aboutsummaryrefslogtreecommitdiffstats
path: root/lib/MC/MCObjectDisassembler.cpp
blob: 4d1c29638dd9aa7f7ad289c37602b069a2f2111d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//===- lib/MC/MCObjectDisassembler.cpp ------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCObjectDisassembler.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAtom.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCFunction.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCModule.h"
#include "llvm/MC/MCObjectSymbolizer.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/StringRefMemoryObject.h"
#include "llvm/Support/raw_ostream.h"
#include <map>

using namespace llvm;
using namespace object;

MCObjectDisassembler::MCObjectDisassembler(const ObjectFile &Obj,
                                           const MCDisassembler &Dis,
                                           const MCInstrAnalysis &MIA)
    : Obj(Obj), Dis(Dis), MIA(MIA), MOS(0) {}

uint64_t MCObjectDisassembler::getEntrypoint() {
  error_code ec;
  for (symbol_iterator SI = Obj.begin_symbols(), SE = Obj.end_symbols();
       SI != SE; SI.increment(ec)) {
    if (ec)
      break;
    StringRef Name;
    SI->getName(Name);
    if (Name == "main" || Name == "_main") {
      uint64_t Entrypoint;
      SI->getAddress(Entrypoint);
      return getEffectiveLoadAddr(Entrypoint);
    }
  }
  return 0;
}

ArrayRef<uint64_t> MCObjectDisassembler::getStaticInitFunctions() {
  return ArrayRef<uint64_t>();
}

ArrayRef<uint64_t> MCObjectDisassembler::getStaticExitFunctions() {
  return ArrayRef<uint64_t>();
}

MemoryObject *MCObjectDisassembler::getRegionFor(uint64_t Addr) {
  // FIXME: Keep track of object sections.
  return FallbackRegion.get();
}

uint64_t MCObjectDisassembler::getEffectiveLoadAddr(uint64_t Addr) {
  return Addr;
}

uint64_t MCObjectDisassembler::getOriginalLoadAddr(uint64_t Addr) {
  return Addr;
}

MCModule *MCObjectDisassembler::buildEmptyModule() {
  MCModule *Module = new MCModule;
  Module->Entrypoint = getEntrypoint();
  return Module;
}

MCModule *MCObjectDisassembler::buildModule(bool withCFG) {
  MCModule *Module = buildEmptyModule();

  buildSectionAtoms(Module);
  if (withCFG)
    buildCFG(Module);
  return Module;
}

void MCObjectDisassembler::buildSectionAtoms(MCModule *Module) {
  error_code ec;
  for (section_iterator SI = Obj.begin_sections(),
                        SE = Obj.end_sections();
                        SI != SE;
                        SI.increment(ec)) {
    if (ec) break;

    bool isText; SI->isText(isText);
    bool isData; SI->isData(isData);
    if (!isData && !isText)
      continue;

    uint64_t StartAddr; SI->getAddress(StartAddr);
    uint64_t SecSize; SI->getSize(SecSize);
    if (StartAddr == UnknownAddressOrSize || SecSize == UnknownAddressOrSize)
      continue;
    StartAddr = getEffectiveLoadAddr(StartAddr);

    StringRef Contents; SI->getContents(Contents);
    StringRefMemoryObject memoryObject(Contents, StartAddr);

    // We don't care about things like non-file-backed sections yet.
    if (Contents.size() != SecSize || !SecSize)
      continue;
    uint64_t EndAddr = StartAddr + SecSize - 1;

    StringRef SecName; SI->getName(SecName);

    if (isText) {
      MCTextAtom *Text = 0;
      MCDataAtom *InvalidData = 0;

      uint64_t InstSize;
      for (uint64_t Index = 0; Index < SecSize; Index += InstSize) {
        const uint64_t CurAddr = StartAddr + Index;
        MCInst Inst;
        if (Dis.getInstruction(Inst, InstSize, memoryObject, CurAddr, nulls(),
                               nulls())) {
          if (!Text) {
            Text = Module->createTextAtom(CurAddr, CurAddr);
            Text->setName(SecName);
          }
          Text->addInst(Inst, InstSize);
          InvalidData = 0;
        } else {
          if (!InvalidData) {
            Text = 0;
            InvalidData = Module->createDataAtom(CurAddr, EndAddr);
          }
          InvalidData->addData(Contents[Index]);
        }
      }
    } else {
      MCDataAtom *Data = Module->createDataAtom(StartAddr, EndAddr);
      Data->setName(SecName);
      for (uint64_t Index = 0; Index < SecSize; ++Index)
        Data->addData(Contents[Index]);
    }
  }
}

namespace {
  struct BBInfo;
  typedef SmallPtrSet<BBInfo*, 2> BBInfoSetTy;

  struct BBInfo {
    MCTextAtom *Atom;
    MCBasicBlock *BB;
    BBInfoSetTy Succs;
    BBInfoSetTy Preds;
    MCObjectDisassembler::AddressSetTy SuccAddrs;

    BBInfo() : Atom(0), BB(0) {}

    void addSucc(BBInfo &Succ) {
      Succs.insert(&Succ);
      Succ.Preds.insert(this);
    }
  };
}

static void RemoveDupsFromAddressVector(MCObjectDisassembler::AddressSetTy &V) {
  std::sort(V.begin(), V.end());
  V.erase(std::unique(V.begin(), V.end()), V.end());
}

void MCObjectDisassembler::buildCFG(MCModule *Module) {
  typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy;
  BBInfoByAddrTy BBInfos;
  AddressSetTy Splits;
  AddressSetTy Calls;

  error_code ec;
  for (symbol_iterator SI = Obj.begin_symbols(), SE = Obj.end_symbols();
       SI != SE; SI.increment(ec)) {
    if (ec)
      break;
    SymbolRef::Type SymType;
    SI->getType(SymType);
    if (SymType == SymbolRef::ST_Function) {
      uint64_t SymAddr;
      SI->getAddress(SymAddr);
      SymAddr = getEffectiveLoadAddr(SymAddr);
      Calls.push_back(SymAddr);
      Splits.push_back(SymAddr);
    }
  }

  assert(Module->func_begin() == Module->func_end()
         && "Module already has a CFG!");

  // First, determine the basic block boundaries and call targets.
  for (MCModule::atom_iterator AI = Module->atom_begin(),
                               AE = Module->atom_end();
       AI != AE; ++AI) {
    MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI);
    if (!TA) continue;
    Calls.push_back(TA->getBeginAddr());
    BBInfos[TA->getBeginAddr()].Atom = TA;
    for (MCTextAtom::const_iterator II = TA->begin(), IE = TA->end();
         II != IE; ++II) {
      if (MIA.isTerminator(II->Inst))
        Splits.push_back(II->Address + II->Size);
      uint64_t Target;
      if (MIA.evaluateBranch(II->Inst, II->Address, II->Size, Target)) {
        if (MIA.isCall(II->Inst))
          Calls.push_back(Target);
        Splits.push_back(Target);
      }
    }
  }

  RemoveDupsFromAddressVector(Splits);
  RemoveDupsFromAddressVector(Calls);

  // Split text atoms into basic block atoms.
  for (AddressSetTy::const_iterator SI = Splits.begin(), SE = Splits.end();
       SI != SE; ++SI) {
    MCAtom *A = Module->findAtomContaining(*SI);
    if (!A) continue;
    MCTextAtom *TA = cast<MCTextAtom>(A);
    if (TA->getBeginAddr() == *SI)
      continue;
    MCTextAtom *NewAtom = TA->split(*SI);
    BBInfos[NewAtom->getBeginAddr()].Atom = NewAtom;
    StringRef BBName = TA->getName();
    BBName = BBName.substr(0, BBName.find_last_of(':'));
    NewAtom->setName((BBName + ":" + utohexstr(*SI)).str());
  }

  // Compute succs/preds.
  for (MCModule::atom_iterator AI = Module->atom_begin(),
                               AE = Module->atom_end();
                               AI != AE; ++AI) {
    MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI);
    if (!TA) continue;
    BBInfo &CurBB = BBInfos[TA->getBeginAddr()];
    const MCDecodedInst &LI = TA->back();
    if (MIA.isBranch(LI.Inst)) {
      uint64_t Target;
      if (MIA.evaluateBranch(LI.Inst, LI.Address, LI.Size, Target))
        CurBB.addSucc(BBInfos[Target]);
      if (MIA.isConditionalBranch(LI.Inst))
        CurBB.addSucc(BBInfos[LI.Address + LI.Size]);
    } else if (!MIA.isTerminator(LI.Inst))
      CurBB.addSucc(BBInfos[LI.Address + LI.Size]);
  }


  // Create functions and basic blocks.
  for (AddressSetTy::const_iterator CI = Calls.begin(), CE = Calls.end();
       CI != CE; ++CI) {
    BBInfo &BBI = BBInfos[*CI];
    if (!BBI.Atom) continue;

    MCFunction &MCFN = *Module->createFunction(BBI.Atom->getName());

    // Create MCBBs.
    SmallSetVector<BBInfo*, 16> Worklist;
    Worklist.insert(&BBI);
    for (size_t wi = 0; wi < Worklist.size(); ++wi) {
      BBInfo *BBI = Worklist[wi];
      if (!BBI->Atom)
        continue;
      BBI->BB = &MCFN.createBlock(*BBI->Atom);
      // Add all predecessors and successors to the worklist.
      for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end();
                                 SI != SE; ++SI)
        Worklist.insert(*SI);
      for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end();
                                 PI != PE; ++PI)
        Worklist.insert(*PI);
    }

    // Set preds/succs.
    for (size_t wi = 0; wi < Worklist.size(); ++wi) {
      BBInfo *BBI = Worklist[wi];
      MCBasicBlock *MCBB = BBI->BB;
      if (!MCBB)
        continue;
      for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end();
           SI != SE; ++SI)
        if ((*SI)->BB)
          MCBB->addSuccessor((*SI)->BB);
      for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end();
           PI != PE; ++PI)
        if ((*PI)->BB)
          MCBB->addPredecessor((*PI)->BB);
    }
  }
}

// Basic idea of the disassembly + discovery:
//
// start with the wanted address, insert it in the worklist
// while worklist not empty, take next address in the worklist:
// - check if atom exists there
//   - if middle of atom:
//     - split basic blocks referencing the atom
//     - look for an already encountered BBInfo (using a map<atom, bbinfo>)
//       - if there is, split it (new one, fallthrough, move succs, etc..)
//   - if start of atom: nothing else to do
//   - if no atom: create new atom and new bbinfo
// - look at the last instruction in the atom, add succs to worklist
// for all elements in the worklist:
// - create basic block, update preds/succs, etc..
//
MCBasicBlock *MCObjectDisassembler::getBBAt(MCModule *Module, MCFunction *MCFN,
                                            uint64_t BBBeginAddr,
                                            AddressSetTy &CallTargets,
                                            AddressSetTy &TailCallTargets) {
  typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy;
  typedef SmallSetVector<uint64_t, 16> AddrWorklistTy;
  BBInfoByAddrTy BBInfos;
  AddrWorklistTy Worklist;

  Worklist.insert(BBBeginAddr);
  for (size_t wi = 0; wi < Worklist.size(); ++wi) {
    const uint64_t BeginAddr = Worklist[wi];
    BBInfo *BBI = &BBInfos[BeginAddr];

    MCTextAtom *&TA = BBI->Atom;
    assert(!TA && "Discovered basic block already has an associated atom!");

    // Look for an atom at BeginAddr.
    if (MCAtom *A = Module->findAtomContaining(BeginAddr)) {
      // FIXME: We don't care about mixed atoms, see above.
      TA = cast<MCTextAtom>(A);

      // The found atom doesn't begin at BeginAddr, we have to split it.
      if (TA->getBeginAddr() != BeginAddr) {
        // FIXME: Handle overlapping atoms: middle-starting instructions, etc..
        MCTextAtom *NewTA = TA->split(BeginAddr);

        // Look for an already encountered basic block that needs splitting
        BBInfoByAddrTy::iterator It = BBInfos.find(TA->getBeginAddr());
        if (It != BBInfos.end() && It->second.Atom) {
          BBI->SuccAddrs = It->second.SuccAddrs;
          It->second.SuccAddrs.clear();
          It->second.SuccAddrs.push_back(BeginAddr);
        }
        TA = NewTA;
      }
      BBI->Atom = TA;
    } else {
      // If we didn't find an atom, then we have to disassemble to create one!

      MemoryObject *Region = getRegionFor(BeginAddr);
      if (!Region)
        llvm_unreachable(("Couldn't find suitable region for disassembly at " +
                          utostr(BeginAddr)).c_str());

      uint64_t InstSize;
      uint64_t EndAddr = Region->getBase() + Region->getExtent();

      // We want to stop before the next atom and have a fallthrough to it.
      if (MCTextAtom *NextAtom =
              cast_or_null<MCTextAtom>(Module->findFirstAtomAfter(BeginAddr)))
        EndAddr = std::min(EndAddr, NextAtom->getBeginAddr());

      for (uint64_t Addr = BeginAddr; Addr < EndAddr; Addr += InstSize) {
        MCInst Inst;
        if (Dis.getInstruction(Inst, InstSize, *Region, Addr, nulls(),
                               nulls())) {
          if (!TA)
            TA = Module->createTextAtom(Addr, Addr);
          TA->addInst(Inst, InstSize);
        } else {
          // We don't care about splitting mixed atoms either.
          llvm_unreachable("Couldn't disassemble instruction in atom.");
        }

        uint64_t BranchTarget;
        if (MIA.evaluateBranch(Inst, Addr, InstSize, BranchTarget)) {
          if (MIA.isCall(Inst))
            CallTargets.push_back(BranchTarget);
        }

        if (MIA.isTerminator(Inst))
          break;
      }
      BBI->Atom = TA;
    }

    assert(TA && "Couldn't disassemble atom, none was created!");
    assert(TA->begin() != TA->end() && "Empty atom!");

    MemoryObject *Region = getRegionFor(TA->getBeginAddr());
    assert(Region && "Couldn't find region for already disassembled code!");
    uint64_t EndRegion = Region->getBase() + Region->getExtent();

    // Now we have a basic block atom, add successors.
    // Add the fallthrough block.
    if ((MIA.isConditionalBranch(TA->back().Inst) ||
         !MIA.isTerminator(TA->back().Inst)) &&
        (TA->getEndAddr() + 1 < EndRegion)) {
      BBI->SuccAddrs.push_back(TA->getEndAddr() + 1);
      Worklist.insert(TA->getEndAddr() + 1);
    }

    // If the terminator is a branch, add the target block.
    if (MIA.isBranch(TA->back().Inst)) {
      uint64_t BranchTarget;
      if (MIA.evaluateBranch(TA->back().Inst, TA->back().Address,
                             TA->back().Size, BranchTarget)) {
        StringRef ExtFnName;
        if (MOS)
          ExtFnName =
              MOS->findExternalFunctionAt(getOriginalLoadAddr(BranchTarget));
        if (!ExtFnName.empty()) {
          TailCallTargets.push_back(BranchTarget);
          CallTargets.push_back(BranchTarget);
        } else {
          BBI->SuccAddrs.push_back(BranchTarget);
          Worklist.insert(BranchTarget);
        }
      }
    }
  }

  for (size_t wi = 0, we = Worklist.size(); wi != we; ++wi) {
    const uint64_t BeginAddr = Worklist[wi];
    BBInfo *BBI = &BBInfos[BeginAddr];

    assert(BBI->Atom && "Found a basic block without an associated atom!");

    // Look for a basic block at BeginAddr.
    BBI->BB = MCFN->find(BeginAddr);
    if (BBI->BB) {
      // FIXME: check that the succs/preds are the same
      continue;
    }
    // If there was none, we have to create one from the atom.
    BBI->BB = &MCFN->createBlock(*BBI->Atom);
  }

  for (size_t wi = 0, we = Worklist.size(); wi != we; ++wi) {
    const uint64_t BeginAddr = Worklist[wi];
    BBInfo *BBI = &BBInfos[BeginAddr];
    MCBasicBlock *BB = BBI->BB;

    RemoveDupsFromAddressVector(BBI->SuccAddrs);
    for (AddressSetTy::const_iterator SI = BBI->SuccAddrs.begin(),
         SE = BBI->SuccAddrs.end();
         SE != SE; ++SI) {
      MCBasicBlock *Succ = BBInfos[*SI].BB;
      BB->addSuccessor(Succ);
      Succ->addPredecessor(BB);
    }
  }

  assert(BBInfos[Worklist[0]].BB &&
         "No basic block created at requested address?");

  return BBInfos[Worklist[0]].BB;
}

MCFunction *
MCObjectDisassembler::createFunction(MCModule *Module, uint64_t BeginAddr,
                                     AddressSetTy &CallTargets,
                                     AddressSetTy &TailCallTargets) {
  // First, check if this is an external function.
  StringRef ExtFnName;
  if (MOS)
    ExtFnName = MOS->findExternalFunctionAt(getOriginalLoadAddr(BeginAddr));
  if (!ExtFnName.empty())
    return Module->createFunction(ExtFnName);

  // If it's not, look for an existing function.
  for (MCModule::func_iterator FI = Module->func_begin(),
                               FE = Module->func_end();
       FI != FE; ++FI) {
    if ((*FI)->empty())
      continue;
    // FIXME: MCModule should provide a findFunctionByAddr()
    if ((*FI)->getEntryBlock()->getInsts()->getBeginAddr() == BeginAddr)
      return *FI;
  }

  // Finally, just create a new one.
  MCFunction *MCFN = Module->createFunction("");
  getBBAt(Module, MCFN, BeginAddr, CallTargets, TailCallTargets);
  return MCFN;
}

// MachO MCObjectDisassembler implementation.

MCMachOObjectDisassembler::MCMachOObjectDisassembler(
    const MachOObjectFile &MOOF, const MCDisassembler &Dis,
    const MCInstrAnalysis &MIA, uint64_t VMAddrSlide,
    uint64_t HeaderLoadAddress)
    : MCObjectDisassembler(MOOF, Dis, MIA), MOOF(MOOF),
      VMAddrSlide(VMAddrSlide), HeaderLoadAddress(HeaderLoadAddress) {

  error_code ec;
  for (section_iterator SI = MOOF.begin_sections(), SE = MOOF.end_sections();
       SI != SE; SI.increment(ec)) {
    if (ec)
      break;
    StringRef Name;
    SI->getName(Name);
    // FIXME: We should use the S_ section type instead of the name.
    if (Name == "__mod_init_func") {
      DEBUG(dbgs() << "Found __mod_init_func section!\n");
      SI->getContents(ModInitContents);
    } else if (Name == "__mod_exit_func") {
      DEBUG(dbgs() << "Found __mod_exit_func section!\n");
      SI->getContents(ModExitContents);
    }
  }
}

// FIXME: Only do the translations for addresses actually inside the object.
uint64_t MCMachOObjectDisassembler::getEffectiveLoadAddr(uint64_t Addr) {
  return Addr + VMAddrSlide;
}

uint64_t
MCMachOObjectDisassembler::getOriginalLoadAddr(uint64_t EffectiveAddr) {
  return EffectiveAddr - VMAddrSlide;
}

uint64_t MCMachOObjectDisassembler::getEntrypoint() {
  uint64_t EntryFileOffset = 0;

  // Look for LC_MAIN.
  {
    uint32_t LoadCommandCount = MOOF.getHeader().NumLoadCommands;
    MachOObjectFile::LoadCommandInfo Load = MOOF.getFirstLoadCommandInfo();
    for (unsigned I = 0;; ++I) {
      if (Load.C.Type == MachO::LoadCommandMain) {
        EntryFileOffset =
            ((const MachO::entry_point_command *)Load.Ptr)->entryoff;
        break;
      }

      if (I == LoadCommandCount - 1)
        break;
      else
        Load = MOOF.getNextLoadCommandInfo(Load);
    }
  }

  // If we didn't find anything, default to the common implementation.
  // FIXME: Maybe we could also look at LC_UNIXTHREAD and friends?
  if (EntryFileOffset)
    return MCObjectDisassembler::getEntrypoint();

  return EntryFileOffset + HeaderLoadAddress;
}

ArrayRef<uint64_t> MCMachOObjectDisassembler::getStaticInitFunctions() {
  // FIXME: We only handle 64bit mach-o
  assert(MOOF.is64Bit());

  size_t EntrySize = 8;
  size_t EntryCount = ModInitContents.size() / EntrySize;
  return ArrayRef<uint64_t>(
      reinterpret_cast<const uint64_t *>(ModInitContents.data()), EntryCount);
}

ArrayRef<uint64_t> MCMachOObjectDisassembler::getStaticExitFunctions() {
  // FIXME: We only handle 64bit mach-o
  assert(MOOF.is64Bit());

  size_t EntrySize = 8;
  size_t EntryCount = ModExitContents.size() / EntrySize;
  return ArrayRef<uint64_t>(
      reinterpret_cast<const uint64_t *>(ModExitContents.data()), EntryCount);
}