addend
    // and in most cases that's what we want.  For this relocation type, we need
    // the raw addend, so we subtract the symbol offset to get it.
    int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
    assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
    break;
  }
  case ELF::R_X86_64_PC32: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    support::ulittle32_t::ref Placeholder(
        (void *)(Section.ObjAddress + Offset));
    uint64_t FinalAddress = Section.LoadAddress + Offset;
    int64_t RealOffset = Placeholder + Value + Addend - FinalAddress;
    assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
    break;
  }
  case ELF::R_X86_64_PC64: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    support::ulittle64_t::ref Placeholder(
        (void *)(Section.ObjAddress + Offset));
    uint64_t FinalAddress = Section.LoadAddress + Offset;
    support::ulittle64_t::ref(Section.Address + Offset) =
        Placeholder + Value + Addend - FinalAddress;
    break;
  }
  }
}

void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
                                          uint64_t Offset, uint32_t Value,
                                          uint32_t Type, int32_t Addend) {
  switch (Type) {
  case ELF::R_386_32: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    support::ulittle32_t::ref Placeholder(
        (void *)(Section.ObjAddress + Offset));
    support::ulittle32_t::ref(Section.Address + Offset) =
        Placeholder + Value + Addend;
    break;
  }
  case ELF::R_386_PC32: {
    // Get the placeholder value from the generated object since
    // a previous relocation attempt may have overwritten the loaded version
    support::ulittle32_t::ref Placeholder(
        (void *)(Section.ObjAddress + Offset));
    uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
    uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
    support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
    break;
  }
  default:
    // There are other relocation types, but it appears these are the
    // only ones currently used by the LLVM ELF object writer
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  }
}

void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend) {
  uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
  uint64_t FinalAddress = Section.LoadAddress + Offset;

  DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
               << format("%llx", Section.Address + Offset)
               << " FinalAddress: 0x" << format("%llx", FinalAddress)
               << " Value: 0x" << format("%llx", Value) << " Type: 0x"
               << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
               << "\n");

  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_AARCH64_ABS64: {
    uint64_t *TargetPtr =
        reinterpret_cast<uint64_t *>(Section.Address + Offset);
    *TargetPtr = Value + Addend;
    break;
  }
  case ELF::R_AARCH64_PREL32: {
    uint64_t Result = Value + Addend - FinalAddress;
    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
           static_cast<int64_t>(Result) <= UINT32_MAX);
    *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
    break;
  }
  case ELF::R_AARCH64_CALL26: // fallthrough
  case ELF::R_AARCH64_JUMP26: {
    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
    // calculation.
    uint64_t BranchImm = Value + Addend - FinalAddress;

    // "Check that -2^27 <= result < 2^27".
    assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
           static_cast<int64_t>(BranchImm) < (1LL << 27));

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xfc000000U;
    // Immediate goes in bits 25:0 of B and BL.
    *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
    break;
  }
  case ELF::R_AARCH64_MOVW_UABS_G3: {
    uint64_t Result = Value + Addend;

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xffe0001fU;
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    *TargetPtr |= Result >> (48 - 5);
    // Shift must be "lsl #48", in bits 22:21
    assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
    break;
  }
  case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
    uint64_t Result = Value + Addend;

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xffe0001fU;
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
    // Shift must be "lsl #32", in bits 22:21
    assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
    break;
  }
  case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
    uint64_t Result = Value + Addend;

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xffe0001fU;
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
    // Shift must be "lsl #16", in bits 22:2
    assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
    break;
  }
  case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
    uint64_t Result = Value + Addend;

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xffe0001fU;
    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
    *TargetPtr |= ((Result & 0xffffU) << 5);
    // Shift must be "lsl #0", in bits 22:21.
    assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
    break;
  }
  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
    // Operation: Page(S+A) - Page(P)
    uint64_t Result =
        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);

    // Check that -2^32 <= X < 2^32
    assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
           static_cast<int64_t>(Result) < (1LL << 32) &&
           "overflow check failed for relocation");

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0x9f00001fU;
    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
    // from bits 32:12 of X.
    *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
    *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
    break;
  }
  case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
    // Operation: S + A
    uint64_t Result = Value + Addend;

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xffc003ffU;
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:2 of X
    *TargetPtr |= ((Result & 0xffc) << (10 - 2));
    break;
  }
  case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
    // Operation: S + A
    uint64_t Result = Value + Addend;

    // AArch64 code is emitted with .rela relocations. The data already in any
    // bits affected by the relocation on entry is garbage.
    *TargetPtr &= 0xffc003ffU;
    // Immediate goes in bits 21:10 of LD/ST instruction, taken
    // from bits 11:3 of X
    *TargetPtr |= ((Result & 0xff8) << (10 - 3));
    break;
  }
  }
}

void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
                                          uint64_t Offset, uint32_t Value,
                                          uint32_t Type, int32_t Addend) {
  // TODO: Add Thumb relocations.
  uint32_t *Placeholder =
      reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
  uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
  Value += Addend;

  DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
               << Section.Address + Offset
               << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
               << format("%x", Value) << " Type: " << format("%x", Type)
               << " Addend: " << format("%x", Addend) << "\n");

  switch (Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");

  case ELF::R_ARM_NONE:
    break;
  // Write a 32bit value to relocation address, taking into account the
  // implicit addend encoded in the target.
  case ELF::R_ARM_PREL31:
  case ELF::R_ARM_TARGET1:
  case ELF::R_ARM_ABS32:
    *TargetPtr = *Placeholder + Value;
    break;
  // Write first 16 bit of 32 bit value to the mov instruction.
  // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVW_ABS_NC:
    // We are not expecting any other addend in the relocation address.
    // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
    // non-contiguous fields.
    assert((*Placeholder & 0x000F0FFF) == 0);
    Value = Value & 0xFFFF;
    *TargetPtr = *Placeholder | (Value & 0xFFF);
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    break;
  // Write last 16 bit of 32 bit value to the mov instruction.
  // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVT_ABS:
    // We are not expecting any other addend in the relocation address.
    // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
    assert((*Placeholder & 0x000F0FFF) == 0);

    Value = (Value >> 16) & 0xFFFF;
    *TargetPtr = *Placeholder | (Value & 0xFFF);
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    break;
  // Write 24 bit relative value to the branch instruction.
  case ELF::R_ARM_PC24: // Fall through.
  case ELF::R_ARM_CALL: // Fall through.
  case ELF::R_ARM_JUMP24: {
    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    RelValue = (RelValue & 0x03FFFFFC) >> 2;
    assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
    *TargetPtr &= 0xFF000000;
    *TargetPtr |= RelValue;
    break;
  }
  case ELF::R_ARM_PRIVATE_0:
    // This relocation is reserved by the ARM ELF ABI for internal use. We
    // appropriate it here to act as an R_ARM_ABS32 without any addend for use
    // in the stubs created during JIT (which can't put an addend into the
    // original object file).
    *TargetPtr = Value;
    break;
  }
}

void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
                                           uint64_t Offset, uint32_t Value,
                                           uint32_t Type, int32_t Addend) {
  uint32_t *Placeholder =
      reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
  Value += Addend;

  DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
               << Section.Address + Offset << " FinalAddress: "
               << format("%p", Section.LoadAddress + Offset) << " Value: "
               << format("%x", Value) << " Type: " << format("%x", Type)
               << " Addend: " << format("%x", Addend) << "\n");

  switch (Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");
    break;
  case ELF::R_MIPS_32:
    *TargetPtr = Value + (*Placeholder);
    break;
  case ELF::R_MIPS_26:
    *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
    break;
  case ELF::R_MIPS_HI16:
    // Get the higher 16-bits. Also add 1 if bit 15 is 1.
    Value += ((*Placeholder) & 0x0000ffff) << 16;
    *TargetPtr =
        ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
    break;
  case ELF::R_MIPS_LO16:
    Value += ((*Placeholder) & 0x0000ffff);
    *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
    break;
  case ELF::R_MIPS_UNUSED1:
    // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
    // are used for internal JIT purpose. These relocations are similar to
    // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
    // account.
    *TargetPtr =
        ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
    break;
  case ELF::R_MIPS_UNUSED2:
    *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
    break;
  }
}

// Return the .TOC. section and offset.
void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
                                         ObjSectionToIDMap &LocalSections,
                                         RelocationValueRef &Rel) {
  // Set a default SectionID in case we do not find a TOC section below.
  // This may happen for references to TOC base base (sym@toc, .odp
  // relocation) without a .toc directive.  In this case just use the
  // first section (which is usually the .odp) since the code won't
  // reference the .toc base directly.
  Rel.SymbolName = NULL;
  Rel.SectionID = 0;

  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
  // order. The TOC starts where the first of these sections starts.
  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
       si != se; ++si) {

    StringRef SectionName;
    check(si->getName(SectionName));

    if (SectionName == ".got"
        || SectionName == ".toc"
        || SectionName == ".tocbss"
        || SectionName == ".plt") {
      Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
      break;
    }
  }

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment.
  Rel.Addend = 0x8000;
}

// Returns the sections and offset associated with the ODP entry referenced
// by Symbol.
void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
                                         ObjSectionToIDMap &LocalSections,
                                         RelocationValueRef &Rel) {
  // Get the ELF symbol value (st_value) to compare with Relocation offset in
  // .opd entries
  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
       si != se; ++si) {
    section_iterator RelSecI = si->getRelocatedSection();
    if (RelSecI == Obj.section_end())
      continue;

    StringRef RelSectionName;
    check(RelSecI->getName(RelSectionName));
    if (RelSectionName != ".opd")
      continue;

    for (relocation_iterator i = si->relocation_begin(),
                             e = si->relocation_end();
         i != e;) {
      // The R_PPC64_ADDR64 relocation indicates the first field
      // of a .opd entry
      uint64_t TypeFunc;
      check(i->getType(TypeFunc));
      if (TypeFunc != ELF::R_PPC64_ADDR64) {
        ++i;
        continue;
      }

      uint64_t TargetSymbolOffset;
      symbol_iterator TargetSymbol = i->getSymbol();
      check(i->getOffset(TargetSymbolOffset));
      int64_t Addend;
      check(getELFRelocationAddend(*i, Addend));

      ++i;
      if (i == e)
        break;

      // Just check if following relocation is a R_PPC64_TOC
      uint64_t TypeTOC;
      check(i->getType(TypeTOC));
      if (TypeTOC != ELF::R_PPC64_TOC)
        continue;

      // Finally compares the Symbol value and the target symbol offset
      // to check if this .opd entry refers to the symbol the relocation
      // points to.
      if (Rel.Addend != (int64_t)TargetSymbolOffset)
        continue;

      section_iterator tsi(Obj.section_end());
      check(TargetSymbol->getSection(tsi));
      bool IsCode = tsi->isText();
      Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
      Rel.Addend = (intptr_t)Addend;
      return;
    }
  }
  llvm_unreachable("Attempting to get address of ODP entry!");
}

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.

static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }

static inline uint16_t applyPPChi(uint64_t value) {
  return (value >> 16) & 0xffff;
}

static inline uint16_t applyPPCha (uint64_t value) {
  return ((value + 0x8000) >> 16) & 0xffff;
}

static inline uint16_t applyPPChigher(uint64_t value) {
  return (value >> 32) & 0xffff;
}

static inline uint16_t applyPPChighera (uint64_t value) {
  return ((value + 0x8000) >> 32) & 0xffff;
}

static inline uint16_t applyPPChighest(uint64_t value) {
  return (value >> 48) & 0xffff;
}

static inline uint16_t applyPPChighesta (uint64_t value) {
  return ((value + 0x8000) >> 48) & 0xffff;
}

void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
                                            uint64_t Offset, uint64_t Value,
                                            uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.Address + Offset;
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_PPC64_ADDR16:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_DS:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    break;
  case ELF::R_PPC64_ADDR16_LO:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_LO_DS:
    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
    break;
  case ELF::R_PPC64_ADDR16_HI:
    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HA:
    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHER:
    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHERA:
    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHEST:
    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR16_HIGHESTA:
    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
    break;
  case ELF::R_PPC64_ADDR14: {
    assert(((Value + Addend) & 3) == 0);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = *(LocalAddress + 3);
    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
  } break;
  case ELF::R_PPC64_REL16_LO: {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPClo(Delta));
  } break;
  case ELF::R_PPC64_REL16_HI: {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPChi(Delta));
  } break;
  case ELF::R_PPC64_REL16_HA: {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt16BE(LocalAddress, applyPPCha(Delta));
  } break;
  case ELF::R_PPC64_ADDR32: {
    int32_t Result = static_cast<int32_t>(Value + Addend);
    if (SignExtend32<32>(Result) != Result)
      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
    writeInt32BE(LocalAddress, Result);
  } break;
  case ELF::R_PPC64_REL24: {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
    if (SignExtend32<24>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
    // Generates a 'bl <address>' instruction
    writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
  } break;
  case ELF::R_PPC64_REL32: {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
    if (SignExtend32<32>(delta) != delta)
      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
    writeInt32BE(LocalAddress, delta);
  } break;
  case ELF::R_PPC64_REL64: {
    uint64_t FinalAddress = (Section.LoadAddress + Offset);
    uint64_t Delta = Value - FinalAddress + Addend;
    writeInt64BE(LocalAddress, Delta);
  } break;
  case ELF::R_PPC64_ADDR64:
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  }
}

void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend) {
  uint8_t *LocalAddress = Section.Address + Offset;
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
    break;
  case ELF::R_390_PC16DBL:
  case ELF::R_390_PLT16DBL: {
    int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
    writeInt16BE(LocalAddress, Delta / 2);
    break;
  }
  case ELF::R_390_PC32DBL:
  case ELF::R_390_PLT32DBL: {
    int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
    writeInt32BE(LocalAddress, Delta / 2);
    break;
  }
  case ELF::R_390_PC32: {
    int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
    writeInt32BE(LocalAddress, Delta);
    break;
  }
  case ELF::R_390_64:
    writeInt64BE(LocalAddress, Value + Addend);
    break;
  }
}

// The target location for the relocation is described by RE.SectionID and
// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process.  SectionEntry::LoadAddress is the
// address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
// Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied.  For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location).  For external symbols, Value will be the address of the
// symbol in the target address space.
void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
                                       uint64_t Value) {
  const SectionEntry &Section = Sections[RE.SectionID];
  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
                           RE.SymOffset);
}

void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
                                       uint64_t Offset, uint64_t Value,
                                       uint32_t Type, int64_t Addend,
                                       uint64_t SymOffset) {
  switch (Arch) {
  case Triple::x86_64:
    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
    break;
  case Triple::x86:
    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::aarch64:
  case Triple::aarch64_be:
    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::arm: // Fall through.
  case Triple::armeb:
  case Triple::thumb:
  case Triple::thumbeb:
    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::mips: // Fall through.
  case Triple::mipsel:
    resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
                          Type, (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::ppc64: // Fall through.
  case Triple::ppc64le:
    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
    break;
  case Triple::systemz:
    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
    break;
  default:
    llvm_unreachable("Unsupported CPU type!");
  }
}

relocation_iterator RuntimeDyldELF::processRelocationRef(
    unsigned SectionID, relocation_iterator RelI,
    const ObjectFile &Obj,
    ObjSectionToIDMap &ObjSectionToID,
    StubMap &Stubs) {
  uint64_t RelType;
  Check(RelI->getType(RelType));
  int64_t Addend;
  Check(getELFRelocationAddend(*RelI, Addend));
  symbol_iterator Symbol = RelI->getSymbol();

  // Obtain the symbol name which is referenced in the relocation
  StringRef TargetName;
  if (Symbol != Obj.symbol_end())
    Symbol->getName(TargetName);
  DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
               << " TargetName: " << TargetName << "\n");
  RelocationValueRef Value;
  // First search for the symbol in the local symbol table
  SymbolRef::Type SymType = SymbolRef::ST_Unknown;

  // Search for the symbol in the global symbol table
  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
  if (Symbol != Obj.symbol_end()) {
    gsi = GlobalSymbolTable.find(TargetName.data());
    Symbol->getType(SymType);
  }
  if (gsi != GlobalSymbolTable.end()) {
    const auto &SymInfo = gsi->second;
    Value.SectionID = SymInfo.getSectionID();
    Value.Offset = SymInfo.getOffset();
    Value.Addend = SymInfo.getOffset() + Addend;
  } else {
    switch (SymType) {
    case SymbolRef::ST_Debug: {
      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
      // and can be changed by another developers. Maybe best way is add
      // a new symbol type ST_Section to SymbolRef and use it.
      section_iterator si(Obj.section_end());
      Symbol->getSection(si);
      if (si == Obj.section_end())
        llvm_unreachable("Symbol section not found, bad object file format!");
      DEBUG(dbgs() << "\t\tThis is section symbol\n");
      bool isCode = si->isText();
      Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
      Value.Addend = Addend;
      break;
    }
    case SymbolRef::ST_Data:
    case SymbolRef::ST_Unknown: {
      Value.SymbolName = TargetName.data();
      Value.Addend = Addend;

      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
      // will manifest here as a NULL symbol name.
      // We can set this as a valid (but empty) symbol name, and rely
      // on addRelocationForSymbol to handle this.
      if (!Value.SymbolName)
        Value.SymbolName = "";
      break;
    }
    default:
      llvm_unreachable("Unresolved symbol type!");
      break;
    }
  }

  uint64_t Offset;
  Check(RelI->getOffset(Offset));

  DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
               << "\n");
  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
      (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
    // This is an AArch64 branch relocation, need to use a stub function.
    DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
    SectionEntry &Section = Sections[SectionID];

    // Look for an existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end()) {
      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
                        RelType, 0);
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr =
          createStubFunction(Section.Address + Section.StubOffset);

      RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
                                ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
      RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
                                ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
      RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
                                ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
      RelocationEntry REmovk_g0(SectionID,
                                StubTargetAddr - Section.Address + 12,
                                ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);

      if (Value.SymbolName) {
        addRelocationForSymbol(REmovz_g3, Value.SymbolName);
        addRelocationForSymbol(REmovk_g2, Value.SymbolName);
        addRelocationForSymbol(REmovk_g1, Value.SymbolName);
        addRelocationForSymbol(REmovk_g0, Value.SymbolName);
      } else {
        addRelocationForSection(REmovz_g3, Value.SectionID);
        addRelocationForSection(REmovk_g2, Value.SectionID);
        addRelocationForSection(REmovk_g1, Value.SectionID);
        addRelocationForSection(REmovk_g0, Value.SectionID);
      }
      resolveRelocation(Section, Offset,
                        (uint64_t)Section.Address + Section.StubOffset, RelType,
                        0);
      Section.StubOffset += getMaxStubSize();
    }
  } else if (Arch == Triple::arm &&
             (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
              RelType == ELF::R_ARM_JUMP24)) {
    // This is an ARM branch relocation, need to use a stub function.
    DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
    SectionEntry &Section = Sections[SectionID];

    // Look for an existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end()) {
      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
                        RelType, 0);
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr =
          createStubFunction(Section.Address + Section.StubOffset);
      RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                         ELF::R_ARM_PRIVATE_0, Value.Addend);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);

      resolveRelocation(Section, Offset,
                        (uint64_t)Section.Address + Section.StubOffset, RelType,
                        0);
      Section.StubOffset += getMaxStubSize();
    }
  } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
             RelType == ELF::R_MIPS_26) {
    // This is an Mips branch relocation, need to use a stub function.
    DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
    SectionEntry &Section = Sections[SectionID];
    uint8_t *Target = Section.Address + Offset;
    uint32_t *TargetAddress = (uint32_t *)Target;

    // Extract the addend from the instruction.
    uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;

    Value.Addend += Addend;

    //  Look up for existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end()) {
      RelocationEntry RE(SectionID, Offset, RelType, i->second);
      addRelocationForSection(RE, SectionID);
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr =
          createStubFunction(Section.Address + Section.StubOffset);

      // Creating Hi and Lo relocations for the filled stub instructions.
      RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
                           ELF::R_MIPS_UNUSED1, Value.Addend);
      RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
                           ELF::R_MIPS_UNUSED2, Value.Addend);

      if (Value.SymbolName) {
        addRelocationForSymbol(REHi, Value.SymbolName);
        addRelocationForSymbol(RELo, Value.SymbolName);
      } else {
        addRelocationForSection(REHi, Value.SectionID);
        addRelocationForSection(RELo, Value.SectionID);
      }

      RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
      addRelocationForSection(RE, SectionID);
      Section.StubOffset += getMaxStubSize();
    }
  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    if (RelType == ELF::R_PPC64_REL24) {
      // Determine ABI variant in use for this object.
      unsigned AbiVariant;
      Obj.getPlatformFlags(AbiVariant);
      AbiVariant &= ELF::EF_PPC64_ABI;
      // A PPC branch relocation will need a stub function if the target is
      // an external symbol (Symbol::ST_Unknown) or if the target address
      // is not within the signed 24-bits branch address.
      SectionEntry &Section = Sections[SectionID];
      uint8_t *Target = Section.Address + Offset;
      bool RangeOverflow = false;
      if (SymType != SymbolRef::ST_Unknown) {
        if (AbiVariant != 2) {
          // In the ELFv1 ABI, a function call may point to the .opd entry,
          // so the final symbol value is calculated based on the relocation
          // values in the .opd section.
          findOPDEntrySection(Obj, ObjSectionToID, Value);
        } else {
          // In the ELFv2 ABI, a function symbol may provide a local entry
          // point, which must be used for direct calls.
          uint8_t SymOther;
          Symbol->getOther(SymOther);
          Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
        }
        uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
        int32_t delta = static_cast<int32_t>(Target - RelocTarget);
        // If it is within 24-bits branch range, just set the branch target
        if (SignExtend32<24>(delta) == delta) {
          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
          if (Value.SymbolName)
            addRelocationForSymbol(RE, Value.SymbolName);
          else
            addRelocationForSection(RE, Value.SectionID);
        } else {
          RangeOverflow = true;
        }
      }
      if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
        // It is an external symbol (SymbolRef::ST_Unknown) or within a range
        // larger than 24-bits.
        StubMap::const_iterator i = Stubs.find(Value);
        if (i != Stubs.end()) {
          // Symbol function stub already created, just relocate to it
          resolveRelocation(Section, Offset,
                            (uint64_t)Section.Address + i->second, RelType, 0);
          DEBUG(dbgs() << " Stub function found\n");
        } else {
          // Create a new stub function.
          DEBUG(dbgs() << " Create a new stub function\n");
          Stubs[Value] = Section.StubOffset;
          uint8_t *StubTargetAddr =
              createStubFunction(Section.Address + Section.StubOffset,
                                 AbiVariant);
          RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                             ELF::R_PPC64_ADDR64, Value.Addend);

          // Generates the 64-bits address loads as exemplified in section
          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
          // apply to the low part of the instructions, so we have to update
          // the offset according to the target endianness.
          uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
          if (!IsTargetLittleEndian)
            StubRelocOffset += 2;

          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
          RelocationEntry REh(SectionID, StubRelocOffset + 12,
                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
          RelocationEntry REl(SectionID, StubRelocOffset + 16,
                              ELF::R_PPC64_ADDR16_LO, Value.Addend);

          if (Value.SymbolName) {
            addRelocationForSymbol(REhst, Value.SymbolName);
            addRelocationForSymbol(REhr, Value.SymbolName);
            addRelocationForSymbol(REh, Value.SymbolName);
            addRelocationForSymbol(REl, Value.SymbolName);
          } else {
            addRelocationForSection(REhst, Value.SectionID);
            addRelocationForSection(REhr, Value.SectionID);
            addRelocationForSection(REh, Value.SectionID);
            addRelocationForSection(REl, Value.SectionID);
          }

          resolveRelocation(Section, Offset,
                            (uint64_t)Section.Address + Section.StubOffset,
                            RelType, 0);
          Section.StubOffset += getMaxStubSize();
        }
        if (SymType == SymbolRef::ST_Unknown) {
          // Restore the TOC for external calls
          if (AbiVariant == 2)
            writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
          else
            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
        }
      }
    } else if (RelType == ELF::R_PPC64_TOC16 ||
               RelType == ELF::R_PPC64_TOC16_DS ||
               RelType == ELF::R_PPC64_TOC16_LO ||
               RelType == ELF::R_PPC64_TOC16_LO_DS ||
               RelType == ELF::R_PPC64_TOC16_HI ||
               RelType == ELF::R_PPC64_TOC16_HA) {
      // These relocations are supposed to subtract the TOC address from
      // the final value.  This does not fit cleanly into the RuntimeDyld
      // scheme, since there may be *two* sections involved in determining
      // the relocation value (the section of the symbol refered to by the
      // relocation, and the TOC section associated with the current module).
      //
      // Fortunately, these relocations are currently only ever generated
      // refering to symbols that themselves reside in the TOC, which means
      // that the two sections are actually the same.  Thus they cancel out
      // and we can immediately resolve the relocation right now.
      switch (RelType) {
      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
      default: llvm_unreachable("Wrong relocation type.");
      }

      RelocationValueRef TOCValue;
      findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
        llvm_unreachable("Unsupported TOC relocation.");
      Value.Addend -= TOCValue.Addend;
      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
    } else {
      // There are two ways to refer to the TOC address directly: either
      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
      // ignored), or via any relocation that refers to the magic ".TOC."
      // symbols (in which case the addend is respected).
      if (RelType == ELF::R_PPC64_TOC) {
        RelType = ELF::R_PPC64_ADDR64;
        findPPC64TOCSection(Obj, ObjSectionToID, Value);
      } else if (TargetName == ".TOC.") {
        findPPC64TOCSection(Obj, ObjSectionToID, Value);
        Value.Addend += Addend;
      }

      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);

      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
    }
  } else if (Arch == Triple::systemz &&
             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
    // Create function stubs for both PLT and GOT references, regardless of
    // whether the GOT reference is to data or code.  The stub contains the
    // full address of the symbol, as needed by GOT references, and the
    // executable part only adds an overhead of 8 bytes.
    //
    // We could try to conserve space by allocating the code and data
    // parts of the stub separately.  However, as things stand, we allocate
    // a stub for every relocation, so using a GOT in JIT code should be
    // no less space efficient than using an explicit constant pool.
    DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
    SectionEntry &Section = Sections[SectionID];

    // Look for an existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    uintptr_t StubAddress;
    if (i != Stubs.end()) {
      StubAddress = uintptr_t(Section.Address) + i->second;
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");

      uintptr_t BaseAddress = uintptr_t(Section.Address);
      uintptr_t StubAlignment = getStubAlignment();
      StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
                    -StubAlignment;
      unsigned StubOffset = StubAddress - BaseAddress;

      Stubs[Value] = StubOffset;
      createStubFunction((uint8_t *)StubAddress);
      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
                         Value.Offset);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
      Section.StubOffset = StubOffset + getMaxStubSize();
    }

    if (RelType == ELF::R_390_GOTENT)
      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
                        Addend);
    else
      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
  } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
    // The way the PLT relocations normally work is that the linker allocates
    // the
    // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
    // entry will then jump to an address provided by the GOT.  On first call,
    // the
    // GOT address will point back into PLT code that resolves the symbol. After
    // the first call, the GOT entry points to the actual function.
    //
    // For local functions we're ignoring all of that here and just replacing
    // the PLT32 relocation type with PC32, which will translate the relocation
    // into a PC-relative call directly to the function. For external symbols we
    // can't be sure the function will be within 2^32 bytes of the call site, so
    // we need to create a stub, which calls into the GOT.  This case is
    // equivalent to the usual PLT implementation except that we use the stub
    // mechanism in RuntimeDyld (which puts stubs at the end of the section)
    // rather than allocating a PLT section.
    if (Value.SymbolName) {
      // This is a call to an external function.
      // Look for an existing stub.
      SectionEntry &Section = Sections[SectionID];
      StubMap::const_iterator i = Stubs.find(Value);
      uintptr_t StubAddress;
      if (i != Stubs.end()) {
        StubAddress = uintptr_t(Section.Address) + i->second;
        DEBUG(dbgs() << " Stub function found\n");
      } else {
        // Create a new stub function (equivalent to a PLT entry).
        DEBUG(dbgs() << " Create a new stub function\n");

        uintptr_t BaseAddress = uintptr_t(Section.Address);
        uintptr_t StubAlignment = getStubAlignment();
        StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
                      -StubAlignment;
        unsigned StubOffset = StubAddress - BaseAddress;
        Stubs[Value] = StubOffset;
        createStubFunction((uint8_t *)StubAddress);

        // Create a GOT entry for the external function.
        GOTEntries.push_back(Value);

        // Make our stub function a relative call to the GOT entry.
        RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL,
                           -4);
        addRelocationForSymbol(RE, Value.SymbolName);

        // Bump our stub offset counter
        Section.StubOffset = StubOffset + getMaxStubSize();
      }

      // Make the target call a call into the stub table.
      resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
                        Addend);
    } else {
      RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
                         Value.Offset);
      addRelocationForSection(RE, Value.SectionID);
    }
  } else {
    if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
      GOTEntries.push_back(Value);
    }
    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);
  }
  return ++RelI;
}

void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {

  SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it;
  SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end();

  for (it = GOTs.begin(); it != end; ++it) {
    GOTRelocations &GOTEntries = it->second;
    for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
      if (GOTEntries[i].SymbolName != nullptr &&
          GOTEntries[i].SymbolName == Name) {
        GOTEntries[i].Offset = Addr;
      }
    }
  }
}

size_t RuntimeDyldELF::getGOTEntrySize() {
  // We don't use the GOT in all of these cases, but it's essentially free
  // to put them all here.
  size_t Result = 0;
  switch (Arch) {
  case Triple::x86_64:
  case Triple::aarch64:
  case Triple::aarch64_be:
  case Triple::ppc64:
  case Triple::ppc64le:
  case Triple::systemz:
    Result = sizeof(uint64_t);
    break;
  case Triple::x86:
  case Triple::arm:
  case Triple::thumb:
  case Triple::mips:
  case Triple::mipsel:
    Result = sizeof(uint32_t);
    break;
  default:
    llvm_unreachable("Unsupported CPU type!");
  }
  return Result;
}

uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {

  const size_t GOTEntrySize = getGOTEntrySize();

  SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it;
  SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end =
      GOTs.end();

  int GOTIndex = -1;
  for (it = GOTs.begin(); it != end; ++it) {
    SID GOTSectionID = it->first;
    const GOTRelocations &GOTEntries = it->second;

    // Find the matching entry in our vector.
    uint64_t SymbolOffset = 0;
    for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
      if (!GOTEntries[i].SymbolName) {
        if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
            GOTEntries[i].Offset == Offset) {
          GOTIndex = i;
          SymbolOffset = GOTEntries[i].Offset;
          break;
        }
      } else {
        // GOT entries for external symbols use the addend as the address when
        // the external symbol has been resolved.
        if (GOTEntries[i].Offset == LoadAddress) {
          GOTIndex = i;
          // Don't use the Addend here.  The relocation handler will use it.
          break;
        }
      }
    }

    if (GOTIndex != -1) {
      if (GOTEntrySize == sizeof(uint64_t)) {
        uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID);
        // Fill in this entry with the address of the symbol being referenced.
        LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
      } else {
        uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID);
        // Fill in this entry with the address of the symbol being referenced.
        LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
      }

      // Calculate the load address of this entry
      return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
    }
  }

  assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
  return 0;
}

void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
                                  ObjSectionToIDMap &SectionMap) {
  // If necessary, allocate the global offset table
  if (MemMgr) {
    // Allocate the GOT if necessary
    size_t numGOTEntries = GOTEntries.size();
    if (numGOTEntries != 0) {
      // Allocate memory for the section
      unsigned SectionID = Sections.size();
      size_t TotalSize = numGOTEntries * getGOTEntrySize();
      uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
                                                  SectionID, ".got", false);
      if (!Addr)
        report_fatal_error("Unable to allocate memory for GOT!");

      GOTs.push_back(std::make_pair(SectionID, GOTEntries));
      Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
      // For now, initialize all GOT entries to zero.  We'll fill them in as
      // needed when GOT-based relocations are applied.
      memset(Addr, 0, TotalSize);
    }
  } else {
    report_fatal_error("Unable to allocate memory for GOT!");
  }

  // Look for and record the EH frame section.
  ObjSectionToIDMap::iterator i, e;
  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
    const SectionRef &Section = i->first;
    StringRef Name;
    Section.getName(Name);
    if (Name == ".eh_frame") {
      UnregisteredEHFrameSections.push_back(i->second);
      break;
    }
  }
}

bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
  return Obj.isELF();
}

} // namespace llvm