1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "assembler"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmBackend.h"
#include <vector>
using namespace llvm;
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
STATISTIC(EvaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
STATISTIC(SectionLayouts, "Number of section layouts");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
// We shouldn't have to do anything special to support negative slides, and it
// is a perfectly valid thing to do as long as other parts of the system are
// can guarantee convergence.
assert(SlideAmount >= 0 && "Negative slides not yet supported");
// Update the layout by simply recomputing the layout for the entire
// file. This is trivially correct, but very slow.
//
// FIXME-PERF: This is O(N^2), but will be eliminated once we get smarter.
// Layout the concrete sections and fragments.
MCAssembler &Asm = getAssembler();
uint64_t Address = 0;
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
// Skip virtual sections.
if (Asm.getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = Asm.LayoutSection(*it, *this, Address);
}
// Layout the virtual sections.
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
if (!Asm.getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = Asm.LayoutSection(*it, *this, Address);
}
}
uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
assert(F->getParent() && "Missing section()!");
return getSectionAddress(F->getParent()) + getFragmentOffset(F);
}
uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
return F->EffectiveSize;
}
void MCAsmLayout::setFragmentEffectiveSize(MCFragment *F, uint64_t Value) {
F->EffectiveSize = Value;
}
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
assert(F->Offset != ~UINT64_C(0) && "Address not set!");
return F->Offset;
}
void MCAsmLayout::setFragmentOffset(MCFragment *F, uint64_t Value) {
F->Offset = Value;
}
uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
return getFragmentAddress(SD->getFragment()) + SD->getOffset();
}
uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
assert(SD->Address != ~UINT64_C(0) && "Address not set!");
return SD->Address;
}
void MCAsmLayout::setSectionAddress(MCSectionData *SD, uint64_t Value) {
SD->Address = Value;
}
uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
assert(SD->Size != ~UINT64_C(0) && "File size not set!");
return SD->Size;
}
void MCAsmLayout::setSectionSize(MCSectionData *SD, uint64_t Value) {
SD->Size = Value;
}
uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
assert(SD->FileSize != ~UINT64_C(0) && "File size not set!");
return SD->FileSize;
}
void MCAsmLayout::setSectionFileSize(MCSectionData *SD, uint64_t Value) {
SD->FileSize = Value;
}
/// @}
/* *** */
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
: Kind(_Kind),
Parent(_Parent),
EffectiveSize(~UINT64_C(0))
{
if (Parent)
Parent->getFragmentList().push_back(this);
}
MCFragment::~MCFragment() {
}
/* *** */
MCSectionData::MCSectionData() : Section(0) {}
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(&_Section),
Alignment(1),
Address(~UINT64_C(0)),
Size(~UINT64_C(0)),
FileSize(~UINT64_C(0)),
HasInstructions(false)
{
if (A)
A->getSectionList().push_back(this);
}
/* *** */
MCSymbolData::MCSymbolData() : Symbol(0) {}
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
uint64_t _Offset, MCAssembler *A)
: Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
IsExternal(false), IsPrivateExtern(false),
CommonSize(0), CommonAlign(0), Flags(0), Index(0)
{
if (A)
A->getSymbolList().push_back(this);
}
/* *** */
MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
MCCodeEmitter &_Emitter, raw_ostream &_OS)
: Context(_Context), Backend(_Backend), Emitter(_Emitter),
OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false)
{
}
MCAssembler::~MCAssembler() {
}
static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
const MCAsmFixup &Fixup,
const MCValue Target,
const MCSection *BaseSection) {
// The effective fixup address is
// addr(atom(A)) + offset(A)
// - addr(atom(B)) - offset(B)
// - addr(<base symbol>) + <fixup offset from base symbol>
// and the offsets are not relocatable, so the fixup is fully resolved when
// addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
//
// The simple (Darwin, except on x86_64) way of dealing with this was to
// assume that any reference to a temporary symbol *must* be a temporary
// symbol in the same atom, unless the sections differ. Therefore, any PCrel
// relocation to a temporary symbol (in the same section) is fully
// resolved. This also works in conjunction with absolutized .set, which
// requires the compiler to use .set to absolutize the differences between
// symbols which the compiler knows to be assembly time constants, so we don't
// need to worry about consider symbol differences fully resolved.
// Non-relative fixups are only resolved if constant.
if (!BaseSection)
return Target.isAbsolute();
// Otherwise, relative fixups are only resolved if not a difference and the
// target is a temporary in the same section.
if (Target.isAbsolute() || Target.getSymB())
return false;
const MCSymbol *A = &Target.getSymA()->getSymbol();
if (!A->isTemporary() || !A->isInSection() ||
&A->getSection() != BaseSection)
return false;
return true;
}
static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCAsmFixup &Fixup,
const MCValue Target,
const MCSymbolData *BaseSymbol) {
// The effective fixup address is
// addr(atom(A)) + offset(A)
// - addr(atom(B)) - offset(B)
// - addr(BaseSymbol) + <fixup offset from base symbol>
// and the offsets are not relocatable, so the fixup is fully resolved when
// addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
//
// Note that "false" is almost always conservatively correct (it means we emit
// a relocation which is unnecessary), except when it would force us to emit a
// relocation which the target cannot encode.
const MCSymbolData *A_Base = 0, *B_Base = 0;
if (const MCSymbolRefExpr *A = Target.getSymA()) {
// Modified symbol references cannot be resolved.
if (A->getKind() != MCSymbolRefExpr::VK_None)
return false;
A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
if (!A_Base)
return false;
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
// Modified symbol references cannot be resolved.
if (B->getKind() != MCSymbolRefExpr::VK_None)
return false;
B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
if (!B_Base)
return false;
}
// If there is no base, A and B have to be the same atom for this fixup to be
// fully resolved.
if (!BaseSymbol)
return A_Base == B_Base;
// Otherwise, B must be missing and A must be the base.
return !B_Base && BaseSymbol == A_Base;
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const {
// Non-temporary labels should always be visible to the linker.
if (!SD->getSymbol().isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!SD->getFragment())
return false;
// Otherwise, check if the section requires symbols even for temporary labels.
return getBackend().doesSectionRequireSymbols(
SD->getFragment()->getParent()->getSection());
}
// FIXME-PERF: This routine is really slow.
const MCSymbolData *MCAssembler::getAtomForAddress(const MCAsmLayout &Layout,
const MCSectionData *Section,
uint64_t Address) const {
const MCSymbolData *Best = 0;
uint64_t BestAddress = 0;
for (MCAssembler::const_symbol_iterator it = symbol_begin(),
ie = symbol_end(); it != ie; ++it) {
// Ignore non-linker visible symbols.
if (!isSymbolLinkerVisible(it))
continue;
// Ignore symbols not in the same section.
if (!it->getFragment() || it->getFragment()->getParent() != Section)
continue;
// Otherwise, find the closest symbol preceding this address (ties are
// resolved in favor of the last defined symbol).
uint64_t SymbolAddress = Layout.getSymbolAddress(it);
if (SymbolAddress <= Address && (!Best || SymbolAddress >= BestAddress)) {
Best = it;
BestAddress = SymbolAddress;
}
}
return Best;
}
// FIXME-PERF: This routine is really slow.
const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout,
const MCSymbolData *SD) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(SD))
return SD;
// Absolute and undefined symbols have no defining atom.
if (!SD->getFragment())
return 0;
// Otherwise, search by address.
return getAtomForAddress(Layout, SD->getFragment()->getParent(),
Layout.getSymbolAddress(SD));
}
bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
const MCAsmFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::EvaluateFixup;
if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout))
report_fatal_error("expected relocatable expression");
// FIXME: How do non-scattered symbols work in ELF? I presume the linker
// doesn't support small relocations, but then under what criteria does the
// assembler allow symbol differences?
Value = Target.getConstant();
bool IsPCRel =
Emitter.getFixupKindInfo(Fixup.Kind).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved = true;
if (const MCSymbolRefExpr *A = Target.getSymA()) {
if (A->getSymbol().isDefined())
Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
else
IsResolved = false;
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
if (B->getSymbol().isDefined())
Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
else
IsResolved = false;
}
// If we are using scattered symbols, determine whether this value is actually
// resolved; scattering may cause atoms to move.
if (IsResolved && getBackend().hasScatteredSymbols()) {
if (getBackend().hasReliableSymbolDifference()) {
// If this is a PCrel relocation, find the base atom (identified by its
// symbol) that the fixup value is relative to.
const MCSymbolData *BaseSymbol = 0;
if (IsPCRel) {
BaseSymbol = getAtomForAddress(
Layout, DF->getParent(), Layout.getFragmentAddress(DF)+Fixup.Offset);
if (!BaseSymbol)
IsResolved = false;
}
if (IsResolved)
IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target,
BaseSymbol);
} else {
const MCSection *BaseSection = 0;
if (IsPCRel)
BaseSection = &DF->getParent()->getSection();
IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target,
BaseSection);
}
}
if (IsPCRel)
Value -= Layout.getFragmentAddress(DF) + Fixup.Offset;
return IsResolved;
}
uint64_t MCAssembler::LayoutSection(MCSectionData &SD,
MCAsmLayout &Layout,
uint64_t StartAddress) {
bool IsVirtual = getBackend().isVirtualSection(SD.getSection());
++stats::SectionLayouts;
// Align this section if necessary by adding padding bytes to the previous
// section. It is safe to adjust this out-of-band, because no symbol or
// fragment is allowed to point past the end of the section at any time.
if (uint64_t Pad = OffsetToAlignment(StartAddress, SD.getAlignment())) {
// Unless this section is virtual (where we are allowed to adjust the offset
// freely), the padding goes in the previous section.
if (!IsVirtual) {
// Find the previous non-virtual section.
iterator it = &SD;
assert(it != begin() && "Invalid initial section address!");
for (--it; getBackend().isVirtualSection(it->getSection()); --it) ;
Layout.setSectionFileSize(&*it, Layout.getSectionFileSize(&*it) + Pad);
}
StartAddress += Pad;
}
// Set the aligned section address.
Layout.setSectionAddress(&SD, StartAddress);
uint64_t Address = StartAddress;
for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
MCFragment &F = *it;
++stats::FragmentLayouts;
uint64_t FragmentOffset = Address - StartAddress;
Layout.setFragmentOffset(&F, FragmentOffset);
// Evaluate fragment size.
uint64_t EffectiveSize = 0;
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
EffectiveSize = OffsetToAlignment(Address, AF.getAlignment());
if (EffectiveSize > AF.getMaxBytesToEmit())
EffectiveSize = 0;
break;
}
case MCFragment::FT_Data:
EffectiveSize = cast<MCDataFragment>(F).getContents().size();
break;
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
EffectiveSize = FF.getValueSize() * FF.getCount();
break;
}
case MCFragment::FT_Inst:
EffectiveSize = cast<MCInstFragment>(F).getInstSize();
break;
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
int64_t TargetLocation;
if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
int64_t Offset = TargetLocation - FragmentOffset;
if (Offset < 0)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "'");
EffectiveSize = Offset;
break;
}
case MCFragment::FT_ZeroFill: {
MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F);
// Align the fragment offset; it is safe to adjust the offset freely since
// this is only in virtual sections.
//
// FIXME: We shouldn't be doing this here.
Address = RoundUpToAlignment(Address, ZFF.getAlignment());
Layout.setFragmentOffset(&F, Address - StartAddress);
EffectiveSize = ZFF.getSize();
break;
}
}
Layout.setFragmentEffectiveSize(&F, EffectiveSize);
Address += EffectiveSize;
}
// Set the section sizes.
Layout.setSectionSize(&SD, Address - StartAddress);
if (IsVirtual)
Layout.setSectionFileSize(&SD, 0);
else
Layout.setSectionFileSize(&SD, Address - StartAddress);
return Address;
}
/// WriteFragmentData - Write the \arg F data to the output file.
static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F, MCObjectWriter *OW) {
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
uint64_t Count = FragmentSize / AF.getValueSize();
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.getEmitNops()) {
if (!Asm.getBackend().WriteNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: OW->Write8 (uint8_t (AF.getValue())); break;
case 2: OW->Write16(uint16_t(AF.getValue())); break;
case 4: OW->Write32(uint32_t(AF.getValue())); break;
case 8: OW->Write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data: {
MCDataFragment &DF = cast<MCDataFragment>(F);
assert(FragmentSize == DF.getContents().size() && "Invalid size!");
OW->WriteBytes(DF.getContents().str());
break;
}
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
switch (FF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: OW->Write8 (uint8_t (FF.getValue())); break;
case 2: OW->Write16(uint16_t(FF.getValue())); break;
case 4: OW->Write32(uint32_t(FF.getValue())); break;
case 8: OW->Write64(uint64_t(FF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Inst:
llvm_unreachable("unexpected inst fragment after lowering");
break;
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->Write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_ZeroFill: {
assert(0 && "Invalid zero fill fragment in concrete section!");
break;
}
}
assert(OW->getStream().tell() - Start == FragmentSize);
}
void MCAssembler::WriteSectionData(const MCSectionData *SD,
const MCAsmLayout &Layout,
MCObjectWriter *OW) const {
uint64_t SectionSize = Layout.getSectionSize(SD);
uint64_t SectionFileSize = Layout.getSectionFileSize(SD);
// Ignore virtual sections.
if (getBackend().isVirtualSection(SD->getSection())) {
assert(SectionFileSize == 0 && "Invalid size for section!");
return;
}
uint64_t Start = OW->getStream().tell();
(void) Start;
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it)
WriteFragmentData(*this, Layout, *it, OW);
// Add section padding.
assert(SectionFileSize >= SectionSize && "Invalid section sizes!");
OW->WriteZeros(SectionFileSize - SectionSize);
assert(OW->getStream().tell() - Start == SectionFileSize);
}
void MCAssembler::Finish() {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Assign section and fragment ordinals, all subsequent backend code is
// responsible for updating these in place.
unsigned SectionIndex = 0;
unsigned FragmentIndex = 0;
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
it->setOrdinal(SectionIndex++);
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2)
it2->setOrdinal(FragmentIndex++);
}
// Layout until everything fits.
MCAsmLayout Layout(*this);
while (LayoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
FinishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
uint64_t StartOffset = OS.tell();
llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS));
if (!Writer)
report_fatal_error("unable to create object writer!");
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
Writer->ExecutePostLayoutBinding(*this);
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
if (!DF)
continue;
for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
MCAsmFixup &Fixup = *it3;
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
}
getBackend().ApplyFixup(Fixup, *DF, FixedValue);
}
}
}
// Write the object file.
Writer->WriteObject(*this, Layout);
OS.flush();
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::FixupNeedsRelaxation(const MCAsmFixup &Fixup,
const MCFragment *DF,
const MCAsmLayout &Layout) const {
if (getRelaxAll())
return true;
// If we cannot resolve the fixup value, it requires relaxation.
MCValue Target;
uint64_t Value;
if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
return true;
// Otherwise, relax if the value is too big for a (signed) i8.
return int64_t(Value) != int64_t(int8_t(Value));
}
bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().MayNeedRelaxation(IF->getInst(), IF->getFixups()))
return false;
for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
ie = IF->fixup_end(); it != ie; ++it)
if (FixupNeedsRelaxation(*it, IF, Layout))
return true;
return false;
}
bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
// Layout the concrete sections and fragments.
uint64_t Address = 0;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
// Skip virtual sections.
if (getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = LayoutSection(*it, Layout, Address);
}
// Layout the virtual sections.
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (!getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = LayoutSection(*it, Layout, Address);
}
// Scan for fragments that need relaxation.
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
for (MCSectionData::iterator it2 = SD.begin(),
ie2 = SD.end(); it2 != ie2; ++it2) {
// Check if this is an instruction fragment that needs relaxation.
MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
if (!IF || !FragmentNeedsRelaxation(IF, Layout))
continue;
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().RelaxInstruction(IF, Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
VecOS.flush();
// Update the instruction fragment.
int SlideAmount = Code.size() - IF->getInstSize();
IF->setInst(Relaxed);
IF->getCode() = Code;
IF->getFixups().clear();
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
MCFixup &F = Fixups[i];
IF->getFixups().push_back(MCAsmFixup(F.getOffset(), *F.getValue(),
F.getKind()));
}
// Update the layout, and remember that we relaxed. If we are relaxing
// everything, we can skip this step since nothing will depend on updating
// the values.
if (!getRelaxAll())
Layout.UpdateForSlide(IF, SlideAmount);
WasRelaxed = true;
}
}
return WasRelaxed;
}
void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
// Lower out any instruction fragments, to simplify the fixup application and
// output.
//
// FIXME-PERF: We don't have to do this, but the assumption is that it is
// cheap (we will mostly end up eliminating fragments and appending on to data
// fragments), so the extra complexity downstream isn't worth it. Evaluate
// this assumption.
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
for (MCSectionData::iterator it2 = SD.begin(),
ie2 = SD.end(); it2 != ie2; ++it2) {
MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
if (!IF)
continue;
// Create a new data fragment for the instruction.
//
// FIXME-PERF: Reuse previous data fragment if possible.
MCDataFragment *DF = new MCDataFragment();
SD.getFragmentList().insert(it2, DF);
// Update the data fragments layout data.
//
// FIXME: Add MCAsmLayout utility for this.
DF->setParent(IF->getParent());
DF->setOrdinal(IF->getOrdinal());
Layout.setFragmentOffset(DF, Layout.getFragmentOffset(IF));
Layout.setFragmentEffectiveSize(DF, Layout.getFragmentEffectiveSize(IF));
// Copy in the data and the fixups.
DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
DF->getFixups().push_back(IF->getFixups()[i]);
// Delete the instruction fragment and update the iterator.
SD.getFragmentList().erase(IF);
it2 = DF;
}
}
}
// Debugging methods
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) {
OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value
<< " Kind:" << AF.Kind << ">";
return OS;
}
}
void MCFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCFragment " << (void*) this << " Offset:" << Offset
<< " EffectiveSize:" << EffectiveSize;
OS << ">";
}
void MCAlignFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAlignFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Alignment:" << getAlignment()
<< " Value:" << getValue() << " ValueSize:" << getValueSize()
<< " MaxBytesToEmit:" << getMaxBytesToEmit() << ">";
}
void MCDataFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCDataFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Contents:[";
for (unsigned i = 0, e = getContents().size(); i != e; ++i) {
if (i) OS << ",";
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
}
OS << "] (" << getContents().size() << " bytes)";
if (!getFixups().empty()) {
OS << ",\n ";
OS << " Fixups:[";
for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) {
if (it != fixup_begin()) OS << ",\n ";
OS << *it;
}
OS << "]";
}
OS << ">";
}
void MCFillFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCFillFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Value:" << getValue() << " ValueSize:" << getValueSize()
<< " Count:" << getCount() << ">";
}
void MCInstFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCInstFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Inst:";
getInst().dump_pretty(OS);
OS << ">";
}
void MCOrgFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCOrgFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Offset:" << getOffset() << " Value:" << getValue() << ">";
}
void MCZeroFillFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCZeroFillFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Size:" << getSize() << " Alignment:" << getAlignment() << ">";
}
void MCSectionData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSectionData";
OS << " Alignment:" << getAlignment() << " Address:" << Address
<< " Size:" << Size << " FileSize:" << FileSize
<< " Fragments:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "]>";
}
void MCSymbolData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSymbolData Symbol:" << getSymbol()
<< " Fragment:" << getFragment() << " Offset:" << getOffset()
<< " Flags:" << getFlags() << " Index:" << getIndex();
if (isCommon())
OS << " (common, size:" << getCommonSize()
<< " align: " << getCommonAlignment() << ")";
if (isExternal())
OS << " (external)";
if (isPrivateExtern())
OS << " (private extern)";
OS << ">";
}
void MCAssembler::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAssembler\n";
OS << " Sections:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "],\n";
OS << " Symbols:[";
for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
if (it != symbol_begin()) OS << ",\n ";
it->dump();
}
OS << "]>\n";
}
|