aboutsummaryrefslogtreecommitdiffstats
path: root/lib/IR/Metadata.cpp
blob: 0ad3c5c04bae97a886c8167341a0273aa5b85dd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
//===- Metadata.cpp - Implement Metadata classes --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Metadata classes.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Metadata.h"
#include "LLVMContextImpl.h"
#include "MetadataImpl.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"

using namespace llvm;

MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
    : Value(Ty, MetadataAsValueVal), MD(MD) {
  track();
}

MetadataAsValue::~MetadataAsValue() {
  getType()->getContext().pImpl->MetadataAsValues.erase(MD);
  untrack();
}

/// \brief Canonicalize metadata arguments to intrinsics.
///
/// To support bitcode upgrades (and assembly semantic sugar) for \a
/// MetadataAsValue, we need to canonicalize certain metadata.
///
///   - nullptr is replaced by an empty MDNode.
///   - An MDNode with a single null operand is replaced by an empty MDNode.
///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
///
/// This maintains readability of bitcode from when metadata was a type of
/// value, and these bridges were unnecessary.
static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
                                              Metadata *MD) {
  if (!MD)
    // !{}
    return MDNode::get(Context, None);

  // Return early if this isn't a single-operand MDNode.
  auto *N = dyn_cast<MDNode>(MD);
  if (!N || N->getNumOperands() != 1)
    return MD;

  if (!N->getOperand(0))
    // !{}
    return MDNode::get(Context, None);

  if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
    // Look through the MDNode.
    return C;

  return MD;
}

MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
  MD = canonicalizeMetadataForValue(Context, MD);
  auto *&Entry = Context.pImpl->MetadataAsValues[MD];
  if (!Entry)
    Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
  return Entry;
}

MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
                                              Metadata *MD) {
  MD = canonicalizeMetadataForValue(Context, MD);
  auto &Store = Context.pImpl->MetadataAsValues;
  return Store.lookup(MD);
}

void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
  LLVMContext &Context = getContext();
  MD = canonicalizeMetadataForValue(Context, MD);
  auto &Store = Context.pImpl->MetadataAsValues;

  // Stop tracking the old metadata.
  Store.erase(this->MD);
  untrack();
  this->MD = nullptr;

  // Start tracking MD, or RAUW if necessary.
  auto *&Entry = Store[MD];
  if (Entry) {
    replaceAllUsesWith(Entry);
    delete this;
    return;
  }

  this->MD = MD;
  track();
  Entry = this;
}

void MetadataAsValue::track() {
  if (MD)
    MetadataTracking::track(&MD, *MD, *this);
}

void MetadataAsValue::untrack() {
  if (MD)
    MetadataTracking::untrack(MD);
}

void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
  bool WasInserted =
      UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
          .second;
  (void)WasInserted;
  assert(WasInserted && "Expected to add a reference");

  ++NextIndex;
  assert(NextIndex != 0 && "Unexpected overflow");
}

void ReplaceableMetadataImpl::dropRef(void *Ref) {
  bool WasErased = UseMap.erase(Ref);
  (void)WasErased;
  assert(WasErased && "Expected to drop a reference");
}

void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
                                      const Metadata &MD) {
  auto I = UseMap.find(Ref);
  assert(I != UseMap.end() && "Expected to move a reference");
  auto OwnerAndIndex = I->second;
  UseMap.erase(I);
  bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
  (void)WasInserted;
  assert(WasInserted && "Expected to add a reference");

  // Check that the references are direct if there's no owner.
  (void)MD;
  assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
         "Reference without owner must be direct");
  assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
         "Reference without owner must be direct");
}

void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
  assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
         "Expected non-temp node");

  if (UseMap.empty())
    return;

  // Copy out uses since UseMap will get touched below.
  typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
  SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
  std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
    return L.second.second < R.second.second;
  });
  for (const auto &Pair : Uses) {
    // Check that this Ref hasn't disappeared after RAUW (when updating a
    // previous Ref).
    if (!UseMap.count(Pair.first))
      continue;

    OwnerTy Owner = Pair.second.first;
    if (!Owner) {
      // Update unowned tracking references directly.
      Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
      Ref = MD;
      if (MD)
        MetadataTracking::track(Ref);
      UseMap.erase(Pair.first);
      continue;
    }

    // Check for MetadataAsValue.
    if (Owner.is<MetadataAsValue *>()) {
      Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
      continue;
    }

    // There's a Metadata owner -- dispatch.
    Metadata *OwnerMD = Owner.get<Metadata *>();
    switch (OwnerMD->getMetadataID()) {
#define HANDLE_METADATA_LEAF(CLASS)                                            \
  case Metadata::CLASS##Kind:                                                  \
    cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
    continue;
#include "llvm/IR/Metadata.def"
    default:
      llvm_unreachable("Invalid metadata subclass");
    }
  }
  assert(UseMap.empty() && "Expected all uses to be replaced");
}

void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
  if (UseMap.empty())
    return;

  if (!ResolveUsers) {
    UseMap.clear();
    return;
  }

  // Copy out uses since UseMap could get touched below.
  typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
  SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
  std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
    return L.second.second < R.second.second;
  });
  UseMap.clear();
  for (const auto &Pair : Uses) {
    auto Owner = Pair.second.first;
    if (!Owner)
      continue;
    if (Owner.is<MetadataAsValue *>())
      continue;

    // Resolve MDNodes that point at this.
    auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
    if (!OwnerMD)
      continue;
    if (OwnerMD->isResolved())
      continue;
    OwnerMD->decrementUnresolvedOperandCount();
  }
}

static Function *getLocalFunction(Value *V) {
  assert(V && "Expected value");
  if (auto *A = dyn_cast<Argument>(V))
    return A->getParent();
  if (BasicBlock *BB = cast<Instruction>(V)->getParent())
    return BB->getParent();
  return nullptr;
}

ValueAsMetadata *ValueAsMetadata::get(Value *V) {
  assert(V && "Unexpected null Value");

  auto &Context = V->getContext();
  auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
  if (!Entry) {
    assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
           "Expected constant or function-local value");
    assert(!V->NameAndIsUsedByMD.getInt() &&
           "Expected this to be the only metadata use");
    V->NameAndIsUsedByMD.setInt(true);
    if (auto *C = dyn_cast<Constant>(V))
      Entry = new ConstantAsMetadata(C);
    else
      Entry = new LocalAsMetadata(V);
  }

  return Entry;
}

ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
  assert(V && "Unexpected null Value");
  return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
}

void ValueAsMetadata::handleDeletion(Value *V) {
  assert(V && "Expected valid value");

  auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
  auto I = Store.find(V);
  if (I == Store.end())
    return;

  // Remove old entry from the map.
  ValueAsMetadata *MD = I->second;
  assert(MD && "Expected valid metadata");
  assert(MD->getValue() == V && "Expected valid mapping");
  Store.erase(I);

  // Delete the metadata.
  MD->replaceAllUsesWith(nullptr);
  delete MD;
}

void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
  assert(From && "Expected valid value");
  assert(To && "Expected valid value");
  assert(From != To && "Expected changed value");
  assert(From->getType() == To->getType() && "Unexpected type change");

  LLVMContext &Context = From->getType()->getContext();
  auto &Store = Context.pImpl->ValuesAsMetadata;
  auto I = Store.find(From);
  if (I == Store.end()) {
    assert(!From->NameAndIsUsedByMD.getInt() &&
           "Expected From not to be used by metadata");
    return;
  }

  // Remove old entry from the map.
  assert(From->NameAndIsUsedByMD.getInt() &&
         "Expected From to be used by metadata");
  From->NameAndIsUsedByMD.setInt(false);
  ValueAsMetadata *MD = I->second;
  assert(MD && "Expected valid metadata");
  assert(MD->getValue() == From && "Expected valid mapping");
  Store.erase(I);

  if (isa<LocalAsMetadata>(MD)) {
    if (auto *C = dyn_cast<Constant>(To)) {
      // Local became a constant.
      MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
      delete MD;
      return;
    }
    if (getLocalFunction(From) && getLocalFunction(To) &&
        getLocalFunction(From) != getLocalFunction(To)) {
      // Function changed.
      MD->replaceAllUsesWith(nullptr);
      delete MD;
      return;
    }
  } else if (!isa<Constant>(To)) {
    // Changed to function-local value.
    MD->replaceAllUsesWith(nullptr);
    delete MD;
    return;
  }

  auto *&Entry = Store[To];
  if (Entry) {
    // The target already exists.
    MD->replaceAllUsesWith(Entry);
    delete MD;
    return;
  }

  // Update MD in place (and update the map entry).
  assert(!To->NameAndIsUsedByMD.getInt() &&
         "Expected this to be the only metadata use");
  To->NameAndIsUsedByMD.setInt(true);
  MD->V = To;
  Entry = MD;
}

//===----------------------------------------------------------------------===//
// MDString implementation.
//

MDString *MDString::get(LLVMContext &Context, StringRef Str) {
  auto &Store = Context.pImpl->MDStringCache;
  auto I = Store.find(Str);
  if (I != Store.end())
    return &I->second;

  auto *Entry =
      StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
  bool WasInserted = Store.insert(Entry);
  (void)WasInserted;
  assert(WasInserted && "Expected entry to be inserted");
  Entry->second.Entry = Entry;
  return &Entry->second;
}

StringRef MDString::getString() const {
  assert(Entry && "Expected to find string map entry");
  return Entry->first();
}

//===----------------------------------------------------------------------===//
// MDNode implementation.
//

void *MDNode::operator new(size_t Size, unsigned NumOps) {
  void *Ptr = ::operator new(Size + NumOps * sizeof(MDOperand));
  MDOperand *O = static_cast<MDOperand *>(Ptr);
  for (MDOperand *E = O + NumOps; O != E; ++O)
    (void)new (O) MDOperand;
  return O;
}

void MDNode::operator delete(void *Mem) {
  MDNode *N = static_cast<MDNode *>(Mem);
  MDOperand *O = static_cast<MDOperand *>(Mem);
  for (MDOperand *E = O - N->NumOperands; O != E; --O)
    (O - 1)->~MDOperand();
  ::operator delete(O);
}

MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
               ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
    : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
      NumUnresolved(0), Context(Context) {
  unsigned Op = 0;
  for (Metadata *MD : Ops1)
    setOperand(Op++, MD);
  for (Metadata *MD : Ops2)
    setOperand(Op++, MD);

  if (isDistinct())
    return;

  if (isUniqued())
    // Check whether any operands are unresolved, requiring re-uniquing.  If
    // not, don't support RAUW.
    if (!countUnresolvedOperands())
      return;

  this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
}

TempMDNode MDNode::clone() const {
  switch (getMetadataID()) {
  default:
    llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind:                                                            \
    return cast<CLASS>(this)->cloneImpl();
#include "llvm/IR/Metadata.def"
  }
}

static bool isOperandUnresolved(Metadata *Op) {
  if (auto *N = dyn_cast_or_null<MDNode>(Op))
    return !N->isResolved();
  return false;
}

unsigned MDNode::countUnresolvedOperands() {
  assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
  NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
  return NumUnresolved;
}

void MDNode::makeUniqued() {
  assert(isTemporary() && "Expected this to be temporary");
  assert(!isResolved() && "Expected this to be unresolved");

  // Make this 'uniqued'.
  Storage = Uniqued;
  if (!countUnresolvedOperands())
    resolve();

  assert(isUniqued() && "Expected this to be uniqued");
}

void MDNode::makeDistinct() {
  assert(isTemporary() && "Expected this to be temporary");
  assert(!isResolved() && "Expected this to be unresolved");

  // Pretend to be uniqued, resolve the node, and then store in distinct table.
  Storage = Uniqued;
  resolve();
  storeDistinctInContext();

  assert(isDistinct() && "Expected this to be distinct");
  assert(isResolved() && "Expected this to be resolved");
}

void MDNode::resolve() {
  assert(isUniqued() && "Expected this to be uniqued");
  assert(!isResolved() && "Expected this to be unresolved");

  // Move the map, so that this immediately looks resolved.
  auto Uses = Context.takeReplaceableUses();
  NumUnresolved = 0;
  assert(isResolved() && "Expected this to be resolved");

  // Drop RAUW support.
  Uses->resolveAllUses();
}

void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
  assert(NumUnresolved != 0 && "Expected unresolved operands");

  // Check if an operand was resolved.
  if (!isOperandUnresolved(Old)) {
    if (isOperandUnresolved(New))
      // An operand was un-resolved!
      ++NumUnresolved;
  } else if (!isOperandUnresolved(New))
    decrementUnresolvedOperandCount();
}

void MDNode::decrementUnresolvedOperandCount() {
  if (!--NumUnresolved)
    // Last unresolved operand has just been resolved.
    resolve();
}

void MDNode::resolveCycles() {
  if (isResolved())
    return;

  // Resolve this node immediately.
  resolve();

  // Resolve all operands.
  for (const auto &Op : operands()) {
    auto *N = dyn_cast_or_null<MDNode>(Op);
    if (!N)
      continue;

    assert(!N->isTemporary() &&
           "Expected all forward declarations to be resolved");
    if (!N->isResolved())
      N->resolveCycles();
  }
}

static bool hasSelfReference(MDNode *N) {
  for (Metadata *MD : N->operands())
    if (MD == N)
      return true;
  return false;
}

MDNode *MDNode::replaceWithPermanentImpl() {
  if (hasSelfReference(this))
    return replaceWithDistinctImpl();
  return replaceWithUniquedImpl();
}

MDNode *MDNode::replaceWithUniquedImpl() {
  // Try to uniquify in place.
  MDNode *UniquedNode = uniquify();

  if (UniquedNode == this) {
    makeUniqued();
    return this;
  }

  // Collision, so RAUW instead.
  replaceAllUsesWith(UniquedNode);
  deleteAsSubclass();
  return UniquedNode;
}

MDNode *MDNode::replaceWithDistinctImpl() {
  makeDistinct();
  return this;
}

void MDTuple::recalculateHash() {
  setHash(MDTupleInfo::KeyTy::calculateHash(this));
}

void MDNode::dropAllReferences() {
  for (unsigned I = 0, E = NumOperands; I != E; ++I)
    setOperand(I, nullptr);
  if (!isResolved()) {
    Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
    (void)Context.takeReplaceableUses();
  }
}

void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
  unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
  assert(Op < getNumOperands() && "Expected valid operand");

  if (!isUniqued()) {
    // This node is not uniqued.  Just set the operand and be done with it.
    setOperand(Op, New);
    return;
  }

  // This node is uniqued.
  eraseFromStore();

  Metadata *Old = getOperand(Op);
  setOperand(Op, New);

  // Drop uniquing for self-reference cycles.
  if (New == this) {
    if (!isResolved())
      resolve();
    storeDistinctInContext();
    return;
  }

  // Re-unique the node.
  auto *Uniqued = uniquify();
  if (Uniqued == this) {
    if (!isResolved())
      resolveAfterOperandChange(Old, New);
    return;
  }

  // Collision.
  if (!isResolved()) {
    // Still unresolved, so RAUW.
    //
    // First, clear out all operands to prevent any recursion (similar to
    // dropAllReferences(), but we still need the use-list).
    for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
      setOperand(O, nullptr);
    Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
    deleteAsSubclass();
    return;
  }

  // Store in non-uniqued form if RAUW isn't possible.
  storeDistinctInContext();
}

void MDNode::deleteAsSubclass() {
  switch (getMetadataID()) {
  default:
    llvm_unreachable("Invalid subclass of MDNode");
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind:                                                            \
    delete cast<CLASS>(this);                                                  \
    break;
#include "llvm/IR/Metadata.def"
  }
}

template <class T, class InfoT>
static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
  if (T *U = getUniqued(Store, N))
    return U;

  Store.insert(N);
  return N;
}

template <class NodeTy> struct MDNode::HasCachedHash {
  typedef char Yes[1];
  typedef char No[2];
  template <class U, U Val> struct SFINAE {};

  template <class U>
  static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
  template <class U> static No &check(...);

  static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
};

MDNode *MDNode::uniquify() {
  assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");

  // Try to insert into uniquing store.
  switch (getMetadataID()) {
  default:
    llvm_unreachable("Invalid subclass of MDNode");
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind: {                                                          \
    CLASS *SubclassThis = cast<CLASS>(this);                                   \
    std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
        ShouldRecalculateHash;                                                 \
    dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
    return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
  }
#include "llvm/IR/Metadata.def"
  }
}

void MDNode::eraseFromStore() {
  switch (getMetadataID()) {
  default:
    llvm_unreachable("Invalid subclass of MDNode");
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind:                                                            \
    getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
    break;
#include "llvm/IR/Metadata.def"
  }
}

MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
                          StorageType Storage, bool ShouldCreate) {
  unsigned Hash = 0;
  if (Storage == Uniqued) {
    MDTupleInfo::KeyTy Key(MDs);
    if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
      return N;
    if (!ShouldCreate)
      return nullptr;
    Hash = Key.getHash();
  } else {
    assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
  }

  return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
                   Storage, Context.pImpl->MDTuples);
}

void MDNode::deleteTemporary(MDNode *N) {
  assert(N->isTemporary() && "Expected temporary node");
  N->replaceAllUsesWith(nullptr);
  N->deleteAsSubclass();
}

void MDNode::storeDistinctInContext() {
  assert(isResolved() && "Expected resolved nodes");
  Storage = Distinct;

  // Reset the hash.
  switch (getMetadataID()) {
  default:
    llvm_unreachable("Invalid subclass of MDNode");
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind: {                                                          \
    std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
    dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
    break;                                                                     \
  }
#include "llvm/IR/Metadata.def"
  }

  getContext().pImpl->DistinctMDNodes.insert(this);
}

void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
  if (getOperand(I) == New)
    return;

  if (!isUniqued()) {
    setOperand(I, New);
    return;
  }

  handleChangedOperand(mutable_begin() + I, New);
}

void MDNode::setOperand(unsigned I, Metadata *New) {
  assert(I < NumOperands);
  mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
}

/// \brief Get a node, or a self-reference that looks like it.
///
/// Special handling for finding self-references, for use by \a
/// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
/// when self-referencing nodes were still uniqued.  If the first operand has
/// the same operands as \c Ops, return the first operand instead.
static MDNode *getOrSelfReference(LLVMContext &Context,
                                  ArrayRef<Metadata *> Ops) {
  if (!Ops.empty())
    if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
      if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
        for (unsigned I = 1, E = Ops.size(); I != E; ++I)
          if (Ops[I] != N->getOperand(I))
            return MDNode::get(Context, Ops);
        return N;
      }

  return MDNode::get(Context, Ops);
}

MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
  if (!A)
    return B;
  if (!B)
    return A;

  SmallVector<Metadata *, 4> MDs;
  MDs.reserve(A->getNumOperands() + B->getNumOperands());
  MDs.append(A->op_begin(), A->op_end());
  MDs.append(B->op_begin(), B->op_end());

  // FIXME: This preserves long-standing behaviour, but is it really the right
  // behaviour?  Or was that an unintended side-effect of node uniquing?
  return getOrSelfReference(A->getContext(), MDs);
}

MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
  if (!A || !B)
    return nullptr;

  SmallVector<Metadata *, 4> MDs;
  for (Metadata *MD : A->operands())
    if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
      MDs.push_back(MD);

  // FIXME: This preserves long-standing behaviour, but is it really the right
  // behaviour?  Or was that an unintended side-effect of node uniquing?
  return getOrSelfReference(A->getContext(), MDs);
}

MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
  if (!A || !B)
    return nullptr;

  SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
  for (Metadata *MD : A->operands())
    if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
      MDs.push_back(MD);

  // FIXME: This preserves long-standing behaviour, but is it really the right
  // behaviour?  Or was that an unintended side-effect of node uniquing?
  return getOrSelfReference(A->getContext(), MDs);
}

MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
  if (!A || !B)
    return nullptr;

  APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
  APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
  if (AVal.compare(BVal) == APFloat::cmpLessThan)
    return A;
  return B;
}

static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}

static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
  return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
}

static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
                          ConstantInt *Low, ConstantInt *High) {
  ConstantRange NewRange(Low->getValue(), High->getValue());
  unsigned Size = EndPoints.size();
  APInt LB = EndPoints[Size - 2]->getValue();
  APInt LE = EndPoints[Size - 1]->getValue();
  ConstantRange LastRange(LB, LE);
  if (canBeMerged(NewRange, LastRange)) {
    ConstantRange Union = LastRange.unionWith(NewRange);
    Type *Ty = High->getType();
    EndPoints[Size - 2] =
        cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
    EndPoints[Size - 1] =
        cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
    return true;
  }
  return false;
}

static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
                     ConstantInt *Low, ConstantInt *High) {
  if (!EndPoints.empty())
    if (tryMergeRange(EndPoints, Low, High))
      return;

  EndPoints.push_back(Low);
  EndPoints.push_back(High);
}

MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
  // Given two ranges, we want to compute the union of the ranges. This
  // is slightly complitade by having to combine the intervals and merge
  // the ones that overlap.

  if (!A || !B)
    return nullptr;

  if (A == B)
    return A;

  // First, walk both lists in older of the lower boundary of each interval.
  // At each step, try to merge the new interval to the last one we adedd.
  SmallVector<ConstantInt *, 4> EndPoints;
  int AI = 0;
  int BI = 0;
  int AN = A->getNumOperands() / 2;
  int BN = B->getNumOperands() / 2;
  while (AI < AN && BI < BN) {
    ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
    ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));

    if (ALow->getValue().slt(BLow->getValue())) {
      addRange(EndPoints, ALow,
               mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
      ++AI;
    } else {
      addRange(EndPoints, BLow,
               mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
      ++BI;
    }
  }
  while (AI < AN) {
    addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
             mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
    ++AI;
  }
  while (BI < BN) {
    addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
             mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
    ++BI;
  }

  // If we have more than 2 ranges (4 endpoints) we have to try to merge
  // the last and first ones.
  unsigned Size = EndPoints.size();
  if (Size > 4) {
    ConstantInt *FB = EndPoints[0];
    ConstantInt *FE = EndPoints[1];
    if (tryMergeRange(EndPoints, FB, FE)) {
      for (unsigned i = 0; i < Size - 2; ++i) {
        EndPoints[i] = EndPoints[i + 2];
      }
      EndPoints.resize(Size - 2);
    }
  }

  // If in the end we have a single range, it is possible that it is now the
  // full range. Just drop the metadata in that case.
  if (EndPoints.size() == 2) {
    ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
    if (Range.isFullSet())
      return nullptr;
  }

  SmallVector<Metadata *, 4> MDs;
  MDs.reserve(EndPoints.size());
  for (auto *I : EndPoints)
    MDs.push_back(ConstantAsMetadata::get(I));
  return MDNode::get(A->getContext(), MDs);
}

//===----------------------------------------------------------------------===//
// NamedMDNode implementation.
//

static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
  return *(SmallVector<TrackingMDRef, 4> *)Operands;
}

NamedMDNode::NamedMDNode(const Twine &N)
    : Name(N.str()), Parent(nullptr),
      Operands(new SmallVector<TrackingMDRef, 4>()) {}

NamedMDNode::~NamedMDNode() {
  dropAllReferences();
  delete &getNMDOps(Operands);
}

unsigned NamedMDNode::getNumOperands() const {
  return (unsigned)getNMDOps(Operands).size();
}

MDNode *NamedMDNode::getOperand(unsigned i) const {
  assert(i < getNumOperands() && "Invalid Operand number!");
  auto *N = getNMDOps(Operands)[i].get();
  return cast_or_null<MDNode>(N);
}

void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }

void NamedMDNode::setOperand(unsigned I, MDNode *New) {
  assert(I < getNumOperands() && "Invalid operand number");
  getNMDOps(Operands)[I].reset(New);
}

void NamedMDNode::eraseFromParent() {
  getParent()->eraseNamedMetadata(this);
}

void NamedMDNode::dropAllReferences() {
  getNMDOps(Operands).clear();
}

StringRef NamedMDNode::getName() const {
  return StringRef(Name);
}

//===----------------------------------------------------------------------===//
// Instruction Metadata method implementations.
//

void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
  if (!Node && !hasMetadata())
    return;
  setMetadata(getContext().getMDKindID(Kind), Node);
}

MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
  return getMetadataImpl(getContext().getMDKindID(Kind));
}

void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
  SmallSet<unsigned, 5> KnownSet;
  KnownSet.insert(KnownIDs.begin(), KnownIDs.end());

  // Drop debug if needed
  if (KnownSet.erase(LLVMContext::MD_dbg))
    DbgLoc = DebugLoc();

  if (!hasMetadataHashEntry())
    return; // Nothing to remove!

  DenseMap<const Instruction *, LLVMContextImpl::MDMapTy> &MetadataStore =
      getContext().pImpl->MetadataStore;

  if (KnownSet.empty()) {
    // Just drop our entry at the store.
    MetadataStore.erase(this);
    setHasMetadataHashEntry(false);
    return;
  }

  LLVMContextImpl::MDMapTy &Info = MetadataStore[this];
  unsigned I;
  unsigned E;
  // Walk the array and drop any metadata we don't know.
  for (I = 0, E = Info.size(); I != E;) {
    if (KnownSet.count(Info[I].first)) {
      ++I;
      continue;
    }

    Info[I] = std::move(Info.back());
    Info.pop_back();
    --E;
  }
  assert(E == Info.size());

  if (E == 0) {
    // Drop our entry at the store.
    MetadataStore.erase(this);
    setHasMetadataHashEntry(false);
  }
}

/// setMetadata - Set the metadata of of the specified kind to the specified
/// node.  This updates/replaces metadata if already present, or removes it if
/// Node is null.
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
  if (!Node && !hasMetadata())
    return;

  // Handle 'dbg' as a special case since it is not stored in the hash table.
  if (KindID == LLVMContext::MD_dbg) {
    DbgLoc = DebugLoc::getFromDILocation(Node);
    return;
  }
  
  // Handle the case when we're adding/updating metadata on an instruction.
  if (Node) {
    LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
    assert(!Info.empty() == hasMetadataHashEntry() &&
           "HasMetadata bit is wonked");
    if (Info.empty()) {
      setHasMetadataHashEntry(true);
    } else {
      // Handle replacement of an existing value.
      for (auto &P : Info)
        if (P.first == KindID) {
          P.second.reset(Node);
          return;
        }
    }

    // No replacement, just add it to the list.
    Info.emplace_back(std::piecewise_construct, std::make_tuple(KindID),
                      std::make_tuple(Node));
    return;
  }

  // Otherwise, we're removing metadata from an instruction.
  assert((hasMetadataHashEntry() ==
          (getContext().pImpl->MetadataStore.count(this) > 0)) &&
         "HasMetadata bit out of date!");
  if (!hasMetadataHashEntry())
    return;  // Nothing to remove!
  LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];

  // Common case is removing the only entry.
  if (Info.size() == 1 && Info[0].first == KindID) {
    getContext().pImpl->MetadataStore.erase(this);
    setHasMetadataHashEntry(false);
    return;
  }

  // Handle removal of an existing value.
  for (unsigned i = 0, e = Info.size(); i != e; ++i)
    if (Info[i].first == KindID) {
      Info[i] = std::move(Info.back());
      Info.pop_back();
      assert(!Info.empty() && "Removing last entry should be handled above");
      return;
    }
  // Otherwise, removing an entry that doesn't exist on the instruction.
}

void Instruction::setAAMetadata(const AAMDNodes &N) {
  setMetadata(LLVMContext::MD_tbaa, N.TBAA);
  setMetadata(LLVMContext::MD_alias_scope, N.Scope);
  setMetadata(LLVMContext::MD_noalias, N.NoAlias);
}

MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
  // Handle 'dbg' as a special case since it is not stored in the hash table.
  if (KindID == LLVMContext::MD_dbg)
    return DbgLoc.getAsMDNode();

  if (!hasMetadataHashEntry()) return nullptr;
  
  LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
  assert(!Info.empty() && "bit out of sync with hash table");

  for (const auto &I : Info)
    if (I.first == KindID)
      return I.second;
  return nullptr;
}

void Instruction::getAllMetadataImpl(
    SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
  Result.clear();
  
  // Handle 'dbg' as a special case since it is not stored in the hash table.
  if (!DbgLoc.isUnknown()) {
    Result.push_back(
        std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
    if (!hasMetadataHashEntry()) return;
  }
  
  assert(hasMetadataHashEntry() &&
         getContext().pImpl->MetadataStore.count(this) &&
         "Shouldn't have called this");
  const LLVMContextImpl::MDMapTy &Info =
    getContext().pImpl->MetadataStore.find(this)->second;
  assert(!Info.empty() && "Shouldn't have called this");

  Result.reserve(Result.size() + Info.size());
  for (auto &I : Info)
    Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));

  // Sort the resulting array so it is stable.
  if (Result.size() > 1)
    array_pod_sort(Result.begin(), Result.end());
}

void Instruction::getAllMetadataOtherThanDebugLocImpl(
    SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
  Result.clear();
  assert(hasMetadataHashEntry() &&
         getContext().pImpl->MetadataStore.count(this) &&
         "Shouldn't have called this");
  const LLVMContextImpl::MDMapTy &Info =
    getContext().pImpl->MetadataStore.find(this)->second;
  assert(!Info.empty() && "Shouldn't have called this");
  Result.reserve(Result.size() + Info.size());
  for (auto &I : Info)
    Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));

  // Sort the resulting array so it is stable.
  if (Result.size() > 1)
    array_pod_sort(Result.begin(), Result.end());
}

/// clearMetadataHashEntries - Clear all hashtable-based metadata from
/// this instruction.
void Instruction::clearMetadataHashEntries() {
  assert(hasMetadataHashEntry() && "Caller should check");
  getContext().pImpl->MetadataStore.erase(this);
  setHasMetadataHashEntry(false);
}