aboutsummaryrefslogtreecommitdiffstats
path: root/lib/MC/MCObjectDisassembler.cpp
blob: bb3de1779e1642a336b83e729741e0b4d751f52b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//===- lib/MC/MCObjectDisassembler.cpp ------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCObjectDisassembler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAtom.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCFunction.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCModule.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/StringRefMemoryObject.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>

using namespace llvm;
using namespace object;

MCObjectDisassembler::MCObjectDisassembler(const ObjectFile &Obj,
                                           const MCDisassembler &Dis,
                                           const MCInstrAnalysis &MIA)
  : Obj(Obj), Dis(Dis), MIA(MIA) {}

MCModule *MCObjectDisassembler::buildModule(bool withCFG) {
  MCModule *Module = new MCModule;
  buildSectionAtoms(Module);
  if (withCFG)
    buildCFG(Module);
  return Module;
}

void MCObjectDisassembler::buildSectionAtoms(MCModule *Module) {
  error_code ec;
  for (section_iterator SI = Obj.begin_sections(),
                        SE = Obj.end_sections();
                        SI != SE;
                        SI.increment(ec)) {
    if (ec) break;

    bool isText; SI->isText(isText);
    bool isData; SI->isData(isData);
    if (!isData && !isText)
      continue;

    uint64_t StartAddr; SI->getAddress(StartAddr);
    uint64_t SecSize; SI->getSize(SecSize);
    if (StartAddr == UnknownAddressOrSize || SecSize == UnknownAddressOrSize)
      continue;

    StringRef Contents; SI->getContents(Contents);
    StringRefMemoryObject memoryObject(Contents);

    // We don't care about things like non-file-backed sections yet.
    if (Contents.size() != SecSize || !SecSize)
      continue;
    uint64_t EndAddr = StartAddr + SecSize - 1;

    StringRef SecName; SI->getName(SecName);

    if (isText) {
      MCTextAtom *Text = Module->createTextAtom(StartAddr, EndAddr);
      Text->setName(SecName);
      uint64_t InstSize;
      for (uint64_t Index = 0; Index < SecSize; Index += InstSize) {
        MCInst Inst;
        if (Dis.getInstruction(Inst, InstSize, memoryObject, Index,
                               nulls(), nulls()))
          Text->addInst(Inst, InstSize);
        else
          // We don't care about splitting mixed atoms either.
          llvm_unreachable("Couldn't disassemble instruction in atom.");
      }

    } else {
      MCDataAtom *Data = Module->createDataAtom(StartAddr, EndAddr);
      Data->setName(SecName);
      for (uint64_t Index = 0; Index < SecSize; ++Index)
        Data->addData(Contents[Index]);
    }
  }
}

namespace {
  struct BBInfo;
  typedef std::set<BBInfo*> BBInfoSetTy;

  struct BBInfo {
    MCTextAtom *Atom;
    MCBasicBlock *BB;
    BBInfoSetTy Succs;
    BBInfoSetTy Preds;

    void addSucc(BBInfo &Succ) {
      Succs.insert(&Succ);
      Succ.Preds.insert(this);
    }
  };
}

void MCObjectDisassembler::buildCFG(MCModule *Module) {
  typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy;
  BBInfoByAddrTy BBInfos;
  typedef std::set<uint64_t> AddressSetTy;
  AddressSetTy Splits;
  AddressSetTy Calls;

  assert(Module->func_begin() == Module->func_end()
         && "Module already has a CFG!");

  // First, determine the basic block boundaries and call targets.
  for (MCModule::atom_iterator AI = Module->atom_begin(),
                               AE = Module->atom_end();
       AI != AE; ++AI) {
    MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI);
    if (!TA) continue;
    Calls.insert(TA->getBeginAddr());
    for (MCTextAtom::const_iterator II = TA->begin(), IE = TA->end();
         II != IE; ++II) {
      if (MIA.isTerminator(II->Inst))
        Splits.insert(II->Address + II->Size);
      uint64_t Target;
      if (MIA.evaluateBranch(II->Inst, II->Address, II->Size, Target)) {
        if (MIA.isCall(II->Inst))
          Calls.insert(Target);
        Splits.insert(Target);
      }
    }
  }

  // Split text atoms into basic block atoms.
  for (AddressSetTy::const_iterator SI = Splits.begin(), SE = Splits.end();
       SI != SE; ++SI) {
    MCAtom *A = Module->findAtomContaining(*SI);
    if (!A) continue;
    MCTextAtom *TA = cast<MCTextAtom>(A);
    BBInfos[TA->getBeginAddr()].Atom = TA;
    if (TA->getBeginAddr() == *SI)
      continue;
    MCTextAtom *NewAtom = TA->split(*SI);
    BBInfos[NewAtom->getBeginAddr()].Atom = NewAtom;
    StringRef BBName = TA->getName();
    BBName = BBName.substr(0, BBName.find_last_of(':'));
    NewAtom->setName((BBName + ":" + utohexstr(*SI)).str());
  }

  // Compute succs/preds.
  for (MCModule::atom_iterator AI = Module->atom_begin(),
                               AE = Module->atom_end();
                               AI != AE; ++AI) {
    MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI);
    if (!TA) continue;
    BBInfo &CurBB = BBInfos[TA->getBeginAddr()];
    const MCDecodedInst &LI = TA->back();
    if (MIA.isBranch(LI.Inst)) {
      uint64_t Target;
      if (MIA.evaluateBranch(LI.Inst, LI.Address, LI.Size, Target))
        CurBB.addSucc(BBInfos[Target]);
      if (MIA.isConditionalBranch(LI.Inst))
        CurBB.addSucc(BBInfos[LI.Address + LI.Size]);
    } else if (!MIA.isTerminator(LI.Inst))
      CurBB.addSucc(BBInfos[LI.Address + LI.Size]);
  }


  // Create functions and basic blocks.
  for (AddressSetTy::const_iterator CI = Calls.begin(), CE = Calls.end();
       CI != CE; ++CI) {
    BBInfo &BBI = BBInfos[*CI];
    if (!BBI.Atom) continue;

    MCFunction &MCFN = *Module->createFunction(BBI.Atom->getName());

    // Create MCBBs.
    SmallSetVector<BBInfo*, 16> Worklist;
    Worklist.insert(&BBI);
    for (size_t WI = 0; WI < Worklist.size(); ++WI) {
      BBInfo *BBI = Worklist[WI];
      if (!BBI->Atom)
        continue;
      BBI->BB = &MCFN.createBlock(*BBI->Atom);
      // Add all predecessors and successors to the worklist.
      for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end();
                                 SI != SE; ++SI)
        Worklist.insert(*SI);
      for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end();
                                 PI != PE; ++PI)
        Worklist.insert(*PI);
    }

    // Set preds/succs.
    for (size_t WI = 0; WI < Worklist.size(); ++WI) {
      BBInfo *BBI = Worklist[WI];
      MCBasicBlock *MCBB = BBI->BB;
      if (!MCBB)
        continue;
      for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end();
                                 SI != SE; ++SI)
        MCBB->addSuccessor((*SI)->BB);
      for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end();
                                 PI != PE; ++PI)
        MCBB->addPredecessor((*PI)->BB);
    }
  }
}