1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Fuzzer's main loop.
//===----------------------------------------------------------------------===//
#include "FuzzerInternal.h"
#include <sanitizer/coverage_interface.h>
#include <algorithm>
#include <iostream>
namespace fuzzer {
// static
Unit Fuzzer::CurrentUnit;
system_clock::time_point Fuzzer::UnitStartTime;
void Fuzzer::SetDeathCallback() {
__sanitizer_set_death_callback(DeathCallback);
}
void Fuzzer::DeathCallback() {
std::cerr << "DEATH: " << std::endl;
Print(CurrentUnit, "\n");
PrintASCII(CurrentUnit, "\n");
WriteToCrash(CurrentUnit, "crash-");
}
void Fuzzer::AlarmCallback() {
size_t Seconds =
duration_cast<seconds>(system_clock::now() - UnitStartTime).count();
std::cerr << "ALARM: working on the last Unit for " << Seconds << " seconds"
<< std::endl;
if (Seconds >= 3) {
Print(CurrentUnit, "\n");
PrintASCII(CurrentUnit, "\n");
WriteToCrash(CurrentUnit, "timeout-");
}
exit(1);
}
void Fuzzer::ShuffleAndMinimize() {
bool PreferSmall =
(Options.PreferSmallDuringInitialShuffle == 1 ||
(Options.PreferSmallDuringInitialShuffle == -1 && rand() % 2));
if (Options.Verbosity)
std::cerr << "Shuffle: Size: " << Corpus.size()
<< " prefer small: " << PreferSmall
<< "\n";
std::vector<Unit> NewCorpus;
std::random_shuffle(Corpus.begin(), Corpus.end());
if (PreferSmall)
std::stable_sort(
Corpus.begin(), Corpus.end(),
[](const Unit &A, const Unit &B) { return A.size() < B.size(); });
size_t MaxCov = 0;
Unit &U = CurrentUnit;
for (const auto &C : Corpus) {
for (size_t First = 0; First < 1; First++) {
U.clear();
size_t Last = std::min(First + Options.MaxLen, C.size());
U.insert(U.begin(), C.begin() + First, C.begin() + Last);
size_t NewCoverage = RunOne(U);
if (NewCoverage) {
MaxCov = NewCoverage;
NewCorpus.push_back(U);
if (Options.Verbosity >= 2)
std::cerr << "NEW0: " << NewCoverage
<< " L " << U.size()
<< "\n";
}
}
}
Corpus = NewCorpus;
if (Options.Verbosity)
std::cerr << "Shuffle done: " << Corpus.size() << " IC: " << MaxCov << "\n";
}
size_t Fuzzer::RunOne(const Unit &U) {
UnitStartTime = system_clock::now();
TotalNumberOfRuns++;
if (Options.UseFullCoverageSet)
return RunOneMaximizeFullCoverageSet(U);
if (Options.UseCoveragePairs)
return RunOneMaximizeCoveragePairs(U);
return RunOneMaximizeTotalCoverage(U);
}
static uintptr_t HashOfArrayOfPCs(uintptr_t *PCs, uintptr_t NumPCs) {
uintptr_t Res = 0;
for (uintptr_t i = 0; i < NumPCs; i++) {
Res = (Res + PCs[i]) * 7;
}
return Res;
}
// Experimental. Does not yet scale.
// Fuly reset the current coverage state, run a single unit,
// collect all coverage pairs and return non-zero if a new pair is observed.
size_t Fuzzer::RunOneMaximizeCoveragePairs(const Unit &U) {
__sanitizer_reset_coverage();
Callback(U.data(), U.size());
uintptr_t *PCs;
uintptr_t NumPCs = __sanitizer_get_coverage_guards(&PCs);
bool HasNewPairs = false;
for (uintptr_t i = 0; i < NumPCs; i++) {
if (!PCs[i]) continue;
for (uintptr_t j = 0; j < NumPCs; j++) {
if (!PCs[j]) continue;
uint64_t Pair = (i << 32) | j;
HasNewPairs |= CoveragePairs.insert(Pair).second;
}
}
if (HasNewPairs)
return CoveragePairs.size();
return 0;
}
// Experimental.
// Fuly reset the current coverage state, run a single unit,
// compute a hash function from the full coverage set,
// return non-zero if the hash value is new.
// This produces tons of new units and as is it's only suitable for small tests,
// e.g. test/FullCoverageSetTest.cpp. FIXME: make it scale.
size_t Fuzzer::RunOneMaximizeFullCoverageSet(const Unit &U) {
__sanitizer_reset_coverage();
Callback(U.data(), U.size());
uintptr_t *PCs;
uintptr_t NumPCs =__sanitizer_get_coverage_guards(&PCs);
if (FullCoverageSets.insert(HashOfArrayOfPCs(PCs, NumPCs)).second)
return FullCoverageSets.size();
return 0;
}
size_t Fuzzer::RunOneMaximizeTotalCoverage(const Unit &U) {
size_t NumCounters = __sanitizer_get_number_of_counters();
if (Options.UseCounters) {
CounterBitmap.resize(NumCounters);
__sanitizer_update_counter_bitset_and_clear_counters(0);
}
size_t OldCoverage = __sanitizer_get_total_unique_coverage();
Callback(U.data(), U.size());
size_t NewCoverage = __sanitizer_get_total_unique_coverage();
size_t NumNewBits = 0;
if (Options.UseCounters)
NumNewBits = __sanitizer_update_counter_bitset_and_clear_counters(
CounterBitmap.data());
if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && Options.Verbosity) {
size_t Seconds = secondsSinceProcessStartUp();
std::cerr
<< "#" << TotalNumberOfRuns
<< "\tcov: " << NewCoverage
<< "\tbits: " << TotalBits()
<< "\texec/s: " << (Seconds ? TotalNumberOfRuns / Seconds : 0) << "\n";
}
if (NewCoverage > OldCoverage || NumNewBits)
return NewCoverage;
return 0;
}
void Fuzzer::WriteToOutputCorpus(const Unit &U) {
if (Options.OutputCorpus.empty()) return;
std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U));
WriteToFile(U, Path);
if (Options.Verbosity >= 2)
std::cerr << "Written to " << Path << std::endl;
}
void Fuzzer::WriteToCrash(const Unit &U, const char *Prefix) {
std::string Path = Prefix + Hash(U);
WriteToFile(U, Path);
std::cerr << "CRASHED; file written to " << Path << std::endl;
}
void Fuzzer::SaveCorpus() {
if (Options.OutputCorpus.empty()) return;
for (const auto &U : Corpus)
WriteToFile(U, DirPlusFile(Options.OutputCorpus, Hash(U)));
if (Options.Verbosity)
std::cerr << "Written corpus of " << Corpus.size() << " files to "
<< Options.OutputCorpus << "\n";
}
size_t Fuzzer::MutateAndTestOne(Unit *U) {
size_t NewUnits = 0;
for (int i = 0; i < Options.MutateDepth; i++) {
if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
return NewUnits;
Mutate(U, Options.MaxLen);
size_t NewCoverage = RunOne(*U);
if (NewCoverage) {
Corpus.push_back(*U);
NewUnits++;
if (Options.Verbosity) {
std::cerr << "#" << TotalNumberOfRuns
<< "\tNEW: " << NewCoverage
<< " B: " << TotalBits()
<< " L: " << U->size()
<< " S: " << Corpus.size()
<< " I: " << i
<< "\t";
if (U->size() < 30) {
PrintASCII(*U);
std::cerr << "\t";
Print(*U);
}
std::cerr << "\n";
}
WriteToOutputCorpus(*U);
if (Options.ExitOnFirst)
exit(0);
}
}
return NewUnits;
}
size_t Fuzzer::Loop(size_t NumIterations) {
size_t NewUnits = 0;
for (size_t i = 1; i <= NumIterations; i++) {
for (size_t J1 = 0; J1 < Corpus.size(); J1++) {
if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
return NewUnits;
// First, simply mutate the unit w/o doing crosses.
CurrentUnit = Corpus[J1];
NewUnits += MutateAndTestOne(&CurrentUnit);
// Now, cross with others.
if (Options.DoCrossOver) {
for (size_t J2 = 0; J2 < Corpus.size(); J2++) {
CurrentUnit.clear();
CrossOver(Corpus[J1], Corpus[J2], &CurrentUnit, Options.MaxLen);
NewUnits += MutateAndTestOne(&CurrentUnit);
}
}
}
}
return NewUnits;
}
} // namespace fuzzer
|