aboutsummaryrefslogtreecommitdiffstats
path: root/lib/IR/Verifier.cpp
blob: fba78e92a093bd5ca3dafc73ce407e377cc60007 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * A landing pad is defined by a landingpad instruction, and can be jumped to
//    only by the unwind edge of an invoke instruction.
//  * A landingpad instruction must be the first non-PHI instruction in the
//    block.
//  * All landingpad instructions must use the same personality function with
//    the same function.
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Verifier.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;

static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));

namespace {
struct VerifierSupport {
  raw_ostream &OS;
  const Module *M;

  /// \brief Track the brokenness of the module while recursively visiting.
  bool Broken;

  explicit VerifierSupport(raw_ostream &OS)
      : OS(OS), M(nullptr), Broken(false) {}

private:
  void Write(const Value *V) {
    if (!V)
      return;
    if (isa<Instruction>(V)) {
      OS << *V << '\n';
    } else {
      V->printAsOperand(OS, true, M);
      OS << '\n';
    }
  }

  void Write(const Metadata *MD) {
    if (!MD)
      return;
    MD->print(OS, M);
    OS << '\n';
  }

  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
    Write(MD.get());
  }

  void Write(const NamedMDNode *NMD) {
    if (!NMD)
      return;
    NMD->print(OS);
    OS << '\n';
  }

  void Write(Type *T) {
    if (!T)
      return;
    OS << ' ' << *T;
  }

  void Write(const Comdat *C) {
    if (!C)
      return;
    OS << *C;
  }

  template <typename T1, typename... Ts>
  void WriteTs(const T1 &V1, const Ts &... Vs) {
    Write(V1);
    WriteTs(Vs...);
  }

  template <typename... Ts> void WriteTs() {}

public:
  /// \brief A check failed, so printout out the condition and the message.
  ///
  /// This provides a nice place to put a breakpoint if you want to see why
  /// something is not correct.
  void CheckFailed(const Twine &Message) {
    OS << Message << '\n';
    Broken = true;
  }

  /// \brief A check failed (with values to print).
  ///
  /// This calls the Message-only version so that the above is easier to set a
  /// breakpoint on.
  template <typename T1, typename... Ts>
  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
    CheckFailed(Message);
    WriteTs(V1, Vs...);
  }
};

class Verifier : public InstVisitor<Verifier>, VerifierSupport {
  friend class InstVisitor<Verifier>;

  LLVMContext *Context;
  DominatorTree DT;

  /// \brief When verifying a basic block, keep track of all of the
  /// instructions we have seen so far.
  ///
  /// This allows us to do efficient dominance checks for the case when an
  /// instruction has an operand that is an instruction in the same block.
  SmallPtrSet<Instruction *, 16> InstsInThisBlock;

  /// \brief Keep track of the metadata nodes that have been checked already.
  SmallPtrSet<const Metadata *, 32> MDNodes;

  /// \brief Track unresolved string-based type references.
  SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;

  /// \brief The personality function referenced by the LandingPadInsts.
  /// All LandingPadInsts within the same function must use the same
  /// personality function.
  const Value *PersonalityFn;

  /// \brief Whether we've seen a call to @llvm.frameescape in this function
  /// already.
  bool SawFrameEscape;

  /// Stores the count of how many objects were passed to llvm.frameescape for a
  /// given function and the largest index passed to llvm.framerecover.
  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;

public:
  explicit Verifier(raw_ostream &OS)
      : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr),
        SawFrameEscape(false) {}

  bool verify(const Function &F) {
    M = F.getParent();
    Context = &M->getContext();

    // First ensure the function is well-enough formed to compute dominance
    // information.
    if (F.empty()) {
      OS << "Function '" << F.getName()
         << "' does not contain an entry block!\n";
      return false;
    }
    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
      if (I->empty() || !I->back().isTerminator()) {
        OS << "Basic Block in function '" << F.getName()
           << "' does not have terminator!\n";
        I->printAsOperand(OS, true);
        OS << "\n";
        return false;
      }
    }

    // Now directly compute a dominance tree. We don't rely on the pass
    // manager to provide this as it isolates us from a potentially
    // out-of-date dominator tree and makes it significantly more complex to
    // run this code outside of a pass manager.
    // FIXME: It's really gross that we have to cast away constness here.
    DT.recalculate(const_cast<Function &>(F));

    Broken = false;
    // FIXME: We strip const here because the inst visitor strips const.
    visit(const_cast<Function &>(F));
    InstsInThisBlock.clear();
    PersonalityFn = nullptr;
    SawFrameEscape = false;

    return !Broken;
  }

  bool verify(const Module &M) {
    this->M = &M;
    Context = &M.getContext();
    Broken = false;

    // Scan through, checking all of the external function's linkage now...
    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
      visitGlobalValue(*I);

      // Check to make sure function prototypes are okay.
      if (I->isDeclaration())
        visitFunction(*I);
    }

    // Now that we've visited every function, verify that we never asked to
    // recover a frame index that wasn't escaped.
    verifyFrameRecoverIndices();

    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
         I != E; ++I)
      visitGlobalVariable(*I);

    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
         I != E; ++I)
      visitGlobalAlias(*I);

    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
                                               E = M.named_metadata_end();
         I != E; ++I)
      visitNamedMDNode(*I);

    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
      visitComdat(SMEC.getValue());

    visitModuleFlags(M);
    visitModuleIdents(M);

    // Verify type referneces last.
    verifyTypeRefs();

    return !Broken;
  }

private:
  // Verification methods...
  void visitGlobalValue(const GlobalValue &GV);
  void visitGlobalVariable(const GlobalVariable &GV);
  void visitGlobalAlias(const GlobalAlias &GA);
  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
                           const GlobalAlias &A, const Constant &C);
  void visitNamedMDNode(const NamedMDNode &NMD);
  void visitMDNode(const MDNode &MD);
  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
  void visitComdat(const Comdat &C);
  void visitModuleIdents(const Module &M);
  void visitModuleFlags(const Module &M);
  void visitModuleFlag(const MDNode *Op,
                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
                       SmallVectorImpl<const MDNode *> &Requirements);
  void visitFunction(const Function &F);
  void visitBasicBlock(BasicBlock &BB);
  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);

  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
  void visitMDScope(const MDScope &N);
  void visitMDDerivedTypeBase(const MDDerivedTypeBase &N);
  void visitMDVariable(const MDVariable &N);
  void visitMDLexicalBlockBase(const MDLexicalBlockBase &N);
  void visitMDTemplateParameter(const MDTemplateParameter &N);

  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);

  /// \brief Check for a valid string-based type reference.
  ///
  /// Checks if \c MD is a string-based type reference.  If it is, keeps track
  /// of it (and its user, \c N) for error messages later.
  bool isValidUUID(const MDNode &N, const Metadata *MD);

  /// \brief Check for a valid type reference.
  ///
  /// Checks for subclasses of \a MDType, or \a isValidUUID().
  bool isTypeRef(const MDNode &N, const Metadata *MD);

  /// \brief Check for a valid scope reference.
  ///
  /// Checks for subclasses of \a MDScope, or \a isValidUUID().
  bool isScopeRef(const MDNode &N, const Metadata *MD);

  /// \brief Check for a valid debug info reference.
  ///
  /// Checks for subclasses of \a DebugNode, or \a isValidUUID().
  bool isDIRef(const MDNode &N, const Metadata *MD);

  // InstVisitor overrides...
  using InstVisitor<Verifier>::visit;
  void visit(Instruction &I);

  void visitTruncInst(TruncInst &I);
  void visitZExtInst(ZExtInst &I);
  void visitSExtInst(SExtInst &I);
  void visitFPTruncInst(FPTruncInst &I);
  void visitFPExtInst(FPExtInst &I);
  void visitFPToUIInst(FPToUIInst &I);
  void visitFPToSIInst(FPToSIInst &I);
  void visitUIToFPInst(UIToFPInst &I);
  void visitSIToFPInst(SIToFPInst &I);
  void visitIntToPtrInst(IntToPtrInst &I);
  void visitPtrToIntInst(PtrToIntInst &I);
  void visitBitCastInst(BitCastInst &I);
  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
  void visitPHINode(PHINode &PN);
  void visitBinaryOperator(BinaryOperator &B);
  void visitICmpInst(ICmpInst &IC);
  void visitFCmpInst(FCmpInst &FC);
  void visitExtractElementInst(ExtractElementInst &EI);
  void visitInsertElementInst(InsertElementInst &EI);
  void visitShuffleVectorInst(ShuffleVectorInst &EI);
  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
  void visitCallInst(CallInst &CI);
  void visitInvokeInst(InvokeInst &II);
  void visitGetElementPtrInst(GetElementPtrInst &GEP);
  void visitLoadInst(LoadInst &LI);
  void visitStoreInst(StoreInst &SI);
  void verifyDominatesUse(Instruction &I, unsigned i);
  void visitInstruction(Instruction &I);
  void visitTerminatorInst(TerminatorInst &I);
  void visitBranchInst(BranchInst &BI);
  void visitReturnInst(ReturnInst &RI);
  void visitSwitchInst(SwitchInst &SI);
  void visitIndirectBrInst(IndirectBrInst &BI);
  void visitSelectInst(SelectInst &SI);
  void visitUserOp1(Instruction &I);
  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
  void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
  template <class DbgIntrinsicTy>
  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
  void visitFenceInst(FenceInst &FI);
  void visitAllocaInst(AllocaInst &AI);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);
  void visitLandingPadInst(LandingPadInst &LPI);

  void VerifyCallSite(CallSite CS);
  void verifyMustTailCall(CallInst &CI);
  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
                        unsigned ArgNo, std::string &Suffix);
  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
                           SmallVectorImpl<Type *> &ArgTys);
  bool VerifyIntrinsicIsVarArg(bool isVarArg,
                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
                            const Value *V);
  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
                            bool isReturnValue, const Value *V);
  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
                           const Value *V);

  void VerifyConstantExprBitcastType(const ConstantExpr *CE);
  void VerifyStatepoint(ImmutableCallSite CS);
  void verifyFrameRecoverIndices();

  // Module-level debug info verification...
  void verifyTypeRefs();
  template <class MapTy>
  void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
                                const MapTy &TypeRefs);
  void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
};
} // End anonymous namespace

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)

void Verifier::visit(Instruction &I) {
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
  InstVisitor<Verifier>::visit(I);
}


void Verifier::visitGlobalValue(const GlobalValue &GV) {
  Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
             GV.hasExternalWeakLinkage(),
         "Global is external, but doesn't have external or weak linkage!", &GV);

  Assert(GV.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &GV);
  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
         "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    Assert(GVar && GVar->getType()->getElementType()->isArrayTy(),
           "Only global arrays can have appending linkage!", GVar);
  }
}

void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
           "Global variable initializer type does not match global "
           "variable type!",
           &GV);

    // If the global has common linkage, it must have a zero initializer and
    // cannot be constant.
    if (GV.hasCommonLinkage()) {
      Assert(GV.getInitializer()->isNullValue(),
             "'common' global must have a zero initializer!", &GV);
      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
             &GV);
      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    }
  } else {
    Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
           "invalid linkage type for global declaration", &GV);
  }

  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
                       GV.getName() == "llvm.global_dtors")) {
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
           "invalid linkage for intrinsic global variable", &GV);
    // Don't worry about emitting an error for it not being an array,
    // visitGlobalValue will complain on appending non-array.
    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
      PointerType *FuncPtrTy =
          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
      // FIXME: Reject the 2-field form in LLVM 4.0.
      Assert(STy &&
                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
                 STy->getTypeAtIndex(1) == FuncPtrTy,
             "wrong type for intrinsic global variable", &GV);
      if (STy->getNumElements() == 3) {
        Type *ETy = STy->getTypeAtIndex(2);
        Assert(ETy->isPointerTy() &&
                   cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
               "wrong type for intrinsic global variable", &GV);
      }
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.used" ||
                       GV.getName() == "llvm.compiler.used")) {
    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
           "invalid linkage for intrinsic global variable", &GV);
    Type *GVType = GV.getType()->getElementType();
    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
      Assert(PTy, "wrong type for intrinsic global variable", &GV);
      if (GV.hasInitializer()) {
        const Constant *Init = GV.getInitializer();
        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
        Assert(InitArray, "wrong initalizer for intrinsic global variable",
               Init);
        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
                     isa<GlobalAlias>(V),
                 "invalid llvm.used member", V);
          Assert(V->hasName(), "members of llvm.used must be named", V);
        }
      }
    }
  }

  Assert(!GV.hasDLLImportStorageClass() ||
             (GV.isDeclaration() && GV.hasExternalLinkage()) ||
             GV.hasAvailableExternallyLinkage(),
         "Global is marked as dllimport, but not external", &GV);

  if (!GV.hasInitializer()) {
    visitGlobalValue(GV);
    return;
  }

  // Walk any aggregate initializers looking for bitcasts between address spaces
  SmallPtrSet<const Value *, 4> Visited;
  SmallVector<const Value *, 4> WorkStack;
  WorkStack.push_back(cast<Value>(GV.getInitializer()));

  while (!WorkStack.empty()) {
    const Value *V = WorkStack.pop_back_val();
    if (!Visited.insert(V).second)
      continue;

    if (const User *U = dyn_cast<User>(V)) {
      WorkStack.append(U->op_begin(), U->op_end());
    }

    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
      VerifyConstantExprBitcastType(CE);
      if (Broken)
        return;
    }
  }

  visitGlobalValue(GV);
}

void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
  SmallPtrSet<const GlobalAlias*, 4> Visited;
  Visited.insert(&GA);
  visitAliaseeSubExpr(Visited, GA, C);
}

void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
                                   const GlobalAlias &GA, const Constant &C) {
  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);

    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);

      Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
             &GA);
    } else {
      // Only continue verifying subexpressions of GlobalAliases.
      // Do not recurse into global initializers.
      return;
    }
  }

  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    VerifyConstantExprBitcastType(CE);

  for (const Use &U : C.operands()) {
    Value *V = &*U;
    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    else if (const auto *C2 = dyn_cast<Constant>(V))
      visitAliaseeSubExpr(Visited, GA, *C2);
  }
}

void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
  Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA);
  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
         "weak_odr, or external linkage!",
         &GA);
  const Constant *Aliasee = GA.getAliasee();
  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
  Assert(GA.getType() == Aliasee->getType(),
         "Alias and aliasee types should match!", &GA);

  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
         "Aliasee should be either GlobalValue or ConstantExpr", &GA);

  visitAliaseeSubExpr(GA, *Aliasee);

  visitGlobalValue(GA);
}

void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    MDNode *MD = NMD.getOperand(i);

    if (NMD.getName() == "llvm.dbg.cu") {
      Assert(MD && isa<MDCompileUnit>(MD), "invalid compile unit", &NMD, MD);
    }

    if (!MD)
      continue;

    visitMDNode(*MD);
  }
}

void Verifier::visitMDNode(const MDNode &MD) {
  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(&MD).second)
    return;

  switch (MD.getMetadataID()) {
  default:
    llvm_unreachable("Invalid MDNode subclass");
  case Metadata::MDTupleKind:
    break;
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
  case Metadata::CLASS##Kind:                                                  \
    visit##CLASS(cast<CLASS>(MD));                                             \
    break;
#include "llvm/IR/Metadata.def"
  }

  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    Metadata *Op = MD.getOperand(i);
    if (!Op)
      continue;
    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
           &MD, Op);
    if (auto *N = dyn_cast<MDNode>(Op)) {
      visitMDNode(*N);
      continue;
    }
    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
      visitValueAsMetadata(*V, nullptr);
      continue;
    }
  }

  // Check these last, so we diagnose problems in operands first.
  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
}

void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
  Assert(MD.getValue(), "Expected valid value", &MD);
  Assert(!MD.getValue()->getType()->isMetadataTy(),
         "Unexpected metadata round-trip through values", &MD, MD.getValue());

  auto *L = dyn_cast<LocalAsMetadata>(&MD);
  if (!L)
    return;

  Assert(F, "function-local metadata used outside a function", L);

  // If this was an instruction, bb, or argument, verify that it is in the
  // function that we expect.
  Function *ActualF = nullptr;
  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
    ActualF = I->getParent()->getParent();
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
    ActualF = BB->getParent();
  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
    ActualF = A->getParent();
  assert(ActualF && "Unimplemented function local metadata case!");

  Assert(ActualF == F, "function-local metadata used in wrong function", L);
}

void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
  Metadata *MD = MDV.getMetadata();
  if (auto *N = dyn_cast<MDNode>(MD)) {
    visitMDNode(*N);
    return;
  }

  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(MD).second)
    return;

  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    visitValueAsMetadata(*V, F);
}

bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
  auto *S = dyn_cast<MDString>(MD);
  if (!S)
    return false;
  if (S->getString().empty())
    return false;

  // Keep track of names of types referenced via UUID so we can check that they
  // actually exist.
  UnresolvedTypeRefs.insert(std::make_pair(S, &N));
  return true;
}

/// \brief Check if a value can be a reference to a type.
bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
  return !MD || isValidUUID(N, MD) || isa<MDType>(MD);
}

/// \brief Check if a value can be a ScopeRef.
bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
  return !MD || isValidUUID(N, MD) || isa<MDScope>(MD);
}

/// \brief Check if a value can be a debug info ref.
bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
  return !MD || isValidUUID(N, MD) || isa<DebugNode>(MD);
}

template <class Ty>
bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
  for (Metadata *MD : N.operands()) {
    if (MD) {
      if (!isa<Ty>(MD))
        return false;
    } else {
      if (!AllowNull)
        return false;
    }
  }
  return true;
}

template <class Ty>
bool isValidMetadataArray(const MDTuple &N) {
  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
}

template <class Ty>
bool isValidMetadataNullArray(const MDTuple &N) {
  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
}

void Verifier::visitMDLocation(const MDLocation &N) {
  Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
         "location requires a valid scope", &N, N.getRawScope());
  if (auto *IA = N.getRawInlinedAt())
    Assert(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA);
}

void Verifier::visitGenericDebugNode(const GenericDebugNode &N) {
  Assert(N.getTag(), "invalid tag", &N);
}

void Verifier::visitMDScope(const MDScope &N) {
  if (auto *F = N.getRawFile())
    Assert(isa<MDFile>(F), "invalid file", &N, F);
}

void Verifier::visitMDSubrange(const MDSubrange &N) {
  Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
  Assert(N.getCount() >= -1, "invalid subrange count", &N);
}

void Verifier::visitMDEnumerator(const MDEnumerator &N) {
  Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}

void Verifier::visitMDBasicType(const MDBasicType &N) {
  Assert(N.getTag() == dwarf::DW_TAG_base_type ||
             N.getTag() == dwarf::DW_TAG_unspecified_type,
         "invalid tag", &N);
}

void Verifier::visitMDDerivedTypeBase(const MDDerivedTypeBase &N) {
  // Common scope checks.
  visitMDScope(N);

  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
         N.getBaseType());

  // FIXME: Sink this into the subclass verifies.
  if (!N.getFile() || N.getFile()->getFilename().empty()) {
    // Check whether the filename is allowed to be empty.
    uint16_t Tag = N.getTag();
    Assert(
        Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
            Tag == dwarf::DW_TAG_pointer_type ||
            Tag == dwarf::DW_TAG_ptr_to_member_type ||
            Tag == dwarf::DW_TAG_reference_type ||
            Tag == dwarf::DW_TAG_rvalue_reference_type ||
            Tag == dwarf::DW_TAG_restrict_type ||
            Tag == dwarf::DW_TAG_array_type ||
            Tag == dwarf::DW_TAG_enumeration_type ||
            Tag == dwarf::DW_TAG_subroutine_type ||
            Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
            Tag == dwarf::DW_TAG_structure_type ||
            Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
        "derived/composite type requires a filename", &N, N.getFile());
  }
}

void Verifier::visitMDDerivedType(const MDDerivedType &N) {
  // Common derived type checks.
  visitMDDerivedTypeBase(N);

  Assert(N.getTag() == dwarf::DW_TAG_typedef ||
             N.getTag() == dwarf::DW_TAG_pointer_type ||
             N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
             N.getTag() == dwarf::DW_TAG_reference_type ||
             N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
             N.getTag() == dwarf::DW_TAG_const_type ||
             N.getTag() == dwarf::DW_TAG_volatile_type ||
             N.getTag() == dwarf::DW_TAG_restrict_type ||
             N.getTag() == dwarf::DW_TAG_member ||
             N.getTag() == dwarf::DW_TAG_inheritance ||
             N.getTag() == dwarf::DW_TAG_friend,
         "invalid tag", &N);
  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
    Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
           N.getExtraData());
  }
}

static bool hasConflictingReferenceFlags(unsigned Flags) {
  return (Flags & DebugNode::FlagLValueReference) &&
         (Flags & DebugNode::FlagRValueReference);
}

void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
  auto *Params = dyn_cast<MDTuple>(&RawParams);
  Assert(Params, "invalid template params", &N, &RawParams);
  for (Metadata *Op : Params->operands()) {
    Assert(Op && isa<MDTemplateParameter>(Op), "invalid template parameter", &N,
           Params, Op);
  }
}

void Verifier::visitMDCompositeType(const MDCompositeType &N) {
  // Common derived type checks.
  visitMDDerivedTypeBase(N);

  Assert(N.getTag() == dwarf::DW_TAG_array_type ||
             N.getTag() == dwarf::DW_TAG_structure_type ||
             N.getTag() == dwarf::DW_TAG_union_type ||
             N.getTag() == dwarf::DW_TAG_enumeration_type ||
             N.getTag() == dwarf::DW_TAG_subroutine_type ||
             N.getTag() == dwarf::DW_TAG_class_type,
         "invalid tag", &N);

  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
         "invalid composite elements", &N, N.getRawElements());
  Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
         N.getRawVTableHolder());
  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
         "invalid composite elements", &N, N.getRawElements());
  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
         &N);
  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);
}

void Verifier::visitMDSubroutineType(const MDSubroutineType &N) {
  Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
  if (auto *Types = N.getRawTypeArray()) {
    Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
    for (Metadata *Ty : N.getTypeArray()->operands()) {
      Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
    }
  }
  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
         &N);
}

void Verifier::visitMDFile(const MDFile &N) {
  Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
}

void Verifier::visitMDCompileUnit(const MDCompileUnit &N) {
  Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);

  // Don't bother verifying the compilation directory or producer string
  // as those could be empty.
  Assert(N.getRawFile() && isa<MDFile>(N.getRawFile()),
         "invalid file", &N, N.getRawFile());
  Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
         N.getFile());

  if (auto *Array = N.getRawEnumTypes()) {
    Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
    for (Metadata *Op : N.getEnumTypes()->operands()) {
      auto *Enum = dyn_cast_or_null<MDCompositeType>(Op);
      Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
             "invalid enum type", &N, N.getEnumTypes(), Op);
    }
  }
  if (auto *Array = N.getRawRetainedTypes()) {
    Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
    for (Metadata *Op : N.getRetainedTypes()->operands()) {
      Assert(Op && isa<MDType>(Op), "invalid retained type", &N, Op);
    }
  }
  if (auto *Array = N.getRawSubprograms()) {
    Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
    for (Metadata *Op : N.getSubprograms()->operands()) {
      Assert(Op && isa<MDSubprogram>(Op), "invalid subprogram ref", &N, Op);
    }
  }
  if (auto *Array = N.getRawGlobalVariables()) {
    Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
    for (Metadata *Op : N.getGlobalVariables()->operands()) {
      Assert(Op && isa<MDGlobalVariable>(Op), "invalid global variable ref", &N,
             Op);
    }
  }
  if (auto *Array = N.getRawImportedEntities()) {
    Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
    for (Metadata *Op : N.getImportedEntities()->operands()) {
      Assert(Op && isa<MDImportedEntity>(Op), "invalid imported entity ref", &N,
             Op);
    }
  }
}

void Verifier::visitMDSubprogram(const MDSubprogram &N) {
  Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
  Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
  if (auto *T = N.getRawType())
    Assert(isa<MDSubroutineType>(T), "invalid subroutine type", &N, T);
  Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
         N.getRawContainingType());
  if (auto *RawF = N.getRawFunction()) {
    auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
    auto *F = FMD ? FMD->getValue() : nullptr;
    auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
    Assert(F && FT && isa<FunctionType>(FT->getElementType()),
           "invalid function", &N, F, FT);
  }
  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);
  if (auto *S = N.getRawDeclaration()) {
    Assert(isa<MDSubprogram>(S) && !cast<MDSubprogram>(S)->isDefinition(),
           "invalid subprogram declaration", &N, S);
  }
  if (auto *RawVars = N.getRawVariables()) {
    auto *Vars = dyn_cast<MDTuple>(RawVars);
    Assert(Vars, "invalid variable list", &N, RawVars);
    for (Metadata *Op : Vars->operands()) {
      Assert(Op && isa<MDLocalVariable>(Op), "invalid local variable", &N, Vars,
             Op);
    }
  }
  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
         &N);

  auto *F = N.getFunction();
  if (!F)
    return;

  // Check that all !dbg attachments lead to back to N (or, at least, another
  // subprogram that describes the same function).
  //
  // FIXME: Check this incrementally while visiting !dbg attachments.
  // FIXME: Only check when N is the canonical subprogram for F.
  SmallPtrSet<const MDNode *, 32> Seen;
  for (auto &BB : *F)
    for (auto &I : BB) {
      // Be careful about using MDLocation here since we might be dealing with
      // broken code (this is the Verifier after all).
      MDLocation *DL =
          dyn_cast_or_null<MDLocation>(I.getDebugLoc().getAsMDNode());
      if (!DL)
        continue;
      if (!Seen.insert(DL).second)
        continue;

      MDLocalScope *Scope = DL->getInlinedAtScope();
      if (Scope && !Seen.insert(Scope).second)
        continue;

      MDSubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
      if (SP && !Seen.insert(SP).second)
        continue;

      // FIXME: Once N is canonical, check "SP == &N".
      Assert(SP->describes(F),
             "!dbg attachment points at wrong subprogram for function", &N, F,
             &I, DL, Scope, SP);
    }
}

void Verifier::visitMDLexicalBlockBase(const MDLexicalBlockBase &N) {
  Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
  Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
         "invalid local scope", &N, N.getRawScope());
}

void Verifier::visitMDLexicalBlock(const MDLexicalBlock &N) {
  visitMDLexicalBlockBase(N);

  Assert(N.getLine() || !N.getColumn(),
         "cannot have column info without line info", &N);
}

void Verifier::visitMDLexicalBlockFile(const MDLexicalBlockFile &N) {
  visitMDLexicalBlockBase(N);
}

void Verifier::visitMDNamespace(const MDNamespace &N) {
  Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    Assert(isa<MDScope>(S), "invalid scope ref", &N, S);
}

void Verifier::visitMDTemplateParameter(const MDTemplateParameter &N) {
  Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
}

void Verifier::visitMDTemplateTypeParameter(const MDTemplateTypeParameter &N) {
  visitMDTemplateParameter(N);

  Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
         &N);
}

void Verifier::visitMDTemplateValueParameter(
    const MDTemplateValueParameter &N) {
  visitMDTemplateParameter(N);

  Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
             N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
             N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
         "invalid tag", &N);
}

void Verifier::visitMDVariable(const MDVariable &N) {
  if (auto *S = N.getRawScope())
    Assert(isa<MDScope>(S), "invalid scope", &N, S);
  Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
  if (auto *F = N.getRawFile())
    Assert(isa<MDFile>(F), "invalid file", &N, F);
}

void Verifier::visitMDGlobalVariable(const MDGlobalVariable &N) {
  // Checks common to all variables.
  visitMDVariable(N);

  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  Assert(!N.getName().empty(), "missing global variable name", &N);
  if (auto *V = N.getRawVariable()) {
    Assert(isa<ConstantAsMetadata>(V) &&
               !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
           "invalid global varaible ref", &N, V);
  }
  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
    Assert(isa<MDDerivedType>(Member), "invalid static data member declaration",
           &N, Member);
  }
}

void Verifier::visitMDLocalVariable(const MDLocalVariable &N) {
  // Checks common to all variables.
  visitMDVariable(N);

  Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
             N.getTag() == dwarf::DW_TAG_arg_variable,
         "invalid tag", &N);
  Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
         "local variable requires a valid scope", &N, N.getRawScope());
}

void Verifier::visitMDExpression(const MDExpression &N) {
  Assert(N.isValid(), "invalid expression", &N);
}

void Verifier::visitMDObjCProperty(const MDObjCProperty &N) {
  Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
  if (auto *T = N.getRawType())
    Assert(isa<MDType>(T), "invalid type ref", &N, T);
  if (auto *F = N.getRawFile())
    Assert(isa<MDFile>(F), "invalid file", &N, F);
}

void Verifier::visitMDImportedEntity(const MDImportedEntity &N) {
  Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
             N.getTag() == dwarf::DW_TAG_imported_declaration,
         "invalid tag", &N);
  if (auto *S = N.getRawScope())
    Assert(isa<MDScope>(S), "invalid scope for imported entity", &N, S);
  Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
         N.getEntity());
}

void Verifier::visitComdat(const Comdat &C) {
  // The Module is invalid if the GlobalValue has private linkage.  Entities
  // with private linkage don't have entries in the symbol table.
  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
           GV);
}

void Verifier::visitModuleIdents(const Module &M) {
  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
  if (!Idents) 
    return;
  
  // llvm.ident takes a list of metadata entry. Each entry has only one string.
  // Scan each llvm.ident entry and make sure that this requirement is met.
  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
    const MDNode *N = Idents->getOperand(i);
    Assert(N->getNumOperands() == 1,
           "incorrect number of operands in llvm.ident metadata", N);
    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
           ("invalid value for llvm.ident metadata entry operand"
            "(the operand should be a string)"),
           N->getOperand(0));
  } 
}

void Verifier::visitModuleFlags(const Module &M) {
  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
  if (!Flags) return;

  // Scan each flag, and track the flags and requirements.
  DenseMap<const MDString*, const MDNode*> SeenIDs;
  SmallVector<const MDNode*, 16> Requirements;
  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
  }

  // Validate that the requirements in the module are valid.
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    const MDNode *Requirement = Requirements[I];
    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    const Metadata *ReqValue = Requirement->getOperand(1);

    const MDNode *Op = SeenIDs.lookup(Flag);
    if (!Op) {
      CheckFailed("invalid requirement on flag, flag is not present in module",
                  Flag);
      continue;
    }

    if (Op->getOperand(2) != ReqValue) {
      CheckFailed(("invalid requirement on flag, "
                   "flag does not have the required value"),
                  Flag);
      continue;
    }
  }
}

void
Verifier::visitModuleFlag(const MDNode *Op,
                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
                          SmallVectorImpl<const MDNode *> &Requirements) {
  // Each module flag should have three arguments, the merge behavior (a
  // constant int), the flag ID (an MDString), and the value.
  Assert(Op->getNumOperands() == 3,
         "incorrect number of operands in module flag", Op);
  Module::ModFlagBehavior MFB;
  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
    Assert(
        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
        "invalid behavior operand in module flag (expected constant integer)",
        Op->getOperand(0));
    Assert(false,
           "invalid behavior operand in module flag (unexpected constant)",
           Op->getOperand(0));
  }
  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
         Op->getOperand(1));

  // Sanity check the values for behaviors with additional requirements.
  switch (MFB) {
  case Module::Error:
  case Module::Warning:
  case Module::Override:
    // These behavior types accept any value.
    break;

  case Module::Require: {
    // The value should itself be an MDNode with two operands, a flag ID (an
    // MDString), and a value.
    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
    Assert(Value && Value->getNumOperands() == 2,
           "invalid value for 'require' module flag (expected metadata pair)",
           Op->getOperand(2));
    Assert(isa<MDString>(Value->getOperand(0)),
           ("invalid value for 'require' module flag "
            "(first value operand should be a string)"),
           Value->getOperand(0));

    // Append it to the list of requirements, to check once all module flags are
    // scanned.
    Requirements.push_back(Value);
    break;
  }

  case Module::Append:
  case Module::AppendUnique: {
    // These behavior types require the operand be an MDNode.
    Assert(isa<MDNode>(Op->getOperand(2)),
           "invalid value for 'append'-type module flag "
           "(expected a metadata node)",
           Op->getOperand(2));
    break;
  }
  }

  // Unless this is a "requires" flag, check the ID is unique.
  if (MFB != Module::Require) {
    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
    Assert(Inserted,
           "module flag identifiers must be unique (or of 'require' type)", ID);
  }
}

void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
                                    bool isFunction, const Value *V) {
  unsigned Slot = ~0U;
  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
    if (Attrs.getSlotIndex(I) == Idx) {
      Slot = I;
      break;
    }

  assert(Slot != ~0U && "Attribute set inconsistency!");

  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
         I != E; ++I) {
    if (I->isStringAttribute())
      continue;

    if (I->getKindAsEnum() == Attribute::NoReturn ||
        I->getKindAsEnum() == Attribute::NoUnwind ||
        I->getKindAsEnum() == Attribute::NoInline ||
        I->getKindAsEnum() == Attribute::AlwaysInline ||
        I->getKindAsEnum() == Attribute::OptimizeForSize ||
        I->getKindAsEnum() == Attribute::StackProtect ||
        I->getKindAsEnum() == Attribute::StackProtectReq ||
        I->getKindAsEnum() == Attribute::StackProtectStrong ||
        I->getKindAsEnum() == Attribute::NoRedZone ||
        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
        I->getKindAsEnum() == Attribute::Naked ||
        I->getKindAsEnum() == Attribute::InlineHint ||
        I->getKindAsEnum() == Attribute::StackAlignment ||
        I->getKindAsEnum() == Attribute::UWTable ||
        I->getKindAsEnum() == Attribute::NonLazyBind ||
        I->getKindAsEnum() == Attribute::ReturnsTwice ||
        I->getKindAsEnum() == Attribute::SanitizeAddress ||
        I->getKindAsEnum() == Attribute::SanitizeThread ||
        I->getKindAsEnum() == Attribute::SanitizeMemory ||
        I->getKindAsEnum() == Attribute::MinSize ||
        I->getKindAsEnum() == Attribute::NoDuplicate ||
        I->getKindAsEnum() == Attribute::Builtin ||
        I->getKindAsEnum() == Attribute::NoBuiltin ||
        I->getKindAsEnum() == Attribute::Cold ||
        I->getKindAsEnum() == Attribute::OptimizeNone ||
        I->getKindAsEnum() == Attribute::JumpTable) {
      if (!isFunction) {
        CheckFailed("Attribute '" + I->getAsString() +
                    "' only applies to functions!", V);
        return;
      }
    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
               I->getKindAsEnum() == Attribute::ReadNone) {
      if (Idx == 0) {
        CheckFailed("Attribute '" + I->getAsString() +
                    "' does not apply to function returns");
        return;
      }
    } else if (isFunction) {
      CheckFailed("Attribute '" + I->getAsString() +
                  "' does not apply to functions!", V);
      return;
    }
  }
}

// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type.  The value V is printed in error messages.
void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
                                    bool isReturnValue, const Value *V) {
  if (!Attrs.hasAttributes(Idx))
    return;

  VerifyAttributeTypes(Attrs, Idx, false, V);

  if (isReturnValue)
    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
               !Attrs.hasAttribute(Idx, Attribute::Nest) &&
               !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
               !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
               !Attrs.hasAttribute(Idx, Attribute::Returned) &&
               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
           "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
           "'returned' do not apply to return values!",
           V);

  // Check for mutually incompatible attributes.  Only inreg is compatible with
  // sret.
  unsigned AttrCount = 0;
  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
               Attrs.hasAttribute(Idx, Attribute::InReg);
  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
                         "and 'sret' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
         "Attributes "
         "'inalloca and readonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
           Attrs.hasAttribute(Idx, Attribute::Returned)),
         "Attributes "
         "'sret and returned' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
           Attrs.hasAttribute(Idx, Attribute::SExt)),
         "Attributes "
         "'zeroext and signext' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
         "Attributes "
         "'readnone and readonly' are incompatible!",
         V);

  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
           Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
         "Attributes "
         "'noinline and alwaysinline' are incompatible!",
         V);

  Assert(!AttrBuilder(Attrs, Idx)
              .hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
         "Wrong types for attribute: " +
             AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx),
         V);

  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    SmallPtrSet<const Type*, 4> Visited;
    if (!PTy->getElementType()->isSized(&Visited)) {
      Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
                 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
             "Attributes 'byval' and 'inalloca' do not support unsized types!",
             V);
    }
  } else {
    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
           "Attribute 'byval' only applies to parameters with pointer type!",
           V);
  }
}

// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
                                   const Value *V) {
  if (Attrs.isEmpty())
    return;

  bool SawNest = false;
  bool SawReturned = false;
  bool SawSRet = false;

  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    unsigned Idx = Attrs.getSlotIndex(i);

    Type *Ty;
    if (Idx == 0)
      Ty = FT->getReturnType();
    else if (Idx-1 < FT->getNumParams())
      Ty = FT->getParamType(Idx-1);
    else
      break;  // VarArgs attributes, verified elsewhere.

    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);

    if (Idx == 0)
      continue;

    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
      Assert(!SawNest, "More than one parameter has attribute nest!", V);
      SawNest = true;
    }

    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
      Assert(!SawReturned, "More than one parameter has attribute returned!",
             V);
      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
             "Incompatible "
             "argument and return types for 'returned' attribute",
             V);
      SawReturned = true;
    }

    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
      Assert(Idx == 1 || Idx == 2,
             "Attribute 'sret' is not on first or second parameter!", V);
      SawSRet = true;
    }

    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
      Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
             V);
    }
  }

  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
    return;

  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);

  Assert(
      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
      "Attributes 'readnone and readonly' are incompatible!", V);

  Assert(
      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
        Attrs.hasAttribute(AttributeSet::FunctionIndex,
                           Attribute::AlwaysInline)),
      "Attributes 'noinline and alwaysinline' are incompatible!", V);

  if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 
                         Attribute::OptimizeNone)) {
    Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
           "Attribute 'optnone' requires 'noinline'!", V);

    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
                               Attribute::OptimizeForSize),
           "Attributes 'optsize and optnone' are incompatible!", V);

    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
           "Attributes 'minsize and optnone' are incompatible!", V);
  }

  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
                         Attribute::JumpTable)) {
    const GlobalValue *GV = cast<GlobalValue>(V);
    Assert(GV->hasUnnamedAddr(),
           "Attribute 'jumptable' requires 'unnamed_addr'", V);
  }
}

void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
  if (CE->getOpcode() != Instruction::BitCast)
    return;

  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
                               CE->getType()),
         "Invalid bitcast", CE);
}

bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
  if (Attrs.getNumSlots() == 0)
    return true;

  unsigned LastSlot = Attrs.getNumSlots() - 1;
  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
  if (LastIndex <= Params
      || (LastIndex == AttributeSet::FunctionIndex
          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
    return true;

  return false;
}

/// \brief Verify that statepoint intrinsic is well formed.
void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
  assert(CS.getCalledFunction() &&
         CS.getCalledFunction()->getIntrinsicID() ==
           Intrinsic::experimental_gc_statepoint);

  const Instruction &CI = *CS.getInstruction();

  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(),
         "gc.statepoint must read and write memory to preserve "
         "reordering restrictions required by safepoint semantics",
         &CI);

  const Value *Target = CS.getArgument(0);
  const PointerType *PT = dyn_cast<PointerType>(Target->getType());
  Assert(PT && PT->getElementType()->isFunctionTy(),
         "gc.statepoint callee must be of function pointer type", &CI, Target);
  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());

  const Value *NumCallArgsV = CS.getArgument(1);
  Assert(isa<ConstantInt>(NumCallArgsV),
         "gc.statepoint number of arguments to underlying call "
         "must be constant integer",
         &CI);
  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
  Assert(NumCallArgs >= 0,
         "gc.statepoint number of arguments to underlying call "
         "must be positive",
         &CI);
  const int NumParams = (int)TargetFuncType->getNumParams();
  if (TargetFuncType->isVarArg()) {
    Assert(NumCallArgs >= NumParams,
           "gc.statepoint mismatch in number of vararg call args", &CI);

    // TODO: Remove this limitation
    Assert(TargetFuncType->getReturnType()->isVoidTy(),
           "gc.statepoint doesn't support wrapping non-void "
           "vararg functions yet",
           &CI);
  } else
    Assert(NumCallArgs == NumParams,
           "gc.statepoint mismatch in number of call args", &CI);

  const Value *Unused = CS.getArgument(2);
  Assert(isa<ConstantInt>(Unused) && cast<ConstantInt>(Unused)->isNullValue(),
         "gc.statepoint parameter #3 must be zero", &CI);

  // Verify that the types of the call parameter arguments match
  // the type of the wrapped callee.
  for (int i = 0; i < NumParams; i++) {
    Type *ParamType = TargetFuncType->getParamType(i);
    Type *ArgType = CS.getArgument(3+i)->getType();
    Assert(ArgType == ParamType,
           "gc.statepoint call argument does not match wrapped "
           "function type",
           &CI);
  }
  const int EndCallArgsInx = 2+NumCallArgs;
  const Value *NumDeoptArgsV = CS.getArgument(EndCallArgsInx+1);
  Assert(isa<ConstantInt>(NumDeoptArgsV),
         "gc.statepoint number of deoptimization arguments "
         "must be constant integer",
         &CI);
  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
                            "must be positive",
         &CI);

  Assert(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(),
         "gc.statepoint too few arguments according to length fields", &CI);

  // Check that the only uses of this gc.statepoint are gc.result or 
  // gc.relocate calls which are tied to this statepoint and thus part
  // of the same statepoint sequence
  for (const User *U : CI.users()) {
    const CallInst *Call = dyn_cast<const CallInst>(U);
    Assert(Call, "illegal use of statepoint token", &CI, U);
    if (!Call) continue;
    Assert(isGCRelocate(Call) || isGCResult(Call),
           "gc.result or gc.relocate are the only value uses"
           "of a gc.statepoint",
           &CI, U);
    if (isGCResult(Call)) {
      Assert(Call->getArgOperand(0) == &CI,
             "gc.result connected to wrong gc.statepoint", &CI, Call);
    } else if (isGCRelocate(Call)) {
      Assert(Call->getArgOperand(0) == &CI,
             "gc.relocate connected to wrong gc.statepoint", &CI, Call);
    }
  }

  // Note: It is legal for a single derived pointer to be listed multiple
  // times.  It's non-optimal, but it is legal.  It can also happen after
  // insertion if we strip a bitcast away.
  // Note: It is really tempting to check that each base is relocated and
  // that a derived pointer is never reused as a base pointer.  This turns
  // out to be problematic since optimizations run after safepoint insertion
  // can recognize equality properties that the insertion logic doesn't know
  // about.  See example statepoint.ll in the verifier subdirectory
}

void Verifier::verifyFrameRecoverIndices() {
  for (auto &Counts : FrameEscapeInfo) {
    Function *F = Counts.first;
    unsigned EscapedObjectCount = Counts.second.first;
    unsigned MaxRecoveredIndex = Counts.second.second;
    Assert(MaxRecoveredIndex <= EscapedObjectCount,
           "all indices passed to llvm.framerecover must be less than the "
           "number of arguments passed ot llvm.frameescape in the parent "
           "function",
           F);
  }
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
  // Check function arguments.
  FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert(Context == &F.getContext(),
         "Function context does not match Module context!", &F);

  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
  Assert(FT->getNumParams() == NumArgs,
         "# formal arguments must match # of arguments for function type!", &F,
         FT);
  Assert(F.getReturnType()->isFirstClassType() ||
             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
         "Functions cannot return aggregate values!", &F);

  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
         "Invalid struct return type!", &F);

  AttributeSet Attrs = F.getAttributes();

  Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
         "Attribute after last parameter!", &F);

  // Check function attributes.
  VerifyFunctionAttrs(FT, Attrs, &F);

  // On function declarations/definitions, we do not support the builtin
  // attribute. We do not check this in VerifyFunctionAttrs since that is
  // checking for Attributes that can/can not ever be on functions.
  Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
         "Attribute 'builtin' can only be applied to a callsite.", &F);

  // Check that this function meets the restrictions on this calling convention.
  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
  // restrictions can be lifted.
  switch (F.getCallingConv()) {
  default:
  case CallingConv::C:
    break;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::Intel_OCL_BI:
  case CallingConv::PTX_Kernel:
  case CallingConv::PTX_Device:
    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
                          "perfect forwarding!",
           &F);
    break;
  }

  bool isLLVMdotName = F.getName().size() >= 5 &&
                       F.getName().substr(0, 5) == "llvm.";

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
       ++I, ++i) {
    Assert(I->getType() == FT->getParamType(i),
           "Argument value does not match function argument type!", I,
           FT->getParamType(i));
    Assert(I->getType()->isFirstClassType(),
           "Function arguments must have first-class types!", I);
    if (!isLLVMdotName)
      Assert(!I->getType()->isMetadataTy(),
             "Function takes metadata but isn't an intrinsic", I, &F);
  }

  if (F.isMaterializable()) {
    // Function has a body somewhere we can't see.
  } else if (F.isDeclaration()) {
    Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
           "invalid linkage type for function declaration", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);

    // Check the entry node
    const BasicBlock *Entry = &F.getEntryBlock();
    Assert(pred_empty(Entry),
           "Entry block to function must not have predecessors!", Entry);

    // The address of the entry block cannot be taken, unless it is dead.
    if (Entry->hasAddressTaken()) {
      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
             "blockaddress may not be used with the entry block!", Entry);
    }
  }

  // If this function is actually an intrinsic, verify that it is only used in
  // direct call/invokes, never having its "address taken".
  if (F.getIntrinsicID()) {
    const User *U;
    if (F.hasAddressTaken(&U))
      Assert(0, "Invalid user of intrinsic instruction!", U);
  }

  Assert(!F.hasDLLImportStorageClass() ||
             (F.isDeclaration() && F.hasExternalLinkage()) ||
             F.hasAvailableExternallyLinkage(),
         "Function is marked as dllimport, but not external.", &F);
}

// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    std::sort(Preds.begin(), Preds.end());
    PHINode *PN;
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
      // Ensure that PHI nodes have at least one entry!
      Assert(PN->getNumIncomingValues() != 0,
             "PHI nodes must have at least one entry.  If the block is dead, "
             "the PHI should be removed!",
             PN);
      Assert(PN->getNumIncomingValues() == Preds.size(),
             "PHINode should have one entry for each predecessor of its "
             "parent basic block!",
             PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
                   Values[i].second == Values[i - 1].second,
               "PHI node has multiple entries for the same basic block with "
               "different incoming values!",
               PN, Values[i].first, Values[i].second, Values[i - 1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert(Values[i].first == Preds[i],
               "PHI node entries do not match predecessors!", PN,
               Values[i].first, Preds[i]);
      }
    }
  }

  // Check that all instructions have their parent pointers set up correctly.
  for (auto &I : BB)
  {
    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
  }
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert(&I == I.getParent()->getTerminator(),
         "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitBranchInst(BranchInst &BI) {
  if (BI.isConditional()) {
    Assert(BI.getCondition()->getType()->isIntegerTy(1),
           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
  }
  visitTerminatorInst(BI);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  unsigned N = RI.getNumOperands();
  if (F->getReturnType()->isVoidTy())
    Assert(N == 0,
           "Found return instr that returns non-void in Function of void "
           "return type!",
           &RI, F->getReturnType());
  else
    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
           "Function return type does not match operand "
           "type of return inst!",
           &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  Type *SwitchTy = SI.getCondition()->getType();
  SmallPtrSet<ConstantInt*, 32> Constants;
  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
    Assert(i.getCaseValue()->getType() == SwitchTy,
           "Switch constants must all be same type as switch value!", &SI);
    Assert(Constants.insert(i.getCaseValue()).second,
           "Duplicate integer as switch case", &SI, i.getCaseValue());
  }

  visitTerminatorInst(SI);
}

void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
  Assert(BI.getAddress()->getType()->isPointerTy(),
         "Indirectbr operand must have pointer type!", &BI);
  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    Assert(BI.getDestination(i)->getType()->isLabelTy(),
           "Indirectbr destinations must all have pointer type!", &BI);

  visitTerminatorInst(BI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
                                         SI.getOperand(2)),
         "Invalid operands for select instruction!", &SI);

  Assert(SI.getTrueValue()->getType() == SI.getType(),
         "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}

/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert(0, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "trunc source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "zext source and destination must both be a vector or neither", &I);
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "sext source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "fptrunc source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
         "fpext source and destination must both be a vector or neither", &I);
  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "UIToFP source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isIntOrIntVectorTy(),
         "UIToFP source must be integer or integer vector", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
         &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "SIToFP source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isIntOrIntVectorTy(),
         "SIToFP source must be integer or integer vector", &I);
  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
         &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "FPToUI source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
         &I);
  Assert(DestTy->isIntOrIntVectorTy(),
         "FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert(SrcVec == DstVec,
         "FPToSI source and dest must both be vector or scalar", &I);
  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
         &I);
  Assert(DestTy->isIntOrIntVectorTy(),
         "FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
               cast<VectorType>(DestTy)->getNumElements(),
           "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->getScalarType()->isPointerTy(),
         "PtrToInt source must be pointer", &I);
  Assert(DestTy->getScalarType()->isIntegerTy(),
         "PtrToInt result must be integral", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
         &I);

  if (SrcTy->isVectorTy()) {
    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
    VectorType *VDest = dyn_cast<VectorType>(DestTy);
    Assert(VSrc->getNumElements() == VDest->getNumElements(),
           "PtrToInt Vector width mismatch", &I);
  }

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->getScalarType()->isIntegerTy(),
         "IntToPtr source must be an integral", &I);
  Assert(DestTy->getScalarType()->isPointerTy(),
         "IntToPtr result must be a pointer", &I);
  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
         &I);
  if (SrcTy->isVectorTy()) {
    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
    VectorType *VDest = dyn_cast<VectorType>(DestTy);
    Assert(VSrc->getNumElements() == VDest->getNumElements(),
           "IntToPtr Vector width mismatch", &I);
  }
  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  Assert(
      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
      "Invalid bitcast", &I);
  visitInstruction(I);
}

void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
         &I);
  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
         &I);
  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
         "AddrSpaceCast must be between different address spaces", &I);
  if (SrcTy->isVectorTy())
    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
           "AddrSpaceCast vector pointer number of elements mismatch", &I);
  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert(&PN == &PN.getParent()->front() ||
             isa<PHINode>(--BasicBlock::iterator(&PN)),
         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());

  // Check that all of the values of the PHI node have the same type as the
  // result, and that the incoming blocks are really basic blocks.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    Assert(PN.getType() == PN.getIncomingValue(i)->getType(),
           "PHI node operands are not the same type as the result!", &PN);
  }

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::VerifyCallSite(CallSite CS) {
  Instruction *I = CS.getInstruction();

  Assert(CS.getCalledValue()->getType()->isPointerTy(),
         "Called function must be a pointer!", I);
  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());

  Assert(FPTy->getElementType()->isFunctionTy(),
         "Called function is not pointer to function type!", I);
  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert(CS.arg_size() >= FTy->getNumParams(),
           "Called function requires more parameters than were provided!", I);
  else
    Assert(CS.arg_size() == FTy->getNumParams(),
           "Incorrect number of arguments passed to called function!", I);

  // Verify that all arguments to the call match the function type.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
           "Call parameter type does not match function signature!",
           CS.getArgument(i), FTy->getParamType(i), I);

  AttributeSet Attrs = CS.getAttributes();

  Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
         "Attribute after last parameter!", I);

  // Verify call attributes.
  VerifyFunctionAttrs(FTy, Attrs, I);

  // Conservatively check the inalloca argument.
  // We have a bug if we can find that there is an underlying alloca without
  // inalloca.
  if (CS.hasInAllocaArgument()) {
    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
      Assert(AI->isUsedWithInAlloca(),
             "inalloca argument for call has mismatched alloca", AI, I);
  }

  if (FTy->isVarArg()) {
    // FIXME? is 'nest' even legal here?
    bool SawNest = false;
    bool SawReturned = false;

    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
      if (Attrs.hasAttribute(Idx, Attribute::Nest))
        SawNest = true;
      if (Attrs.hasAttribute(Idx, Attribute::Returned))
        SawReturned = true;
    }

    // Check attributes on the varargs part.
    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
      Type *Ty = CS.getArgument(Idx-1)->getType();
      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);

      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
        Assert(!SawNest, "More than one parameter has attribute nest!", I);
        SawNest = true;
      }

      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
        Assert(!SawReturned, "More than one parameter has attribute returned!",
               I);
        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
               "Incompatible argument and return types for 'returned' "
               "attribute",
               I);
        SawReturned = true;
      }

      Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
             "Attribute 'sret' cannot be used for vararg call arguments!", I);

      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
        Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
    }
  }

  // Verify that there's no metadata unless it's a direct call to an intrinsic.
  if (CS.getCalledFunction() == nullptr ||
      !CS.getCalledFunction()->getName().startswith("llvm.")) {
    for (FunctionType::param_iterator PI = FTy->param_begin(),
           PE = FTy->param_end(); PI != PE; ++PI)
      Assert(!(*PI)->isMetadataTy(),
             "Function has metadata parameter but isn't an intrinsic", I);
  }

  visitInstruction(*I);
}

/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
  if (L == R)
    return true;
  PointerType *PL = dyn_cast<PointerType>(L);
  PointerType *PR = dyn_cast<PointerType>(R);
  if (!PL || !PR)
    return false;
  return PL->getAddressSpace() == PR->getAddressSpace();
}

static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
  static const Attribute::AttrKind ABIAttrs[] = {
      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
      Attribute::InReg, Attribute::Returned};
  AttrBuilder Copy;
  for (auto AK : ABIAttrs) {
    if (Attrs.hasAttribute(I + 1, AK))
      Copy.addAttribute(AK);
  }
  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
  return Copy;
}

void Verifier::verifyMustTailCall(CallInst &CI) {
  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);

  // - The caller and callee prototypes must match.  Pointer types of
  //   parameters or return types may differ in pointee type, but not
  //   address space.
  Function *F = CI.getParent()->getParent();
  auto GetFnTy = [](Value *V) {
    return cast<FunctionType>(
        cast<PointerType>(V->getType())->getElementType());
  };
  FunctionType *CallerTy = GetFnTy(F);
  FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
         "cannot guarantee tail call due to mismatched parameter counts", &CI);
  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
         "cannot guarantee tail call due to mismatched varargs", &CI);
  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
         "cannot guarantee tail call due to mismatched return types", &CI);
  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
    Assert(
        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
        "cannot guarantee tail call due to mismatched parameter types", &CI);
  }

  // - The calling conventions of the caller and callee must match.
  Assert(F->getCallingConv() == CI.getCallingConv(),
         "cannot guarantee tail call due to mismatched calling conv", &CI);

  // - All ABI-impacting function attributes, such as sret, byval, inreg,
  //   returned, and inalloca, must match.
  AttributeSet CallerAttrs = F->getAttributes();
  AttributeSet CalleeAttrs = CI.getAttributes();
  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
    Assert(CallerABIAttrs == CalleeABIAttrs,
           "cannot guarantee tail call due to mismatched ABI impacting "
           "function attributes",
           &CI, CI.getOperand(I));
  }

  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
  //   or a pointer bitcast followed by a ret instruction.
  // - The ret instruction must return the (possibly bitcasted) value
  //   produced by the call or void.
  Value *RetVal = &CI;
  Instruction *Next = CI.getNextNode();

  // Handle the optional bitcast.
  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
    Assert(BI->getOperand(0) == RetVal,
           "bitcast following musttail call must use the call", BI);
    RetVal = BI;
    Next = BI->getNextNode();
  }

  // Check the return.
  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
         &CI);
  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
         "musttail call result must be returned", Ret);
}

void Verifier::visitCallInst(CallInst &CI) {
  VerifyCallSite(&CI);

  if (CI.isMustTailCall())
    verifyMustTailCall(CI);

  if (Function *F = CI.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);
}

void Verifier::visitInvokeInst(InvokeInst &II) {
  VerifyCallSite(&II);

  // Verify that there is a landingpad instruction as the first non-PHI
  // instruction of the 'unwind' destination.
  Assert(II.getUnwindDest()->isLandingPad(),
         "The unwind destination does not have a landingpad instruction!", &II);

  if (Function *F = II.getCalledFunction())
    // TODO: Ideally we should use visitIntrinsicFunction here. But it uses
    //       CallInst as an input parameter. It not woth updating this whole
    //       function only to support statepoint verification.
    if (F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
      VerifyStatepoint(ImmutableCallSite(&II));

  visitTerminatorInst(II);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
         "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that integer arithmetic operators are only used with
  // integral operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Integer arithmetic operators only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Integer arithmetic operators must have same type "
           "for operands and result!",
           &B);
    break;
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
    Assert(B.getType()->isFPOrFPVectorTy(),
           "Floating-point arithmetic operators only work with "
           "floating-point types!",
           &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Floating-point arithmetic operators must have same type "
           "for operands and result!",
           &B);
    break;
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Logical operators only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Logical operators must have same type for operands and result!",
           &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert(B.getType()->isIntOrIntVectorTy(),
           "Shifts only work with integral types!", &B);
    Assert(B.getType() == B.getOperand(0)->getType(),
           "Shift return type must be same as operands!", &B);
    break;
  default:
    llvm_unreachable("Unknown BinaryOperator opcode!");
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst &IC) {
  // Check that the operands are the same type
  Type *Op0Ty = IC.getOperand(0)->getType();
  Type *Op1Ty = IC.getOperand(1)->getType();
  Assert(Op0Ty == Op1Ty,
         "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
         "Invalid operand types for ICmp instruction", &IC);
  // Check that the predicate is valid.
  Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
             IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
         "Invalid predicate in ICmp instruction!", &IC);

  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst &FC) {
  // Check that the operands are the same type
  Type *Op0Ty = FC.getOperand(0)->getType();
  Type *Op1Ty = FC.getOperand(1)->getType();
  Assert(Op0Ty == Op1Ty,
         "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert(Op0Ty->isFPOrFPVectorTy(),
         "Invalid operand types for FCmp instruction", &FC);
  // Check that the predicate is valid.
  Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
             FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
         "Invalid predicate in FCmp instruction!", &FC);

  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert(
      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
      "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
                                            IE.getOperand(2)),
         "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                            SV.getOperand(2)),
         "Invalid shufflevector operands!", &SV);
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();

  Assert(isa<PointerType>(TargetTy),
         "GEP base pointer is not a vector or a vector of pointers", &GEP);
  Assert(cast<PointerType>(TargetTy)->getElementType()->isSized(),
         "GEP into unsized type!", &GEP);
  Assert(GEP.getPointerOperandType()->isVectorTy() ==
             GEP.getType()->isVectorTy(),
         "Vector GEP must return a vector value", &GEP);

  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  Type *ElTy =
      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);

  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
             cast<PointerType>(GEP.getType()->getScalarType())
                     ->getElementType() == ElTy,
         "GEP is not of right type for indices!", &GEP, ElTy);

  if (GEP.getPointerOperandType()->isVectorTy()) {
    // Additional checks for vector GEPs.
    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
    Assert(GepWidth == GEP.getType()->getVectorNumElements(),
           "Vector GEP result width doesn't match operand's", &GEP);
    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
      Type *IndexTy = Idxs[i]->getType();
      Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!",
             &GEP);
      unsigned IndexWidth = IndexTy->getVectorNumElements();
      Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
    }
  }
  visitInstruction(GEP);
}

static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}

void Verifier::visitRangeMetadata(Instruction& I,
                                  MDNode* Range, Type* Ty) {
  assert(Range &&
         Range == I.getMetadata(LLVMContext::MD_range) &&
         "precondition violation");

  unsigned NumOperands = Range->getNumOperands();
  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
  unsigned NumRanges = NumOperands / 2;
  Assert(NumRanges >= 1, "It should have at least one range!", Range);

  ConstantRange LastRange(1); // Dummy initial value
  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Low =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
    Assert(Low, "The lower limit must be an integer!", Low);
    ConstantInt *High =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
    Assert(High, "The upper limit must be an integer!", High);
    Assert(High->getType() == Low->getType() && High->getType() == Ty,
           "Range types must match instruction type!", &I);

    APInt HighV = High->getValue();
    APInt LowV = Low->getValue();
    ConstantRange CurRange(LowV, HighV);
    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
           "Range must not be empty!", Range);
    if (i != 0) {
      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
             "Intervals are overlapping", Range);
      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
             Range);
      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
             Range);
    }
    LastRange = ConstantRange(LowV, HighV);
  }
  if (NumRanges > 2) {
    APInt FirstLow =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
    APInt FirstHigh =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
    ConstantRange FirstRange(FirstLow, FirstHigh);
    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
           "Intervals are overlapping", Range);
    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
           Range);
  }
}

void Verifier::visitLoadInst(LoadInst &LI) {
  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
  Assert(PTy, "Load operand must be a pointer.", &LI);
  Type *ElTy = LI.getType();
  Assert(LI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &LI);
  if (LI.isAtomic()) {
    Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
           "Load cannot have Release ordering", &LI);
    Assert(LI.getAlignment() != 0,
           "Atomic load must specify explicit alignment", &LI);
    if (!ElTy->isPointerTy()) {
      Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
             &LI, ElTy);
      unsigned Size = ElTy->getPrimitiveSizeInBits();
      Assert(Size >= 8 && !(Size & (Size - 1)),
             "atomic load operand must be power-of-two byte-sized integer", &LI,
             ElTy);
    }
  } else {
    Assert(LI.getSynchScope() == CrossThread,
           "Non-atomic load cannot have SynchronizationScope specified", &LI);
  }

  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
  Assert(PTy, "Store operand must be a pointer.", &SI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy == SI.getOperand(0)->getType(),
         "Stored value type does not match pointer operand type!", &SI, ElTy);
  Assert(SI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &SI);
  if (SI.isAtomic()) {
    Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
           "Store cannot have Acquire ordering", &SI);
    Assert(SI.getAlignment() != 0,
           "Atomic store must specify explicit alignment", &SI);
    if (!ElTy->isPointerTy()) {
      Assert(ElTy->isIntegerTy(),
             "atomic store operand must have integer type!", &SI, ElTy);
      unsigned Size = ElTy->getPrimitiveSizeInBits();
      Assert(Size >= 8 && !(Size & (Size - 1)),
             "atomic store operand must be power-of-two byte-sized integer",
             &SI, ElTy);
    }
  } else {
    Assert(SI.getSynchScope() == CrossThread,
           "Non-atomic store cannot have SynchronizationScope specified", &SI);
  }
  visitInstruction(SI);
}

void Verifier::visitAllocaInst(AllocaInst &AI) {
  SmallPtrSet<const Type*, 4> Visited;
  PointerType *PTy = AI.getType();
  Assert(PTy->getAddressSpace() == 0,
         "Allocation instruction pointer not in the generic address space!",
         &AI);
  Assert(PTy->getElementType()->isSized(&Visited),
         "Cannot allocate unsized type", &AI);
  Assert(AI.getArraySize()->getType()->isIntegerTy(),
         "Alloca array size must have integer type", &AI);
  Assert(AI.getAlignment() <= Value::MaximumAlignment,
         "huge alignment values are unsupported", &AI);

  visitInstruction(AI);
}

void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {

  // FIXME: more conditions???
  Assert(CXI.getSuccessOrdering() != NotAtomic,
         "cmpxchg instructions must be atomic.", &CXI);
  Assert(CXI.getFailureOrdering() != NotAtomic,
         "cmpxchg instructions must be atomic.", &CXI);
  Assert(CXI.getSuccessOrdering() != Unordered,
         "cmpxchg instructions cannot be unordered.", &CXI);
  Assert(CXI.getFailureOrdering() != Unordered,
         "cmpxchg instructions cannot be unordered.", &CXI);
  Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
         "cmpxchg instructions be at least as constrained on success as fail",
         &CXI);
  Assert(CXI.getFailureOrdering() != Release &&
             CXI.getFailureOrdering() != AcquireRelease,
         "cmpxchg failure ordering cannot include release semantics", &CXI);

  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
         ElTy);
  unsigned Size = ElTy->getPrimitiveSizeInBits();
  Assert(Size >= 8 && !(Size & (Size - 1)),
         "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
  Assert(ElTy == CXI.getOperand(1)->getType(),
         "Expected value type does not match pointer operand type!", &CXI,
         ElTy);
  Assert(ElTy == CXI.getOperand(2)->getType(),
         "Stored value type does not match pointer operand type!", &CXI, ElTy);
  visitInstruction(CXI);
}

void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
  Assert(RMWI.getOrdering() != NotAtomic,
         "atomicrmw instructions must be atomic.", &RMWI);
  Assert(RMWI.getOrdering() != Unordered,
         "atomicrmw instructions cannot be unordered.", &RMWI);
  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
  Type *ElTy = PTy->getElementType();
  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
         &RMWI, ElTy);
  unsigned Size = ElTy->getPrimitiveSizeInBits();
  Assert(Size >= 8 && !(Size & (Size - 1)),
         "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
         ElTy);
  Assert(ElTy == RMWI.getOperand(1)->getType(),
         "Argument value type does not match pointer operand type!", &RMWI,
         ElTy);
  Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
             RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
         "Invalid binary operation!", &RMWI);
  visitInstruction(RMWI);
}

void Verifier::visitFenceInst(FenceInst &FI) {
  const AtomicOrdering Ordering = FI.getOrdering();
  Assert(Ordering == Acquire || Ordering == Release ||
             Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
         "fence instructions may only have "
         "acquire, release, acq_rel, or seq_cst ordering.",
         &FI);
  visitInstruction(FI);
}

void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
                                          EVI.getIndices()) == EVI.getType(),
         "Invalid ExtractValueInst operands!", &EVI);

  visitInstruction(EVI);
}

void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
                                          IVI.getIndices()) ==
             IVI.getOperand(1)->getType(),
         "Invalid InsertValueInst operands!", &IVI);

  visitInstruction(IVI);
}

void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
  BasicBlock *BB = LPI.getParent();

  // The landingpad instruction is ill-formed if it doesn't have any clauses and
  // isn't a cleanup.
  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);

  // The landingpad instruction defines its parent as a landing pad block. The
  // landing pad block may be branched to only by the unwind edge of an invoke.
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
    Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
           "Block containing LandingPadInst must be jumped to "
           "only by the unwind edge of an invoke.",
           &LPI);
  }

  // The landingpad instruction must be the first non-PHI instruction in the
  // block.
  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
         "LandingPadInst not the first non-PHI instruction in the block.",
         &LPI);

  // The personality functions for all landingpad instructions within the same
  // function should match.
  if (PersonalityFn)
    Assert(LPI.getPersonalityFn() == PersonalityFn,
           "Personality function doesn't match others in function", &LPI);
  PersonalityFn = LPI.getPersonalityFn();

  // All operands must be constants.
  Assert(isa<Constant>(PersonalityFn), "Personality function is not constant!",
         &LPI);
  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
    Constant *Clause = LPI.getClause(i);
    if (LPI.isCatch(i)) {
      Assert(isa<PointerType>(Clause->getType()),
             "Catch operand does not have pointer type!", &LPI);
    } else {
      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
             "Filter operand is not an array of constants!", &LPI);
    }
  }

  visitInstruction(LPI);
}

void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
  Instruction *Op = cast<Instruction>(I.getOperand(i));
  // If the we have an invalid invoke, don't try to compute the dominance.
  // We already reject it in the invoke specific checks and the dominance
  // computation doesn't handle multiple edges.
  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
    if (II->getNormalDest() == II->getUnwindDest())
      return;
  }

  const Use &U = I.getOperandUse(i);
  Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
         "Instruction does not dominate all uses!", Op, &I);
}

/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (User *U : I.users()) {
      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
             "Only PHI nodes may reference their own value!", &I);
    }
  }

  // Check that void typed values don't have names
  Assert(!I.getType()->isVoidTy() || !I.hasName(),
         "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
         "Instruction returns a non-scalar type!", &I);

  // Check that the instruction doesn't produce metadata. Calls are already
  // checked against the callee type.
  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
         "Invalid use of metadata!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (Use &U : I.uses()) {
    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
      Assert(Used->getParent() != nullptr,
             "Instruction referencing"
             " instruction not embedded in a basic block!",
             &I, Used);
    else {
      CheckFailed("Use of instruction is not an instruction!", U);
      return;
    }
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
      Assert(0, "Instruction operands must be first-class values!", &I);
    }

    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert(
          !F->isIntrinsic() ||
              i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
          "Cannot take the address of an intrinsic!", &I);
      Assert(
          !F->isIntrinsic() || isa<CallInst>(I) ||
              F->getIntrinsicID() == Intrinsic::donothing ||
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
          "Cannot invoke an intrinsinc other than"
          " donothing or patchpoint",
          &I);
      Assert(F->getParent() == M, "Referencing function in another module!",
             &I);
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert(OpBB->getParent() == BB->getParent(),
             "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert(OpArg->getParent() == BB->getParent(),
             "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert(GV->getParent() == M, "Referencing global in another module!", &I);
    } else if (isa<Instruction>(I.getOperand(i))) {
      verifyDominatesUse(I, i);
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert((i + 1 == e && isa<CallInst>(I)) ||
                 (i + 3 == e && isa<InvokeInst>(I)),
             "Cannot take the address of an inline asm!", &I);
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
      if (CE->getType()->isPtrOrPtrVectorTy()) {
        // If we have a ConstantExpr pointer, we need to see if it came from an
        // illegal bitcast (inttoptr <constant int> )
        SmallVector<const ConstantExpr *, 4> Stack;
        SmallPtrSet<const ConstantExpr *, 4> Visited;
        Stack.push_back(CE);

        while (!Stack.empty()) {
          const ConstantExpr *V = Stack.pop_back_val();
          if (!Visited.insert(V).second)
            continue;

          VerifyConstantExprBitcastType(V);

          for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
            if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
              Stack.push_back(Op);
          }
        }
      }
    }
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
    Assert(I.getType()->isFPOrFPVectorTy(),
           "fpmath requires a floating point result!", &I);
    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
    if (ConstantFP *CFP0 =
            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
      APFloat Accuracy = CFP0->getValueAPF();
      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
             "fpmath accuracy not a positive number!", &I);
    } else {
      Assert(false, "invalid fpmath accuracy!", &I);
    }
  }

  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
           "Ranges are only for loads, calls and invokes!", &I);
    visitRangeMetadata(I, Range, I.getType());
  }

  if (I.getMetadata(LLVMContext::MD_nonnull)) {
    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
           &I);
    Assert(isa<LoadInst>(I),
           "nonnull applies only to load instructions, use attributes"
           " for calls or invokes",
           &I);
  }

  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
    Assert(isa<MDLocation>(N), "invalid !dbg metadata attachment", &I, N);
    visitMDNode(*N);
  }

  InstsInThisBlock.insert(&I);
}

/// VerifyIntrinsicType - Verify that the specified type (which comes from an
/// intrinsic argument or return value) matches the type constraints specified
/// by the .td file (e.g. an "any integer" argument really is an integer).
///
/// This return true on error but does not print a message.
bool Verifier::VerifyIntrinsicType(Type *Ty,
                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
                                   SmallVectorImpl<Type*> &ArgTys) {
  using namespace Intrinsic;

  // If we ran out of descriptors, there are too many arguments.
  if (Infos.empty()) return true;
  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);

  switch (D.Kind) {
  case IITDescriptor::Void: return !Ty->isVoidTy();
  case IITDescriptor::VarArg: return true;
  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
  case IITDescriptor::Half: return !Ty->isHalfTy();
  case IITDescriptor::Float: return !Ty->isFloatTy();
  case IITDescriptor::Double: return !Ty->isDoubleTy();
  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
  case IITDescriptor::Vector: {
    VectorType *VT = dyn_cast<VectorType>(Ty);
    return !VT || VT->getNumElements() != D.Vector_Width ||
           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
  }
  case IITDescriptor::Pointer: {
    PointerType *PT = dyn_cast<PointerType>(Ty);
    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
  }

  case IITDescriptor::Struct: {
    StructType *ST = dyn_cast<StructType>(Ty);
    if (!ST || ST->getNumElements() != D.Struct_NumElements)
      return true;

    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
        return true;
    return false;
  }

  case IITDescriptor::Argument:
    // Two cases here - If this is the second occurrence of an argument, verify
    // that the later instance matches the previous instance.
    if (D.getArgumentNumber() < ArgTys.size())
      return Ty != ArgTys[D.getArgumentNumber()];

    // Otherwise, if this is the first instance of an argument, record it and
    // verify the "Any" kind.
    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
    ArgTys.push_back(Ty);

    switch (D.getArgumentKind()) {
    case IITDescriptor::AK_Any:        return false; // Success
    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
    }
    llvm_unreachable("all argument kinds not covered");

  case IITDescriptor::ExtendArgument: {
    // This may only be used when referring to a previous vector argument.
    if (D.getArgumentNumber() >= ArgTys.size())
      return true;

    Type *NewTy = ArgTys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
      NewTy = VectorType::getExtendedElementVectorType(VTy);
    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
    else
      return true;

    return Ty != NewTy;
  }
  case IITDescriptor::TruncArgument: {
    // This may only be used when referring to a previous vector argument.
    if (D.getArgumentNumber() >= ArgTys.size())
      return true;

    Type *NewTy = ArgTys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
      NewTy = VectorType::getTruncatedElementVectorType(VTy);
    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
    else
      return true;

    return Ty != NewTy;
  }
  case IITDescriptor::HalfVecArgument:
    // This may only be used when referring to a previous vector argument.
    return D.getArgumentNumber() >= ArgTys.size() ||
           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
           VectorType::getHalfElementsVectorType(
                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
  case IITDescriptor::SameVecWidthArgument: {
    if (D.getArgumentNumber() >= ArgTys.size())
      return true;
    VectorType * ReferenceType =
      dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
    VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
    if (!ThisArgType || !ReferenceType || 
        (ReferenceType->getVectorNumElements() !=
         ThisArgType->getVectorNumElements()))
      return true;
    return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
                               Infos, ArgTys);
  }
  case IITDescriptor::PtrToArgument: {
    if (D.getArgumentNumber() >= ArgTys.size())
      return true;
    Type * ReferenceType = ArgTys[D.getArgumentNumber()];
    PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
    return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
  }
  case IITDescriptor::VecOfPtrsToElt: {
    if (D.getArgumentNumber() >= ArgTys.size())
      return true;
    VectorType * ReferenceType =
      dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
    VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
    if (!ThisArgVecTy || !ReferenceType || 
        (ReferenceType->getVectorNumElements() !=
         ThisArgVecTy->getVectorNumElements()))
      return true;
    PointerType *ThisArgEltTy =
      dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
    if (!ThisArgEltTy)
      return true;
    return (!(ThisArgEltTy->getElementType() ==
            ReferenceType->getVectorElementType()));
  }
  }
  llvm_unreachable("unhandled");
}

/// \brief Verify if the intrinsic has variable arguments.
/// This method is intended to be called after all the fixed arguments have been
/// verified first.
///
/// This method returns true on error and does not print an error message.
bool
Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
  using namespace Intrinsic;

  // If there are no descriptors left, then it can't be a vararg.
  if (Infos.empty())
    return isVarArg;

  // There should be only one descriptor remaining at this point.
  if (Infos.size() != 1)
    return true;

  // Check and verify the descriptor.
  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);
  if (D.Kind == IITDescriptor::VarArg)
    return !isVarArg;

  return true;
}

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
         IF);

  // Verify that the intrinsic prototype lines up with what the .td files
  // describe.
  FunctionType *IFTy = IF->getFunctionType();
  bool IsVarArg = IFTy->isVarArg();

  SmallVector<Intrinsic::IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(ID, Table);
  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;

  SmallVector<Type *, 4> ArgTys;
  Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
         "Intrinsic has incorrect return type!", IF);
  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
    Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
           "Intrinsic has incorrect argument type!", IF);

  // Verify if the intrinsic call matches the vararg property.
  if (IsVarArg)
    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
           "Intrinsic was not defined with variable arguments!", IF);
  else
    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
           "Callsite was not defined with variable arguments!", IF);

  // All descriptors should be absorbed by now.
  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);

  // Now that we have the intrinsic ID and the actual argument types (and we
  // know they are legal for the intrinsic!) get the intrinsic name through the
  // usual means.  This allows us to verify the mangling of argument types into
  // the name.
  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
  Assert(ExpectedName == IF->getName(),
         "Intrinsic name not mangled correctly for type arguments! "
         "Should be: " +
             ExpectedName,
         IF);

  // If the intrinsic takes MDNode arguments, verify that they are either global
  // or are local to *this* function.
  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
    if (auto *MD = dyn_cast<MetadataAsValue>(CI.getArgOperand(i)))
      visitMetadataAsValue(*MD, CI.getParent()->getParent());

  switch (ID) {
  default:
    break;
  case Intrinsic::ctlz:  // llvm.ctlz
  case Intrinsic::cttz:  // llvm.cttz
    Assert(isa<ConstantInt>(CI.getArgOperand(1)),
           "is_zero_undef argument of bit counting intrinsics must be a "
           "constant int",
           &CI);
    break;
  case Intrinsic::dbg_declare: // llvm.dbg.declare
    Assert(isa<MetadataAsValue>(CI.getArgOperand(0)),
           "invalid llvm.dbg.declare intrinsic call 1", &CI);
    visitDbgIntrinsic("declare", cast<DbgDeclareInst>(CI));
    break;
  case Intrinsic::dbg_value: // llvm.dbg.value
    visitDbgIntrinsic("value", cast<DbgValueInst>(CI));
    break;
  case Intrinsic::memcpy:
  case Intrinsic::memmove:
  case Intrinsic::memset: {
    ConstantInt *AlignCI = dyn_cast<ConstantInt>(CI.getArgOperand(3));
    Assert(AlignCI,
           "alignment argument of memory intrinsics must be a constant int",
           &CI);
    const APInt &AlignVal = AlignCI->getValue();
    Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
           "alignment argument of memory intrinsics must be a power of 2", &CI);
    Assert(isa<ConstantInt>(CI.getArgOperand(4)),
           "isvolatile argument of memory intrinsics must be a constant int",
           &CI);
    break;
  }
  case Intrinsic::gcroot:
  case Intrinsic::gcwrite:
  case Intrinsic::gcread:
    if (ID == Intrinsic::gcroot) {
      AllocaInst *AI =
        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
      Assert(isa<Constant>(CI.getArgOperand(1)),
             "llvm.gcroot parameter #2 must be a constant.", &CI);
      if (!AI->getType()->getElementType()->isPointerTy()) {
        Assert(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
               "llvm.gcroot parameter #1 must either be a pointer alloca, "
               "or argument #2 must be a non-null constant.",
               &CI);
      }
    }

    Assert(CI.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", &CI);
    break;
  case Intrinsic::init_trampoline:
    Assert(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
           "llvm.init_trampoline parameter #2 must resolve to a function.",
           &CI);
    break;
  case Intrinsic::prefetch:
    Assert(isa<ConstantInt>(CI.getArgOperand(1)) &&
               isa<ConstantInt>(CI.getArgOperand(2)) &&
               cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
               cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
           "invalid arguments to llvm.prefetch", &CI);
    break;
  case Intrinsic::stackprotector:
    Assert(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
           "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI);
    break;
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end:
  case Intrinsic::invariant_start:
    Assert(isa<ConstantInt>(CI.getArgOperand(0)),
           "size argument of memory use markers must be a constant integer",
           &CI);
    break;
  case Intrinsic::invariant_end:
    Assert(isa<ConstantInt>(CI.getArgOperand(1)),
           "llvm.invariant.end parameter #2 must be a constant integer", &CI);
    break;

  case Intrinsic::frameescape: {
    BasicBlock *BB = CI.getParent();
    Assert(BB == &BB->getParent()->front(),
           "llvm.frameescape used outside of entry block", &CI);
    Assert(!SawFrameEscape,
           "multiple calls to llvm.frameescape in one function", &CI);
    for (Value *Arg : CI.arg_operands()) {
      if (isa<ConstantPointerNull>(Arg))
        continue; // Null values are allowed as placeholders.
      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
      Assert(AI && AI->isStaticAlloca(),
             "llvm.frameescape only accepts static allocas", &CI);
    }
    FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands();
    SawFrameEscape = true;
    break;
  }
  case Intrinsic::framerecover: {
    Value *FnArg = CI.getArgOperand(0)->stripPointerCasts();
    Function *Fn = dyn_cast<Function>(FnArg);
    Assert(Fn && !Fn->isDeclaration(),
           "llvm.framerecover first "
           "argument must be function defined in this module",
           &CI);
    auto *IdxArg = dyn_cast<ConstantInt>(CI.getArgOperand(2));
    Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int",
           &CI);
    auto &Entry = FrameEscapeInfo[Fn];
    Entry.second = unsigned(
        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
    break;
  }

  case Intrinsic::experimental_gc_statepoint:
    Assert(!CI.isInlineAsm(),
           "gc.statepoint support for inline assembly unimplemented", &CI);
    Assert(CI.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", &CI);

    VerifyStatepoint(ImmutableCallSite(&CI));
    break;
  case Intrinsic::experimental_gc_result_int:
  case Intrinsic::experimental_gc_result_float:
  case Intrinsic::experimental_gc_result_ptr:
  case Intrinsic::experimental_gc_result: {
    Assert(CI.getParent()->getParent()->hasGC(),
           "Enclosing function does not use GC.", &CI);
    // Are we tied to a statepoint properly?
    CallSite StatepointCS(CI.getArgOperand(0));
    const Function *StatepointFn =
      StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
    Assert(StatepointFn && StatepointFn->isDeclaration() &&
               StatepointFn->getIntrinsicID() ==
                   Intrinsic::experimental_gc_statepoint,
           "gc.result operand #1 must be from a statepoint", &CI,
           CI.getArgOperand(0));

    // Assert that result type matches wrapped callee.
    const Value *Target = StatepointCS.getArgument(0);
    const PointerType *PT = cast<PointerType>(Target->getType());
    const FunctionType *TargetFuncType =
      cast<FunctionType>(PT->getElementType());
    Assert(CI.getType() == TargetFuncType->getReturnType(),
           "gc.result result type does not match wrapped callee", &CI);
    break;
  }
  case Intrinsic::experimental_gc_relocate: {
    Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI);

    // Check that this relocate is correctly tied to the statepoint

    // This is case for relocate on the unwinding path of an invoke statepoint
    if (ExtractValueInst *ExtractValue =
          dyn_cast<ExtractValueInst>(CI.getArgOperand(0))) {
      Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
             "gc relocate on unwind path incorrectly linked to the statepoint",
             &CI);

      const BasicBlock *invokeBB =
        ExtractValue->getParent()->getUniquePredecessor();

      // Landingpad relocates should have only one predecessor with invoke
      // statepoint terminator
      Assert(invokeBB, "safepoints should have unique landingpads",
             ExtractValue->getParent());
      Assert(invokeBB->getTerminator(), "safepoint block should be well formed",
             invokeBB);
      Assert(isStatepoint(invokeBB->getTerminator()),
             "gc relocate should be linked to a statepoint", invokeBB);
    }
    else {
      // In all other cases relocate should be tied to the statepoint directly.
      // This covers relocates on a normal return path of invoke statepoint and
      // relocates of a call statepoint
      auto Token = CI.getArgOperand(0);
      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
             "gc relocate is incorrectly tied to the statepoint", &CI, Token);
    }

    // Verify rest of the relocate arguments

    GCRelocateOperands ops(&CI);
    ImmutableCallSite StatepointCS(ops.statepoint());

    // Both the base and derived must be piped through the safepoint
    Value* Base = CI.getArgOperand(1);
    Assert(isa<ConstantInt>(Base),
           "gc.relocate operand #2 must be integer offset", &CI);

    Value* Derived = CI.getArgOperand(2);
    Assert(isa<ConstantInt>(Derived),
           "gc.relocate operand #3 must be integer offset", &CI);

    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
    // Check the bounds
    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
           "gc.relocate: statepoint base index out of bounds", &CI);
    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
           "gc.relocate: statepoint derived index out of bounds", &CI);

    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
    // section of the statepoint's argument
    Assert(StatepointCS.arg_size() > 0,
           "gc.statepoint: insufficient arguments");
    Assert(isa<ConstantInt>(StatepointCS.getArgument(1)),
           "gc.statement: number of call arguments must be constant integer");
    const unsigned NumCallArgs =
      cast<ConstantInt>(StatepointCS.getArgument(1))->getZExtValue();
    Assert(StatepointCS.arg_size() > NumCallArgs+3,
           "gc.statepoint: mismatch in number of call arguments");
    Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs+3)),
           "gc.statepoint: number of deoptimization arguments must be "
           "a constant integer");
    const int NumDeoptArgs =
      cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue();
    const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4;
    const int GCParamArgsEnd = StatepointCS.arg_size();
    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
           "gc.relocate: statepoint base index doesn't fall within the "
           "'gc parameters' section of the statepoint call",
           &CI);
    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
           "gc.relocate: statepoint derived index doesn't fall within the "
           "'gc parameters' section of the statepoint call",
           &CI);

    // Assert that the result type matches the type of the relocated pointer
    GCRelocateOperands Operands(&CI);
    Assert(Operands.derivedPtr()->getType() == CI.getType(),
           "gc.relocate: relocating a pointer shouldn't change its type", &CI);
    break;
  }
  };
}

/// \brief Carefully grab the subprogram from a local scope.
///
/// This carefully grabs the subprogram from a local scope, avoiding the
/// built-in assertions that would typically fire.
static MDSubprogram *getSubprogram(Metadata *LocalScope) {
  if (!LocalScope)
    return nullptr;

  if (auto *SP = dyn_cast<MDSubprogram>(LocalScope))
    return SP;

  if (auto *LB = dyn_cast<MDLexicalBlockBase>(LocalScope))
    return getSubprogram(LB->getRawScope());

  // Just return null; broken scope chains are checked elsewhere.
  assert(!isa<MDLocalScope>(LocalScope) && "Unknown type of local scope");
  return nullptr;
}

template <class DbgIntrinsicTy>
void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
  Assert(isa<ValueAsMetadata>(MD) ||
             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
  Assert(isa<MDLocalVariable>(DII.getRawVariable()),
         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
         DII.getRawVariable());
  Assert(isa<MDExpression>(DII.getRawExpression()),
         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
         DII.getRawExpression());

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
    if (!isa<MDLocation>(N))
      return;

  BasicBlock *BB = DII.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  MDLocalVariable *Var = DII.getVariable();
  MDLocation *Loc = DII.getDebugLoc();
  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
         &DII, BB, F);

  MDSubprogram *VarSP = getSubprogram(Var->getRawScope());
  MDSubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!VarSP || !LocSP)
    return; // Broken scope chains are checked elsewhere.

  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
                             " variable and !dbg attachment",
         &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
         Loc->getScope()->getSubprogram());
}

template <class MapTy>
static uint64_t getVariableSize(const MDLocalVariable &V, const MapTy &Map) {
  // Be careful of broken types (checked elsewhere).
  const Metadata *RawType = V.getRawType();
  while (RawType) {
    // Try to get the size directly.
    if (auto *T = dyn_cast<MDType>(RawType))
      if (uint64_t Size = T->getSizeInBits())
        return Size;

    if (auto *DT = dyn_cast<MDDerivedType>(RawType)) {
      // Look at the base type.
      RawType = DT->getRawBaseType();
      continue;
    }

    if (auto *S = dyn_cast<MDString>(RawType)) {
      // Don't error on missing types (checked elsewhere).
      RawType = Map.lookup(S);
      continue;
    }

    // Missing type or size.
    break;
  }

  // Fail gracefully.
  return 0;
}

template <class MapTy>
void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
                                        const MapTy &TypeRefs) {
  MDLocalVariable *V;
  MDExpression *E;
  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
    V = dyn_cast_or_null<MDLocalVariable>(DVI->getRawVariable());
    E = dyn_cast_or_null<MDExpression>(DVI->getRawExpression());
  } else {
    auto *DDI = cast<DbgDeclareInst>(&I);
    V = dyn_cast_or_null<MDLocalVariable>(DDI->getRawVariable());
    E = dyn_cast_or_null<MDExpression>(DDI->getRawExpression());
  }

  // We don't know whether this intrinsic verified correctly.
  if (!V || !E || !E->isValid())
    return;

  // Nothing to do if this isn't a bit piece expression.
  if (!E->isBitPiece())
    return;

  // If there's no size, the type is broken, but that should be checked
  // elsewhere.
  uint64_t VarSize = getVariableSize(*V, TypeRefs);
  if (!VarSize)
    return;

  unsigned PieceSize = E->getBitPieceSize();
  unsigned PieceOffset = E->getBitPieceOffset();
  Assert(PieceSize + PieceOffset <= VarSize,
         "piece is larger than or outside of variable", &I, V, E);
  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
}

void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
  // This is in its own function so we get an error for each bad type ref (not
  // just the first).
  Assert(false, "unresolved type ref", S, N);
}

void Verifier::verifyTypeRefs() {
  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
  if (!CUs)
    return;

  // Visit all the compile units again to map the type references.
  SmallDenseMap<const MDString *, const MDType *, 32> TypeRefs;
  for (auto *CU : CUs->operands())
    if (auto Ts = cast<MDCompileUnit>(CU)->getRetainedTypes())
      for (MDType *Op : Ts)
        if (auto *T = dyn_cast<MDCompositeType>(Op))
          if (auto *S = T->getRawIdentifier()) {
            UnresolvedTypeRefs.erase(S);
            TypeRefs.insert(std::make_pair(S, T));
          }

  // Verify debug info intrinsic bit piece expressions.  This needs a second
  // pass through the intructions, since we haven't built TypeRefs yet when
  // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
  // later/now would queue up some that could be later deleted.
  for (const Function &F : *M)
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
          verifyBitPieceExpression(*DII, TypeRefs);

  // Return early if all typerefs were resolved.
  if (UnresolvedTypeRefs.empty())
    return;

  // Sort the unresolved references by name so the output is deterministic.
  typedef std::pair<const MDString *, const MDNode *> TypeRef;
  SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
                                      UnresolvedTypeRefs.end());
  std::sort(Unresolved.begin(), Unresolved.end(),
            [](const TypeRef &LHS, const TypeRef &RHS) {
    return LHS.first->getString() < RHS.first->getString();
  });

  // Visit the unresolved refs (printing out the errors).
  for (const TypeRef &TR : Unresolved)
    visitUnresolvedTypeRef(TR.first, TR.second);
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
  Function &F = const_cast<Function &>(f);
  assert(!F.isDeclaration() && "Cannot verify external functions");

  raw_null_ostream NullStr;
  Verifier V(OS ? *OS : NullStr);

  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return !V.verify(F);
}

bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
  raw_null_ostream NullStr;
  Verifier V(OS ? *OS : NullStr);

  bool Broken = false;
  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->isDeclaration() && !I->isMaterializable())
      Broken |= !V.verify(*I);

  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return !V.verify(M) || Broken;
}

namespace {
struct VerifierLegacyPass : public FunctionPass {
  static char ID;

  Verifier V;
  bool FatalErrors;

  VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }
  explicit VerifierLegacyPass(bool FatalErrors)
      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (!V.verify(F) && FatalErrors)
      report_fatal_error("Broken function found, compilation aborted!");

    return false;
  }

  bool doFinalization(Module &M) override {
    if (!V.verify(M) && FatalErrors)
      report_fatal_error("Broken module found, compilation aborted!");

    return false;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
};
}

char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)

FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
  return new VerifierLegacyPass(FatalErrors);
}

PreservedAnalyses VerifierPass::run(Module &M) {
  if (verifyModule(M, &dbgs()) && FatalErrors)
    report_fatal_error("Broken module found, compilation aborted!");

  return PreservedAnalyses::all();
}

PreservedAnalyses VerifierPass::run(Function &F) {
  if (verifyFunction(F, &dbgs()) && FatalErrors)
    report_fatal_error("Broken function found, compilation aborted!");

  return PreservedAnalyses::all();
}