1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
//===-- Metadata.cpp - Implement Metadata classes -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Metadata classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Metadata.h"
#include "LLVMContextImpl.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/ValueHandle.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// MDString implementation.
//
void MDString::anchor() { }
MDString::MDString(LLVMContext &C)
: Value(Type::getMetadataTy(C), Value::MDStringVal) {}
MDString *MDString::get(LLVMContext &Context, StringRef Str) {
LLVMContextImpl *pImpl = Context.pImpl;
StringMapEntry<Value*> &Entry =
pImpl->MDStringCache.GetOrCreateValue(Str);
Value *&S = Entry.getValue();
if (!S) S = new MDString(Context);
S->setValueName(&Entry);
return cast<MDString>(S);
}
//===----------------------------------------------------------------------===//
// MDNodeOperand implementation.
//
// Use CallbackVH to hold MDNode operands.
namespace llvm {
class MDNodeOperand : public CallbackVH {
MDNode *getParent() {
MDNodeOperand *Cur = this;
while (Cur->getValPtrInt() != 1)
--Cur;
assert(Cur->getValPtrInt() == 1 &&
"Couldn't find the beginning of the operand list!");
return reinterpret_cast<MDNode*>(Cur) - 1;
}
public:
MDNodeOperand(Value *V) : CallbackVH(V) {}
~MDNodeOperand() {}
void set(Value *V) {
unsigned IsFirst = this->getValPtrInt();
this->setValPtr(V);
this->setAsFirstOperand(IsFirst);
}
/// setAsFirstOperand - Accessor method to mark the operand as the first in
/// the list.
void setAsFirstOperand(unsigned V) { this->setValPtrInt(V); }
virtual void deleted();
virtual void allUsesReplacedWith(Value *NV);
};
} // end namespace llvm.
void MDNodeOperand::deleted() {
getParent()->replaceOperand(this, 0);
}
void MDNodeOperand::allUsesReplacedWith(Value *NV) {
getParent()->replaceOperand(this, NV);
}
//===----------------------------------------------------------------------===//
// MDNode implementation.
//
/// getOperandPtr - Helper function to get the MDNodeOperand's coallocated on
/// the end of the MDNode.
static MDNodeOperand *getOperandPtr(MDNode *N, unsigned Op) {
// Use <= instead of < to permit a one-past-the-end address.
assert(Op <= N->getNumOperands() && "Invalid operand number");
return reinterpret_cast<MDNodeOperand*>(N + 1) + Op;
}
void MDNode::replaceOperandWith(unsigned i, Value *Val) {
MDNodeOperand *Op = getOperandPtr(this, i);
replaceOperand(Op, Val);
}
MDNode::MDNode(LLVMContext &C, ArrayRef<Value*> Vals, bool isFunctionLocal)
: Value(Type::getMetadataTy(C), Value::MDNodeVal) {
NumOperands = Vals.size();
if (isFunctionLocal)
setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit);
// Initialize the operand list, which is co-allocated on the end of the node.
unsigned i = 0;
for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands;
Op != E; ++Op, ++i) {
new (Op) MDNodeOperand(Vals[i]);
// Mark the first MDNodeOperand as being the first in the list of operands.
if (i == 0)
Op->setAsFirstOperand(1);
}
}
/// ~MDNode - Destroy MDNode.
MDNode::~MDNode() {
assert((getSubclassDataFromValue() & DestroyFlag) != 0 &&
"Not being destroyed through destroy()?");
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
if (isNotUniqued()) {
pImpl->NonUniquedMDNodes.erase(this);
} else {
pImpl->MDNodeSet.RemoveNode(this);
}
// Destroy the operands.
for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands;
Op != E; ++Op)
Op->~MDNodeOperand();
}
static const Function *getFunctionForValue(Value *V) {
if (!V) return NULL;
if (Instruction *I = dyn_cast<Instruction>(V)) {
BasicBlock *BB = I->getParent();
return BB ? BB->getParent() : 0;
}
if (Argument *A = dyn_cast<Argument>(V))
return A->getParent();
if (BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent();
if (MDNode *MD = dyn_cast<MDNode>(V))
return MD->getFunction();
return NULL;
}
#ifndef NDEBUG
static const Function *assertLocalFunction(const MDNode *N) {
if (!N->isFunctionLocal()) return 0;
// FIXME: This does not handle cyclic function local metadata.
const Function *F = 0, *NewF = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (Value *V = N->getOperand(i)) {
if (MDNode *MD = dyn_cast<MDNode>(V))
NewF = assertLocalFunction(MD);
else
NewF = getFunctionForValue(V);
}
if (F == 0)
F = NewF;
else
assert((NewF == 0 || F == NewF) &&"inconsistent function-local metadata");
}
return F;
}
#endif
// getFunction - If this metadata is function-local and recursively has a
// function-local operand, return the first such operand's parent function.
// Otherwise, return null. getFunction() should not be used for performance-
// critical code because it recursively visits all the MDNode's operands.
const Function *MDNode::getFunction() const {
#ifndef NDEBUG
return assertLocalFunction(this);
#else
if (!isFunctionLocal()) return NULL;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (const Function *F = getFunctionForValue(getOperand(i)))
return F;
return NULL;
#endif
}
// destroy - Delete this node. Only when there are no uses.
void MDNode::destroy() {
setValueSubclassData(getSubclassDataFromValue() | DestroyFlag);
// Placement delete, then free the memory.
this->~MDNode();
free(this);
}
/// isFunctionLocalValue - Return true if this is a value that would require a
/// function-local MDNode.
static bool isFunctionLocalValue(Value *V) {
return isa<Instruction>(V) || isa<Argument>(V) || isa<BasicBlock>(V) ||
(isa<MDNode>(V) && cast<MDNode>(V)->isFunctionLocal());
}
MDNode *MDNode::getMDNode(LLVMContext &Context, ArrayRef<Value*> Vals,
FunctionLocalness FL, bool Insert) {
LLVMContextImpl *pImpl = Context.pImpl;
// Add all the operand pointers. Note that we don't have to add the
// isFunctionLocal bit because that's implied by the operands.
// Note that if the operands are later nulled out, the node will be
// removed from the uniquing map.
FoldingSetNodeID ID;
for (unsigned i = 0; i != Vals.size(); ++i)
ID.AddPointer(Vals[i]);
void *InsertPoint;
MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
if (N || !Insert)
return N;
bool isFunctionLocal = false;
switch (FL) {
case FL_Unknown:
for (unsigned i = 0; i != Vals.size(); ++i) {
Value *V = Vals[i];
if (!V) continue;
if (isFunctionLocalValue(V)) {
isFunctionLocal = true;
break;
}
}
break;
case FL_No:
isFunctionLocal = false;
break;
case FL_Yes:
isFunctionLocal = true;
break;
}
// Coallocate space for the node and Operands together, then placement new.
void *Ptr = malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand));
N = new (Ptr) MDNode(Context, Vals, isFunctionLocal);
// Cache the operand hash.
N->Hash = ID.ComputeHash();
// InsertPoint will have been set by the FindNodeOrInsertPos call.
pImpl->MDNodeSet.InsertNode(N, InsertPoint);
return N;
}
MDNode *MDNode::get(LLVMContext &Context, ArrayRef<Value*> Vals) {
return getMDNode(Context, Vals, FL_Unknown);
}
MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context,
ArrayRef<Value*> Vals,
bool isFunctionLocal) {
return getMDNode(Context, Vals, isFunctionLocal ? FL_Yes : FL_No);
}
MDNode *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Value*> Vals) {
return getMDNode(Context, Vals, FL_Unknown, false);
}
MDNode *MDNode::getTemporary(LLVMContext &Context, ArrayRef<Value*> Vals) {
MDNode *N =
(MDNode *)malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand));
N = new (N) MDNode(Context, Vals, FL_No);
N->setValueSubclassData(N->getSubclassDataFromValue() |
NotUniquedBit);
LeakDetector::addGarbageObject(N);
return N;
}
void MDNode::deleteTemporary(MDNode *N) {
assert(N->use_empty() && "Temporary MDNode has uses!");
assert(!N->getContext().pImpl->MDNodeSet.RemoveNode(N) &&
"Deleting a non-temporary uniqued node!");
assert(!N->getContext().pImpl->NonUniquedMDNodes.erase(N) &&
"Deleting a non-temporary non-uniqued node!");
assert((N->getSubclassDataFromValue() & NotUniquedBit) &&
"Temporary MDNode does not have NotUniquedBit set!");
assert((N->getSubclassDataFromValue() & DestroyFlag) == 0 &&
"Temporary MDNode has DestroyFlag set!");
LeakDetector::removeGarbageObject(N);
N->destroy();
}
/// getOperand - Return specified operand.
Value *MDNode::getOperand(unsigned i) const {
return *getOperandPtr(const_cast<MDNode*>(this), i);
}
void MDNode::Profile(FoldingSetNodeID &ID) const {
// Add all the operand pointers. Note that we don't have to add the
// isFunctionLocal bit because that's implied by the operands.
// Note that if the operands are later nulled out, the node will be
// removed from the uniquing map.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
ID.AddPointer(getOperand(i));
}
void MDNode::setIsNotUniqued() {
setValueSubclassData(getSubclassDataFromValue() | NotUniquedBit);
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
pImpl->NonUniquedMDNodes.insert(this);
}
// Replace value from this node's operand list.
void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) {
Value *From = *Op;
// If is possible that someone did GV->RAUW(inst), replacing a global variable
// with an instruction or some other function-local object. If this is a
// non-function-local MDNode, it can't point to a function-local object.
// Handle this case by implicitly dropping the MDNode reference to null.
// Likewise if the MDNode is function-local but for a different function.
if (To && isFunctionLocalValue(To)) {
if (!isFunctionLocal())
To = 0;
else {
const Function *F = getFunction();
const Function *FV = getFunctionForValue(To);
// Metadata can be function-local without having an associated function.
// So only consider functions to have changed if non-null.
if (F && FV && F != FV)
To = 0;
}
}
if (From == To)
return;
// Update the operand.
Op->set(To);
// If this node is already not being uniqued (because one of the operands
// already went to null), then there is nothing else to do here.
if (isNotUniqued()) return;
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
// Remove "this" from the context map. FoldingSet doesn't have to reprofile
// this node to remove it, so we don't care what state the operands are in.
pImpl->MDNodeSet.RemoveNode(this);
// If we are dropping an argument to null, we choose to not unique the MDNode
// anymore. This commonly occurs during destruction, and uniquing these
// brings little reuse. Also, this means we don't need to include
// isFunctionLocal bits in FoldingSetNodeIDs for MDNodes.
if (To == 0) {
setIsNotUniqued();
return;
}
// Now that the node is out of the folding set, get ready to reinsert it.
// First, check to see if another node with the same operands already exists
// in the set. If so, then this node is redundant.
FoldingSetNodeID ID;
Profile(ID);
void *InsertPoint;
if (MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint)) {
replaceAllUsesWith(N);
destroy();
return;
}
// Cache the operand hash.
Hash = ID.ComputeHash();
// InsertPoint will have been set by the FindNodeOrInsertPos call.
pImpl->MDNodeSet.InsertNode(this, InsertPoint);
// If this MDValue was previously function-local but no longer is, clear
// its function-local flag.
if (isFunctionLocal() && !isFunctionLocalValue(To)) {
bool isStillFunctionLocal = false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Value *V = getOperand(i);
if (!V) continue;
if (isFunctionLocalValue(V)) {
isStillFunctionLocal = true;
break;
}
}
if (!isStillFunctionLocal)
setValueSubclassData(getSubclassDataFromValue() & ~FunctionLocalBit);
}
}
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
if (!A || !B)
return NULL;
if (A == B)
return A;
SmallVector<MDNode *, 4> PathA;
MDNode *T = A;
while (T) {
PathA.push_back(T);
T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
}
SmallVector<MDNode *, 4> PathB;
T = B;
while (T) {
PathB.push_back(T);
T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
}
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
MDNode *Ret = 0;
while (IA >= 0 && IB >=0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
else
break;
--IA;
--IB;
}
return Ret;
}
MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
if (!A || !B)
return NULL;
APFloat AVal = cast<ConstantFP>(A->getOperand(0))->getValueAPF();
APFloat BVal = cast<ConstantFP>(B->getOperand(0))->getValueAPF();
if (AVal.compare(BVal) == APFloat::cmpLessThan)
return A;
return B;
}
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
}
static bool tryMergeRange(SmallVector<Value*, 4> &EndPoints, ConstantInt *Low,
ConstantInt *High) {
ConstantRange NewRange(Low->getValue(), High->getValue());
unsigned Size = EndPoints.size();
APInt LB = cast<ConstantInt>(EndPoints[Size - 2])->getValue();
APInt LE = cast<ConstantInt>(EndPoints[Size - 1])->getValue();
ConstantRange LastRange(LB, LE);
if (canBeMerged(NewRange, LastRange)) {
ConstantRange Union = LastRange.unionWith(NewRange);
Type *Ty = High->getType();
EndPoints[Size - 2] = ConstantInt::get(Ty, Union.getLower());
EndPoints[Size - 1] = ConstantInt::get(Ty, Union.getUpper());
return true;
}
return false;
}
static void addRange(SmallVector<Value*, 4> &EndPoints, ConstantInt *Low,
ConstantInt *High) {
if (!EndPoints.empty())
if (tryMergeRange(EndPoints, Low, High))
return;
EndPoints.push_back(Low);
EndPoints.push_back(High);
}
MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
// Given two ranges, we want to compute the union of the ranges. This
// is slightly complitade by having to combine the intervals and merge
// the ones that overlap.
if (!A || !B)
return NULL;
if (A == B)
return A;
// First, walk both lists in older of the lower boundary of each interval.
// At each step, try to merge the new interval to the last one we adedd.
SmallVector<Value*, 4> EndPoints;
int AI = 0;
int BI = 0;
int AN = A->getNumOperands() / 2;
int BN = B->getNumOperands() / 2;
while (AI < AN && BI < BN) {
ConstantInt *ALow = cast<ConstantInt>(A->getOperand(2 * AI));
ConstantInt *BLow = cast<ConstantInt>(B->getOperand(2 * BI));
if (ALow->getValue().slt(BLow->getValue())) {
addRange(EndPoints, ALow, cast<ConstantInt>(A->getOperand(2 * AI + 1)));
++AI;
} else {
addRange(EndPoints, BLow, cast<ConstantInt>(B->getOperand(2 * BI + 1)));
++BI;
}
}
while (AI < AN) {
addRange(EndPoints, cast<ConstantInt>(A->getOperand(2 * AI)),
cast<ConstantInt>(A->getOperand(2 * AI + 1)));
++AI;
}
while (BI < BN) {
addRange(EndPoints, cast<ConstantInt>(B->getOperand(2 * BI)),
cast<ConstantInt>(B->getOperand(2 * BI + 1)));
++BI;
}
// If we have more than 2 ranges (4 endpoints) we have to try to merge
// the last and first ones.
unsigned Size = EndPoints.size();
if (Size > 4) {
ConstantInt *FB = cast<ConstantInt>(EndPoints[0]);
ConstantInt *FE = cast<ConstantInt>(EndPoints[1]);
if (tryMergeRange(EndPoints, FB, FE)) {
for (unsigned i = 0; i < Size - 2; ++i) {
EndPoints[i] = EndPoints[i + 2];
}
EndPoints.resize(Size - 2);
}
}
// If in the end we have a single range, it is possible that it is now the
// full range. Just drop the metadata in that case.
if (EndPoints.size() == 2) {
ConstantRange Range(cast<ConstantInt>(EndPoints[0])->getValue(),
cast<ConstantInt>(EndPoints[1])->getValue());
if (Range.isFullSet())
return NULL;
}
return MDNode::get(A->getContext(), EndPoints);
}
//===----------------------------------------------------------------------===//
// NamedMDNode implementation.
//
static SmallVector<TrackingVH<MDNode>, 4> &getNMDOps(void *Operands) {
return *(SmallVector<TrackingVH<MDNode>, 4>*)Operands;
}
NamedMDNode::NamedMDNode(const Twine &N)
: Name(N.str()), Parent(0),
Operands(new SmallVector<TrackingVH<MDNode>, 4>()) {
}
NamedMDNode::~NamedMDNode() {
dropAllReferences();
delete &getNMDOps(Operands);
}
/// getNumOperands - Return number of NamedMDNode operands.
unsigned NamedMDNode::getNumOperands() const {
return (unsigned)getNMDOps(Operands).size();
}
/// getOperand - Return specified operand.
MDNode *NamedMDNode::getOperand(unsigned i) const {
assert(i < getNumOperands() && "Invalid Operand number!");
return dyn_cast<MDNode>(&*getNMDOps(Operands)[i]);
}
/// addOperand - Add metadata Operand.
void NamedMDNode::addOperand(MDNode *M) {
assert(!M->isFunctionLocal() &&
"NamedMDNode operands must not be function-local!");
getNMDOps(Operands).push_back(TrackingVH<MDNode>(M));
}
/// eraseFromParent - Drop all references and remove the node from parent
/// module.
void NamedMDNode::eraseFromParent() {
getParent()->eraseNamedMetadata(this);
}
/// dropAllReferences - Remove all uses and clear node vector.
void NamedMDNode::dropAllReferences() {
getNMDOps(Operands).clear();
}
/// getName - Return a constant reference to this named metadata's name.
StringRef NamedMDNode::getName() const {
return StringRef(Name);
}
//===----------------------------------------------------------------------===//
// Instruction Metadata method implementations.
//
void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
if (Node == 0 && !hasMetadata()) return;
setMetadata(getContext().getMDKindID(Kind), Node);
}
MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
return getMetadataImpl(getContext().getMDKindID(Kind));
}
/// setMetadata - Set the metadata of of the specified kind to the specified
/// node. This updates/replaces metadata if already present, or removes it if
/// Node is null.
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
if (Node == 0 && !hasMetadata()) return;
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (KindID == LLVMContext::MD_dbg) {
DbgLoc = DebugLoc::getFromDILocation(Node);
return;
}
// Handle the case when we're adding/updating metadata on an instruction.
if (Node) {
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
assert(!Info.empty() == hasMetadataHashEntry() &&
"HasMetadata bit is wonked");
if (Info.empty()) {
setHasMetadataHashEntry(true);
} else {
// Handle replacement of an existing value.
for (unsigned i = 0, e = Info.size(); i != e; ++i)
if (Info[i].first == KindID) {
Info[i].second = Node;
return;
}
}
// No replacement, just add it to the list.
Info.push_back(std::make_pair(KindID, Node));
return;
}
// Otherwise, we're removing metadata from an instruction.
assert((hasMetadataHashEntry() ==
getContext().pImpl->MetadataStore.count(this)) &&
"HasMetadata bit out of date!");
if (!hasMetadataHashEntry())
return; // Nothing to remove!
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
// Common case is removing the only entry.
if (Info.size() == 1 && Info[0].first == KindID) {
getContext().pImpl->MetadataStore.erase(this);
setHasMetadataHashEntry(false);
return;
}
// Handle removal of an existing value.
for (unsigned i = 0, e = Info.size(); i != e; ++i)
if (Info[i].first == KindID) {
Info[i] = Info.back();
Info.pop_back();
assert(!Info.empty() && "Removing last entry should be handled above");
return;
}
// Otherwise, removing an entry that doesn't exist on the instruction.
}
MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (KindID == LLVMContext::MD_dbg)
return DbgLoc.getAsMDNode(getContext());
if (!hasMetadataHashEntry()) return 0;
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
assert(!Info.empty() && "bit out of sync with hash table");
for (LLVMContextImpl::MDMapTy::iterator I = Info.begin(), E = Info.end();
I != E; ++I)
if (I->first == KindID)
return I->second;
return 0;
}
void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,
MDNode*> > &Result) const {
Result.clear();
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (!DbgLoc.isUnknown()) {
Result.push_back(std::make_pair((unsigned)LLVMContext::MD_dbg,
DbgLoc.getAsMDNode(getContext())));
if (!hasMetadataHashEntry()) return;
}
assert(hasMetadataHashEntry() &&
getContext().pImpl->MetadataStore.count(this) &&
"Shouldn't have called this");
const LLVMContextImpl::MDMapTy &Info =
getContext().pImpl->MetadataStore.find(this)->second;
assert(!Info.empty() && "Shouldn't have called this");
Result.append(Info.begin(), Info.end());
// Sort the resulting array so it is stable.
if (Result.size() > 1)
array_pod_sort(Result.begin(), Result.end());
}
void Instruction::
getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned,
MDNode*> > &Result) const {
Result.clear();
assert(hasMetadataHashEntry() &&
getContext().pImpl->MetadataStore.count(this) &&
"Shouldn't have called this");
const LLVMContextImpl::MDMapTy &Info =
getContext().pImpl->MetadataStore.find(this)->second;
assert(!Info.empty() && "Shouldn't have called this");
Result.append(Info.begin(), Info.end());
// Sort the resulting array so it is stable.
if (Result.size() > 1)
array_pod_sort(Result.begin(), Result.end());
}
/// clearMetadataHashEntries - Clear all hashtable-based metadata from
/// this instruction.
void Instruction::clearMetadataHashEntries() {
assert(hasMetadataHashEntry() && "Caller should check");
getContext().pImpl->MetadataStore.erase(this);
setHasMetadataHashEntry(false);
}
|