aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Linker/LinkModules.cpp
blob: 60fa9a76e2a2dfc95eb0e0dec1a23b1ac91a97d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM module linker.
//
//===----------------------------------------------------------------------===//

#include "llvm/Linker.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//

namespace {
class TypeMapTy : public ValueMapTypeRemapper {
  /// MappedTypes - This is a mapping from a source type to a destination type
  /// to use.
  DenseMap<Type*, Type*> MappedTypes;

  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
  /// we speculatively add types to MappedTypes, but keep track of them here in
  /// case we need to roll back.
  SmallVector<Type*, 16> SpeculativeTypes;
  
  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
  /// source module that are mapped to an opaque struct in the destination
  /// module.
  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
  
  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
  /// destination modules who are getting a body from the source module.
  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
public:
  
  /// addTypeMapping - Indicate that the specified type in the destination
  /// module is conceptually equivalent to the specified type in the source
  /// module.
  void addTypeMapping(Type *DstTy, Type *SrcTy);

  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
  /// module from a type definition in the source module.
  void linkDefinedTypeBodies();
  
  /// get - Return the mapped type to use for the specified input type from the
  /// source module.
  Type *get(Type *SrcTy);

  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}

private:
  Type *getImpl(Type *T);
  /// remapType - Implement the ValueMapTypeRemapper interface.
  Type *remapType(Type *SrcTy) {
    return get(SrcTy);
  }
  
  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}

void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry) return;
  
  if (DstTy == SrcTy) {
    Entry = DstTy;
    return;
  }
  
  // Check to see if these types are recursively isomorphic and establish a
  // mapping between them if so.
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
    // any speculative mappings we've established.
    for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
      MappedTypes.erase(SpeculativeTypes[i]);
  }
  SpeculativeTypes.clear();
}

/// areTypesIsomorphic - Recursively walk this pair of types, returning true
/// if they are isomorphic, false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
  // Two types with differing kinds are clearly not isomorphic.
  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;

  // If we have an entry in the MappedTypes table, then we have our answer.
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry)
    return Entry == DstTy;

  // Two identical types are clearly isomorphic.  Remember this
  // non-speculatively.
  if (DstTy == SrcTy) {
    Entry = DstTy;
    return true;
  }
  
  // Okay, we have two types with identical kinds that we haven't seen before.

  // If this is an opaque struct type, special case it.
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    // Mapping an opaque type to any struct, just keep the dest struct.
    if (SSTy->isOpaque()) {
      Entry = DstTy;
      SpeculativeTypes.push_back(SrcTy);
      return true;
    }

    // Mapping a non-opaque source type to an opaque dest.  If this is the first
    // type that we're mapping onto this destination type then we succeed.  Keep
    // the dest, but fill it in later.  This doesn't need to be speculative.  If
    // this is the second (different) type that we're trying to map onto the
    // same opaque type then we fail.
    if (cast<StructType>(DstTy)->isOpaque()) {
      // We can only map one source type onto the opaque destination type.
      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
        return false;
      SrcDefinitionsToResolve.push_back(SSTy);
      Entry = DstTy;
      return true;
    }
  }
  
  // If the number of subtypes disagree between the two types, then we fail.
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    return false;
  
  // Fail if any of the extra properties (e.g. array size) of the type disagree.
  if (isa<IntegerType>(DstTy))
    return false;  // bitwidth disagrees.
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
      return false;
    
  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
      return false;
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    StructType *SSTy = cast<StructType>(SrcTy);
    if (DSTy->isLiteral() != SSTy->isLiteral() ||
        DSTy->isPacked() != SSTy->isPacked())
      return false;
  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
      return false;
  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
      return false;
  }

  // Otherwise, we speculate that these two types will line up and recursively
  // check the subelements.
  Entry = DstTy;
  SpeculativeTypes.push_back(SrcTy);

  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    if (!areTypesIsomorphic(DstTy->getContainedType(i),
                            SrcTy->getContainedType(i)))
      return false;
  
  // If everything seems to have lined up, then everything is great.
  return true;
}

/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
/// module from a type definition in the source module.
void TypeMapTy::linkDefinedTypeBodies() {
  SmallVector<Type*, 16> Elements;
  SmallString<16> TmpName;
  
  // Note that processing entries in this loop (calling 'get') can add new
  // entries to the SrcDefinitionsToResolve vector.
  while (!SrcDefinitionsToResolve.empty()) {
    StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    
    // TypeMap is a many-to-one mapping, if there were multiple types that
    // provide a body for DstSTy then previous iterations of this loop may have
    // already handled it.  Just ignore this case.
    if (!DstSTy->isOpaque()) continue;
    assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
    
    // Map the body of the source type over to a new body for the dest type.
    Elements.resize(SrcSTy->getNumElements());
    for (unsigned i = 0, e = Elements.size(); i != e; ++i)
      Elements[i] = getImpl(SrcSTy->getElementType(i));
    
    DstSTy->setBody(Elements, SrcSTy->isPacked());
    
    // If DstSTy has no name or has a longer name than STy, then viciously steal
    // STy's name.
    if (!SrcSTy->hasName()) continue;
    StringRef SrcName = SrcSTy->getName();
    
    if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
      TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
      SrcSTy->setName("");
      DstSTy->setName(TmpName.str());
      TmpName.clear();
    }
  }
  
  DstResolvedOpaqueTypes.clear();
}


/// get - Return the mapped type to use for the specified input type from the
/// source module.
Type *TypeMapTy::get(Type *Ty) {
  Type *Result = getImpl(Ty);
  
  // If this caused a reference to any struct type, resolve it before returning.
  if (!SrcDefinitionsToResolve.empty())
    linkDefinedTypeBodies();
  return Result;
}

/// getImpl - This is the recursive version of get().
Type *TypeMapTy::getImpl(Type *Ty) {
  // If we already have an entry for this type, return it.
  Type **Entry = &MappedTypes[Ty];
  if (*Entry) return *Entry;
  
  // If this is not a named struct type, then just map all of the elements and
  // then rebuild the type from inside out.
  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
    // If there are no element types to map, then the type is itself.  This is
    // true for the anonymous {} struct, things like 'float', integers, etc.
    if (Ty->getNumContainedTypes() == 0)
      return *Entry = Ty;
    
    // Remap all of the elements, keeping track of whether any of them change.
    bool AnyChange = false;
    SmallVector<Type*, 4> ElementTypes;
    ElementTypes.resize(Ty->getNumContainedTypes());
    for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
      ElementTypes[i] = getImpl(Ty->getContainedType(i));
      AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    }
    
    // If we found our type while recursively processing stuff, just use it.
    Entry = &MappedTypes[Ty];
    if (*Entry) return *Entry;
    
    // If all of the element types mapped directly over, then the type is usable
    // as-is.
    if (!AnyChange)
      return *Entry = Ty;
    
    // Otherwise, rebuild a modified type.
    switch (Ty->getTypeID()) {
    default: assert(0 && "unknown derived type to remap");
    case Type::ArrayTyID:
      return *Entry = ArrayType::get(ElementTypes[0],
                                     cast<ArrayType>(Ty)->getNumElements());
    case Type::VectorTyID: 
      return *Entry = VectorType::get(ElementTypes[0],
                                      cast<VectorType>(Ty)->getNumElements());
    case Type::PointerTyID:
      return *Entry = PointerType::get(ElementTypes[0],
                                      cast<PointerType>(Ty)->getAddressSpace());
    case Type::FunctionTyID:
      return *Entry = FunctionType::get(ElementTypes[0],
                                        makeArrayRef(ElementTypes).slice(1),
                                        cast<FunctionType>(Ty)->isVarArg());
    case Type::StructTyID:
      // Note that this is only reached for anonymous structs.
      return *Entry = StructType::get(Ty->getContext(), ElementTypes,
                                      cast<StructType>(Ty)->isPacked());
    }
  }

  // Otherwise, this is an unmapped named struct.  If the struct can be directly
  // mapped over, just use it as-is.  This happens in a case when the linked-in
  // module has something like:
  //   %T = type {%T*, i32}
  //   @GV = global %T* null
  // where T does not exist at all in the destination module.
  //
  // The other case we watch for is when the type is not in the destination
  // module, but that it has to be rebuilt because it refers to something that
  // is already mapped.  For example, if the destination module has:
  //  %A = type { i32 }
  // and the source module has something like
  //  %A' = type { i32 }
  //  %B = type { %A'* }
  //  @GV = global %B* null
  // then we want to create a new type: "%B = type { %A*}" and have it take the
  // pristine "%B" name from the source module.
  //
  // To determine which case this is, we have to recursively walk the type graph
  // speculating that we'll be able to reuse it unmodified.  Only if this is
  // safe would we map the entire thing over.  Because this is an optimization,
  // and is not required for the prettiness of the linked module, we just skip
  // it and always rebuild a type here.
  StructType *STy = cast<StructType>(Ty);
  
  // If the type is opaque, we can just use it directly.
  if (STy->isOpaque())
    return *Entry = STy;
  
  // Otherwise we create a new type and resolve its body later.  This will be
  // resolved by the top level of get().
  SrcDefinitionsToResolve.push_back(STy);
  StructType *DTy = StructType::create(STy->getContext());
  DstResolvedOpaqueTypes.insert(DTy);
  return *Entry = DTy;
}



//===----------------------------------------------------------------------===//
// ModuleLinker implementation.
//===----------------------------------------------------------------------===//

namespace {
  /// ModuleLinker - This is an implementation class for the LinkModules
  /// function, which is the entrypoint for this file.
  class ModuleLinker {
    Module *DstM, *SrcM;
    
    TypeMapTy TypeMap; 

    /// ValueMap - Mapping of values from what they used to be in Src, to what
    /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    /// some overhead due to the use of Value handles which the Linker doesn't
    /// actually need, but this allows us to reuse the ValueMapper code.
    ValueToValueMapTy ValueMap;
    
    struct AppendingVarInfo {
      GlobalVariable *NewGV;  // New aggregate global in dest module.
      Constant *DstInit;      // Old initializer from dest module.
      Constant *SrcInit;      // Old initializer from src module.
    };
    
    std::vector<AppendingVarInfo> AppendingVars;
    
    unsigned Mode; // Mode to treat source module.
    
    // Set of items not to link in from source.
    SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
    
    // Vector of functions to lazily link in.
    std::vector<Function*> LazilyLinkFunctions;
    
  public:
    std::string ErrorMsg;
    
    ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
      : DstM(dstM), SrcM(srcM), Mode(mode) { }
    
    bool run();
    
  private:
    /// emitError - Helper method for setting a message and returning an error
    /// code.
    bool emitError(const Twine &Message) {
      ErrorMsg = Message.str();
      return true;
    }
    
    /// getLinkageResult - This analyzes the two global values and determines
    /// what the result will look like in the destination module.
    bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
                          GlobalValue::LinkageTypes &LT,
                          GlobalValue::VisibilityTypes &Vis,
                          bool &LinkFromSrc);

    /// getLinkedToGlobal - Given a global in the source module, return the
    /// global in the destination module that is being linked to, if any.
    GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
      // If the source has no name it can't link.  If it has local linkage,
      // there is no name match-up going on.
      if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
        return 0;
      
      // Otherwise see if we have a match in the destination module's symtab.
      GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
      if (DGV == 0) return 0;
        
      // If we found a global with the same name in the dest module, but it has
      // internal linkage, we are really not doing any linkage here.
      if (DGV->hasLocalLinkage())
        return 0;

      // Otherwise, we do in fact link to the destination global.
      return DGV;
    }
    
    void computeTypeMapping();
    
    bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    bool linkGlobalProto(GlobalVariable *SrcGV);
    bool linkFunctionProto(Function *SrcF);
    bool linkAliasProto(GlobalAlias *SrcA);
    
    void linkAppendingVarInit(const AppendingVarInfo &AVI);
    void linkGlobalInits();
    void linkFunctionBody(Function *Dst, Function *Src);
    void linkAliasBodies();
    void linkNamedMDNodes();
  };
}



/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
/// in the symbol table.  This is good for all clients except for us.  Go
/// through the trouble to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
  // If the global doesn't force its name or if it already has the right name,
  // there is nothing for us to do.
  if (GV->hasLocalLinkage() || GV->getName() == Name)
    return;

  Module *M = GV->getParent();

  // If there is a conflict, rename the conflict.
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    GV->takeName(ConflictGV);
    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
  } else {
    GV->setName(Name);              // Force the name back
  }
}

/// CopyGVAttributes - copy additional attributes (those not needed to construct
/// a GlobalValue) from the SrcGV to the DestGV.
static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
  DestGV->copyAttributesFrom(SrcGV);
  DestGV->setAlignment(Alignment);
  
  forceRenaming(DestGV, SrcGV->getName());
}

static bool isLessConstraining(GlobalValue::VisibilityTypes a,
                               GlobalValue::VisibilityTypes b) {
  if (a == GlobalValue::HiddenVisibility)
    return false;
  if (b == GlobalValue::HiddenVisibility)
    return true;
  if (a == GlobalValue::ProtectedVisibility)
    return false;
  if (b == GlobalValue::ProtectedVisibility)
    return true;
  return false;
}

/// getLinkageResult - This analyzes the two global values and determines what
/// the result will look like in the destination module.  In particular, it
/// computes the resultant linkage type and visibility, computes whether the
/// global in the source should be copied over to the destination (replacing
/// the existing one), and computes whether this linkage is an error or not.
bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
                                    GlobalValue::LinkageTypes &LT,
                                    GlobalValue::VisibilityTypes &Vis,
                                    bool &LinkFromSrc) {
  assert(Dest && "Must have two globals being queried");
  assert(!Src->hasLocalLinkage() &&
         "If Src has internal linkage, Dest shouldn't be set!");
  
  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
  bool DestIsDeclaration = Dest->isDeclaration();
  
  if (SrcIsDeclaration) {
    // If Src is external or if both Src & Dest are external..  Just link the
    // external globals, we aren't adding anything.
    if (Src->hasDLLImportLinkage()) {
      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
      if (DestIsDeclaration) {
        LinkFromSrc = true;
        LT = Src->getLinkage();
      }
    } else if (Dest->hasExternalWeakLinkage()) {
      // If the Dest is weak, use the source linkage.
      LinkFromSrc = true;
      LT = Src->getLinkage();
    } else {
      LinkFromSrc = false;
      LT = Dest->getLinkage();
    }
  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
    // If Dest is external but Src is not:
    LinkFromSrc = true;
    LT = Src->getLinkage();
  } else if (Src->isWeakForLinker()) {
    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    // or DLL* linkage.
    if (Dest->hasExternalWeakLinkage() ||
        Dest->hasAvailableExternallyLinkage() ||
        (Dest->hasLinkOnceLinkage() &&
         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
      LinkFromSrc = true;
      LT = Src->getLinkage();
    } else {
      LinkFromSrc = false;
      LT = Dest->getLinkage();
    }
  } else if (Dest->isWeakForLinker()) {
    // At this point we know that Src has External* or DLL* linkage.
    if (Src->hasExternalWeakLinkage()) {
      LinkFromSrc = false;
      LT = Dest->getLinkage();
    } else {
      LinkFromSrc = true;
      LT = GlobalValue::ExternalLinkage;
    }
  } else {
    assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
            Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
           (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
            Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
           "Unexpected linkage type!");
    return emitError("Linking globals named '" + Src->getName() +
                 "': symbol multiply defined!");
  }

  // Compute the visibility. We follow the rules in the System V Application
  // Binary Interface.
  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
    Dest->getVisibility() : Src->getVisibility();
  return false;
}

/// computeTypeMapping - Loop over all of the linked values to compute type
/// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
/// we have two struct types 'Foo' but one got renamed when the module was
/// loaded into the same LLVMContext.
void ModuleLinker::computeTypeMapping() {
  // Incorporate globals.
  for (Module::global_iterator I = SrcM->global_begin(),
       E = SrcM->global_end(); I != E; ++I) {
    GlobalValue *DGV = getLinkedToGlobal(I);
    if (DGV == 0) continue;
    
    if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
      TypeMap.addTypeMapping(DGV->getType(), I->getType());
      continue;      
    }
    
    // Unify the element type of appending arrays.
    ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
  }
  
  // Incorporate functions.
  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    if (GlobalValue *DGV = getLinkedToGlobal(I))
      TypeMap.addTypeMapping(DGV->getType(), I->getType());
  }
  
  // Incorporate types by name, scanning all the types in the source module.
  // At this point, the destination module may have a type "%foo = { i32 }" for
  // example.  When the source module got loaded into the same LLVMContext, if
  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
  // Though it isn't required for correctness, attempt to link these up to clean
  // up the IR.
  std::vector<StructType*> SrcStructTypes;
  SrcM->findUsedStructTypes(SrcStructTypes);
  
  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
                                                 SrcStructTypes.end());
  
  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
    StructType *ST = SrcStructTypes[i];
    if (!ST->hasName()) continue;
    
    // Check to see if there is a dot in the name followed by a digit.
    size_t DotPos = ST->getName().rfind('.');
    if (DotPos == 0 || DotPos == StringRef::npos ||
        ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
      continue;
    
    // Check to see if the destination module has a struct with the prefix name.
    if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
      // Don't use it if this actually came from the source module.  They're in
      // the same LLVMContext after all.
      if (!SrcStructTypesSet.count(DST))
        TypeMap.addTypeMapping(DST, ST);
  }
  
  
  // Don't bother incorporating aliases, they aren't generally typed well.
  
  // Now that we have discovered all of the type equivalences, get a body for
  // any 'opaque' types in the dest module that are now resolved. 
  TypeMap.linkDefinedTypeBodies();
}

/// linkAppendingVarProto - If there were any appending global variables, link
/// them together now.  Return true on error.
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
                                         GlobalVariable *SrcGV) {
 
  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    return emitError("Linking globals named '" + SrcGV->getName() +
           "': can only link appending global with another appending global!");
  
  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
  ArrayType *SrcTy =
    cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
  Type *EltTy = DstTy->getElementType();
  
  // Check to see that they two arrays agree on type.
  if (EltTy != SrcTy->getElementType())
    return emitError("Appending variables with different element types!");
  if (DstGV->isConstant() != SrcGV->isConstant())
    return emitError("Appending variables linked with different const'ness!");
  
  if (DstGV->getAlignment() != SrcGV->getAlignment())
    return emitError(
             "Appending variables with different alignment need to be linked!");
  
  if (DstGV->getVisibility() != SrcGV->getVisibility())
    return emitError(
            "Appending variables with different visibility need to be linked!");
  
  if (DstGV->getSection() != SrcGV->getSection())
    return emitError(
          "Appending variables with different section name need to be linked!");
  
  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
  
  // Create the new global variable.
  GlobalVariable *NG =
    new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
                       DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
                       DstGV->isThreadLocal(),
                       DstGV->getType()->getAddressSpace());
  
  // Propagate alignment, visibility and section info.
  CopyGVAttributes(NG, DstGV);
  
  AppendingVarInfo AVI;
  AVI.NewGV = NG;
  AVI.DstInit = DstGV->getInitializer();
  AVI.SrcInit = SrcGV->getInitializer();
  AppendingVars.push_back(AVI);

  // Replace any uses of the two global variables with uses of the new
  // global.
  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));

  DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
  DstGV->eraseFromParent();
  
  // Track the source variable so we don't try to link it.
  DoNotLinkFromSource.insert(SrcGV);
  
  return false;
}

/// linkGlobalProto - Loop through the global variables in the src module and
/// merge them into the dest module.
bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
  GlobalValue *DGV = getLinkedToGlobal(SGV);
  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;

  if (DGV) {
    // Concatenation of appending linkage variables is magic and handled later.
    if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
      return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
    
    // Determine whether linkage of these two globals follows the source
    // module's definition or the destination module's definition.
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    GlobalValue::VisibilityTypes NV;
    bool LinkFromSrc = false;
    if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
      return true;
    NewVisibility = NV;

    // If we're not linking from the source, then keep the definition that we
    // have.
    if (!LinkFromSrc) {
      // Special case for const propagation.
      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
        if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
          DGVar->setConstant(true);
      
      // Set calculated linkage and visibility.
      DGV->setLinkage(NewLinkage);
      DGV->setVisibility(*NewVisibility);

      // Make sure to remember this mapping.
      ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
      
      // Track the source global so that we don't attempt to copy it over when 
      // processing global initializers.
      DoNotLinkFromSource.insert(SGV);
      
      return false;
    }
  }
  
  // No linking to be performed or linking from the source: simply create an
  // identical version of the symbol over in the dest module... the
  // initializer will be filled in later by LinkGlobalInits.
  GlobalVariable *NewDGV =
    new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
                       SGV->isConstant(), SGV->getLinkage(), /*init*/0,
                       SGV->getName(), /*insertbefore*/0,
                       SGV->isThreadLocal(),
                       SGV->getType()->getAddressSpace());
  // Propagate alignment, visibility and section info.
  CopyGVAttributes(NewDGV, SGV);
  if (NewVisibility)
    NewDGV->setVisibility(*NewVisibility);

  if (DGV) {
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    DGV->eraseFromParent();
  }
  
  // Make sure to remember this mapping.
  ValueMap[SGV] = NewDGV;
  return false;
}

/// linkFunctionProto - Link the function in the source module into the
/// destination module if needed, setting up mapping information.
bool ModuleLinker::linkFunctionProto(Function *SF) {
  GlobalValue *DGV = getLinkedToGlobal(SF);
  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;

  if (DGV) {
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    bool LinkFromSrc = false;
    GlobalValue::VisibilityTypes NV;
    if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
      return true;
    NewVisibility = NV;

    if (!LinkFromSrc) {
      // Set calculated linkage
      DGV->setLinkage(NewLinkage);
      DGV->setVisibility(*NewVisibility);

      // Make sure to remember this mapping.
      ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
      
      // Track the function from the source module so we don't attempt to remap 
      // it.
      DoNotLinkFromSource.insert(SF);
      
      return false;
    }
  }
  
  // If there is no linkage to be performed or we are linking from the source,
  // bring SF over.
  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
                                     SF->getLinkage(), SF->getName(), DstM);
  CopyGVAttributes(NewDF, SF);
  if (NewVisibility)
    NewDF->setVisibility(*NewVisibility);

  if (DGV) {
    // Any uses of DF need to change to NewDF, with cast.
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    DGV->eraseFromParent();
  } else {
    // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
    if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
        SF->hasAvailableExternallyLinkage()) {
      DoNotLinkFromSource.insert(SF);
      LazilyLinkFunctions.push_back(SF);
    }
  }
  
  ValueMap[SF] = NewDF;
  return false;
}

/// LinkAliasProto - Set up prototypes for any aliases that come over from the
/// source module.
bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
  GlobalValue *DGV = getLinkedToGlobal(SGA);
  llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;

  if (DGV) {
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    GlobalValue::VisibilityTypes NV;
    bool LinkFromSrc = false;
    if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
      return true;
    NewVisibility = NV;

    if (!LinkFromSrc) {
      // Set calculated linkage.
      DGV->setLinkage(NewLinkage);
      DGV->setVisibility(*NewVisibility);

      // Make sure to remember this mapping.
      ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
      
      // Track the alias from the source module so we don't attempt to remap it.
      DoNotLinkFromSource.insert(SGA);
      
      return false;
    }
  }
  
  // If there is no linkage to be performed or we're linking from the source,
  // bring over SGA.
  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
                                       SGA->getLinkage(), SGA->getName(),
                                       /*aliasee*/0, DstM);
  CopyGVAttributes(NewDA, SGA);
  if (NewVisibility)
    NewDA->setVisibility(*NewVisibility);

  if (DGV) {
    // Any uses of DGV need to change to NewDA, with cast.
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    DGV->eraseFromParent();
  }
  
  ValueMap[SGA] = NewDA;
  return false;
}

static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();

  for (unsigned i = 0; i != NumElements; ++i)
    Dest.push_back(C->getAggregateElement(i));
}
                             
void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
  // Merge the initializer.
  SmallVector<Constant*, 16> Elements;
  getArrayElements(AVI.DstInit, Elements);
  
  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
  getArrayElements(SrcInit, Elements);
  
  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
}


// linkGlobalInits - Update the initializers in the Dest module now that all
// globals that may be referenced are in Dest.
void ModuleLinker::linkGlobalInits() {
  // Loop over all of the globals in the src module, mapping them over as we go
  for (Module::const_global_iterator I = SrcM->global_begin(),
       E = SrcM->global_end(); I != E; ++I) {
    
    // Only process initialized GV's or ones not already in dest.
    if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;          
    
    // Grab destination global variable.
    GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    // Figure out what the initializer looks like in the dest module.
    DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
                                 RF_None, &TypeMap));
  }
}

// linkFunctionBody - Copy the source function over into the dest function and
// fix up references to values.  At this point we know that Dest is an external
// function, and that Src is not.
void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());

  // Go through and convert function arguments over, remembering the mapping.
  Function::arg_iterator DI = Dst->arg_begin();
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
       I != E; ++I, ++DI) {
    DI->setName(I->getName());  // Copy the name over.

    // Add a mapping to our mapping.
    ValueMap[I] = DI;
  }

  if (Mode == Linker::DestroySource) {
    // Splice the body of the source function into the dest function.
    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    
    // At this point, all of the instructions and values of the function are now
    // copied over.  The only problem is that they are still referencing values in
    // the Source function as operands.  Loop through all of the operands of the
    // functions and patch them up to point to the local versions.
    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
    
  } else {
    // Clone the body of the function into the dest function.
    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
  }
  
  // There is no need to map the arguments anymore.
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
       I != E; ++I)
    ValueMap.erase(I);
  
}


void ModuleLinker::linkAliasBodies() {
  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
       I != E; ++I) {
    if (DoNotLinkFromSource.count(I))
      continue;
    if (Constant *Aliasee = I->getAliasee()) {
      GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
      DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
    }
  }
}

/// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
/// module.
void ModuleLinker::linkNamedMDNodes() {
  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
       E = SrcM->named_metadata_end(); I != E; ++I) {
    NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
    // Add Src elements into Dest node.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
                                   RF_None, &TypeMap));
  }
}
  
bool ModuleLinker::run() {
  assert(DstM && "Null Destination module");
  assert(SrcM && "Null Source Module");

  // Inherit the target data from the source module if the destination module
  // doesn't have one already.
  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
    DstM->setDataLayout(SrcM->getDataLayout());

  // Copy the target triple from the source to dest if the dest's is empty.
  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    DstM->setTargetTriple(SrcM->getTargetTriple());

  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
      SrcM->getDataLayout() != DstM->getDataLayout())
    errs() << "WARNING: Linking two modules of different data layouts!\n";
  if (!SrcM->getTargetTriple().empty() &&
      DstM->getTargetTriple() != SrcM->getTargetTriple()) {
    errs() << "WARNING: Linking two modules of different target triples: ";
    if (!SrcM->getModuleIdentifier().empty())
      errs() << SrcM->getModuleIdentifier() << ": ";
    errs() << "'" << SrcM->getTargetTriple() << "' and '" 
           << DstM->getTargetTriple() << "'\n";
  }

  // Append the module inline asm string.
  if (!SrcM->getModuleInlineAsm().empty()) {
    if (DstM->getModuleInlineAsm().empty())
      DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
    else
      DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
                               SrcM->getModuleInlineAsm());
  }

  // Update the destination module's dependent libraries list with the libraries
  // from the source module. There's no opportunity for duplicates here as the
  // Module ensures that duplicate insertions are discarded.
  for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
       SI != SE; ++SI)
    DstM->addLibrary(*SI);
  
  // If the source library's module id is in the dependent library list of the
  // destination library, remove it since that module is now linked in.
  StringRef ModuleId = SrcM->getModuleIdentifier();
  if (!ModuleId.empty())
    DstM->removeLibrary(sys::path::stem(ModuleId));
  
  // Loop over all of the linked values to compute type mappings.
  computeTypeMapping();

  // Insert all of the globals in src into the DstM module... without linking
  // initializers (which could refer to functions not yet mapped over).
  for (Module::global_iterator I = SrcM->global_begin(),
       E = SrcM->global_end(); I != E; ++I)
    if (linkGlobalProto(I))
      return true;

  // Link the functions together between the two modules, without doing function
  // bodies... this just adds external function prototypes to the DstM
  // function...  We do this so that when we begin processing function bodies,
  // all of the global values that may be referenced are available in our
  // ValueMap.
  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
    if (linkFunctionProto(I))
      return true;

  // If there were any aliases, link them now.
  for (Module::alias_iterator I = SrcM->alias_begin(),
       E = SrcM->alias_end(); I != E; ++I)
    if (linkAliasProto(I))
      return true;

  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
    linkAppendingVarInit(AppendingVars[i]);
  
  // Update the initializers in the DstM module now that all globals that may
  // be referenced are in DstM.
  linkGlobalInits();

  // Link in the function bodies that are defined in the source module into
  // DstM.
  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
    
    // Skip if not linking from source.
    if (DoNotLinkFromSource.count(SF)) continue;
    
    // Skip if no body (function is external) or materialize.
    if (SF->isDeclaration()) {
      if (!SF->isMaterializable())
        continue;
      if (SF->Materialize(&ErrorMsg))
        return true;
    }
    
    linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
  }

  // Resolve all uses of aliases with aliasees.
  linkAliasBodies();

  // Remap all of the named mdnoes in Src into the DstM module. We do this
  // after linking GlobalValues so that MDNodes that reference GlobalValues
  // are properly remapped.
  linkNamedMDNodes();

  // Process vector of lazily linked in functions.
  bool LinkedInAnyFunctions;
  do {
    LinkedInAnyFunctions = false;
    
    for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
        E = LazilyLinkFunctions.end(); I != E; ++I) {
      if (!*I)
        continue;
      
      Function *SF = *I;
      Function *DF = cast<Function>(ValueMap[SF]);
      
      if (!DF->use_empty()) {
        
        // Materialize if necessary.
        if (SF->isDeclaration()) {
          if (!SF->isMaterializable())
            continue;
          if (SF->Materialize(&ErrorMsg))
            return true;
        }
        
        // Link in function body.
        linkFunctionBody(DF, SF);
        
        // "Remove" from vector by setting the element to 0.
        *I = 0;
        
        // Set flag to indicate we may have more functions to lazily link in
        // since we linked in a function.
        LinkedInAnyFunctions = true;
      }
    }
  } while (LinkedInAnyFunctions);
  
  // Remove any prototypes of functions that were not actually linked in.
  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
      E = LazilyLinkFunctions.end(); I != E; ++I) {
    if (!*I)
      continue;
    
    Function *SF = *I;
    Function *DF = cast<Function>(ValueMap[SF]);
    if (DF->use_empty())
      DF->eraseFromParent();
  }
  
  // Now that all of the types from the source are used, resolve any structs
  // copied over to the dest that didn't exist there.
  TypeMap.linkDefinedTypeBodies();
  
  return false;
}

//===----------------------------------------------------------------------===//
// LinkModules entrypoint.
//===----------------------------------------------------------------------===//

// LinkModules - This function links two modules together, with the resulting
// left module modified to be the composite of the two input modules.  If an
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
// the problem.  Upon failure, the Dest module could be in a modified state, and
// shouldn't be relied on to be consistent.
bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode, 
                         std::string *ErrorMsg) {
  ModuleLinker TheLinker(Dest, Src, Mode);
  if (TheLinker.run()) {
    if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
    return true;
  }
  
  return false;
}