1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
|
//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision floating
// point values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
#include <limits.h>
using namespace llvm;
/// A macro used to combine two fcCategory enums into one key which can be used
/// in a switch statement to classify how the interaction of two APFloat's
/// categories affects an operation.
///
/// TODO: If clang source code is ever allowed to use constexpr in its own
/// codebase, change this into a static inline function.
#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
/* Assumed in hexadecimal significand parsing, and conversion to
hexadecimal strings. */
#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
namespace llvm {
/* Represents floating point arithmetic semantics. */
struct fltSemantics {
/* The largest E such that 2^E is representable; this matches the
definition of IEEE 754. */
APFloat::ExponentType maxExponent;
/* The smallest E such that 2^E is a normalized number; this
matches the definition of IEEE 754. */
APFloat::ExponentType minExponent;
/* Number of bits in the significand. This includes the integer
bit. */
unsigned int precision;
};
const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 };
const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 };
const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 };
const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 };
const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 };
const fltSemantics APFloat::Bogus = { 0, 0, 0 };
/* The PowerPC format consists of two doubles. It does not map cleanly
onto the usual format above. It is approximated using twice the
mantissa bits. Note that for exponents near the double minimum,
we no longer can represent the full 106 mantissa bits, so those
will be treated as denormal numbers.
FIXME: While this approximation is equivalent to what GCC uses for
compile-time arithmetic on PPC double-double numbers, it is not able
to represent all possible values held by a PPC double-double number,
for example: (long double) 1.0 + (long double) 0x1p-106
Should this be replaced by a full emulation of PPC double-double? */
const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 };
/* A tight upper bound on number of parts required to hold the value
pow(5, power) is
power * 815 / (351 * integerPartWidth) + 1
However, whilst the result may require only this many parts,
because we are multiplying two values to get it, the
multiplication may require an extra part with the excess part
being zero (consider the trivial case of 1 * 1, tcFullMultiply
requires two parts to hold the single-part result). So we add an
extra one to guarantee enough space whilst multiplying. */
const unsigned int maxExponent = 16383;
const unsigned int maxPrecision = 113;
const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
/ (351 * integerPartWidth));
}
/* A bunch of private, handy routines. */
static inline unsigned int
partCountForBits(unsigned int bits)
{
return ((bits) + integerPartWidth - 1) / integerPartWidth;
}
/* Returns 0U-9U. Return values >= 10U are not digits. */
static inline unsigned int
decDigitValue(unsigned int c)
{
return c - '0';
}
/* Return the value of a decimal exponent of the form
[+-]ddddddd.
If the exponent overflows, returns a large exponent with the
appropriate sign. */
static int
readExponent(StringRef::iterator begin, StringRef::iterator end)
{
bool isNegative;
unsigned int absExponent;
const unsigned int overlargeExponent = 24000; /* FIXME. */
StringRef::iterator p = begin;
assert(p != end && "Exponent has no digits");
isNegative = (*p == '-');
if (*p == '-' || *p == '+') {
p++;
assert(p != end && "Exponent has no digits");
}
absExponent = decDigitValue(*p++);
assert(absExponent < 10U && "Invalid character in exponent");
for (; p != end; ++p) {
unsigned int value;
value = decDigitValue(*p);
assert(value < 10U && "Invalid character in exponent");
value += absExponent * 10;
if (absExponent >= overlargeExponent) {
absExponent = overlargeExponent;
p = end; /* outwit assert below */
break;
}
absExponent = value;
}
assert(p == end && "Invalid exponent in exponent");
if (isNegative)
return -(int) absExponent;
else
return (int) absExponent;
}
/* This is ugly and needs cleaning up, but I don't immediately see
how whilst remaining safe. */
static int
totalExponent(StringRef::iterator p, StringRef::iterator end,
int exponentAdjustment)
{
int unsignedExponent;
bool negative, overflow;
int exponent = 0;
assert(p != end && "Exponent has no digits");
negative = *p == '-';
if (*p == '-' || *p == '+') {
p++;
assert(p != end && "Exponent has no digits");
}
unsignedExponent = 0;
overflow = false;
for (; p != end; ++p) {
unsigned int value;
value = decDigitValue(*p);
assert(value < 10U && "Invalid character in exponent");
unsignedExponent = unsignedExponent * 10 + value;
if (unsignedExponent > 32767) {
overflow = true;
break;
}
}
if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
overflow = true;
if (!overflow) {
exponent = unsignedExponent;
if (negative)
exponent = -exponent;
exponent += exponentAdjustment;
if (exponent > 32767 || exponent < -32768)
overflow = true;
}
if (overflow)
exponent = negative ? -32768: 32767;
return exponent;
}
static StringRef::iterator
skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
StringRef::iterator *dot)
{
StringRef::iterator p = begin;
*dot = end;
while (*p == '0' && p != end)
p++;
if (*p == '.') {
*dot = p++;
assert(end - begin != 1 && "Significand has no digits");
while (*p == '0' && p != end)
p++;
}
return p;
}
/* Given a normal decimal floating point number of the form
dddd.dddd[eE][+-]ddd
where the decimal point and exponent are optional, fill out the
structure D. Exponent is appropriate if the significand is
treated as an integer, and normalizedExponent if the significand
is taken to have the decimal point after a single leading
non-zero digit.
If the value is zero, V->firstSigDigit points to a non-digit, and
the return exponent is zero.
*/
struct decimalInfo {
const char *firstSigDigit;
const char *lastSigDigit;
int exponent;
int normalizedExponent;
};
static void
interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
decimalInfo *D)
{
StringRef::iterator dot = end;
StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
D->firstSigDigit = p;
D->exponent = 0;
D->normalizedExponent = 0;
for (; p != end; ++p) {
if (*p == '.') {
assert(dot == end && "String contains multiple dots");
dot = p++;
if (p == end)
break;
}
if (decDigitValue(*p) >= 10U)
break;
}
if (p != end) {
assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
assert(p != begin && "Significand has no digits");
assert((dot == end || p - begin != 1) && "Significand has no digits");
/* p points to the first non-digit in the string */
D->exponent = readExponent(p + 1, end);
/* Implied decimal point? */
if (dot == end)
dot = p;
}
/* If number is all zeroes accept any exponent. */
if (p != D->firstSigDigit) {
/* Drop insignificant trailing zeroes. */
if (p != begin) {
do
do
p--;
while (p != begin && *p == '0');
while (p != begin && *p == '.');
}
/* Adjust the exponents for any decimal point. */
D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
D->normalizedExponent = (D->exponent +
static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
- (dot > D->firstSigDigit && dot < p)));
}
D->lastSigDigit = p;
}
/* Return the trailing fraction of a hexadecimal number.
DIGITVALUE is the first hex digit of the fraction, P points to
the next digit. */
static lostFraction
trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
unsigned int digitValue)
{
unsigned int hexDigit;
/* If the first trailing digit isn't 0 or 8 we can work out the
fraction immediately. */
if (digitValue > 8)
return lfMoreThanHalf;
else if (digitValue < 8 && digitValue > 0)
return lfLessThanHalf;
// Otherwise we need to find the first non-zero digit.
while (p != end && (*p == '0' || *p == '.'))
p++;
assert(p != end && "Invalid trailing hexadecimal fraction!");
hexDigit = hexDigitValue(*p);
/* If we ran off the end it is exactly zero or one-half, otherwise
a little more. */
if (hexDigit == -1U)
return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
else
return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
}
/* Return the fraction lost were a bignum truncated losing the least
significant BITS bits. */
static lostFraction
lostFractionThroughTruncation(const integerPart *parts,
unsigned int partCount,
unsigned int bits)
{
unsigned int lsb;
lsb = APInt::tcLSB(parts, partCount);
/* Note this is guaranteed true if bits == 0, or LSB == -1U. */
if (bits <= lsb)
return lfExactlyZero;
if (bits == lsb + 1)
return lfExactlyHalf;
if (bits <= partCount * integerPartWidth &&
APInt::tcExtractBit(parts, bits - 1))
return lfMoreThanHalf;
return lfLessThanHalf;
}
/* Shift DST right BITS bits noting lost fraction. */
static lostFraction
shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
{
lostFraction lost_fraction;
lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
APInt::tcShiftRight(dst, parts, bits);
return lost_fraction;
}
/* Combine the effect of two lost fractions. */
static lostFraction
combineLostFractions(lostFraction moreSignificant,
lostFraction lessSignificant)
{
if (lessSignificant != lfExactlyZero) {
if (moreSignificant == lfExactlyZero)
moreSignificant = lfLessThanHalf;
else if (moreSignificant == lfExactlyHalf)
moreSignificant = lfMoreThanHalf;
}
return moreSignificant;
}
/* The error from the true value, in half-ulps, on multiplying two
floating point numbers, which differ from the value they
approximate by at most HUE1 and HUE2 half-ulps, is strictly less
than the returned value.
See "How to Read Floating Point Numbers Accurately" by William D
Clinger. */
static unsigned int
HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
{
assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
if (HUerr1 + HUerr2 == 0)
return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
else
return inexactMultiply + 2 * (HUerr1 + HUerr2);
}
/* The number of ulps from the boundary (zero, or half if ISNEAREST)
when the least significant BITS are truncated. BITS cannot be
zero. */
static integerPart
ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
{
unsigned int count, partBits;
integerPart part, boundary;
assert(bits != 0);
bits--;
count = bits / integerPartWidth;
partBits = bits % integerPartWidth + 1;
part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
if (isNearest)
boundary = (integerPart) 1 << (partBits - 1);
else
boundary = 0;
if (count == 0) {
if (part - boundary <= boundary - part)
return part - boundary;
else
return boundary - part;
}
if (part == boundary) {
while (--count)
if (parts[count])
return ~(integerPart) 0; /* A lot. */
return parts[0];
} else if (part == boundary - 1) {
while (--count)
if (~parts[count])
return ~(integerPart) 0; /* A lot. */
return -parts[0];
}
return ~(integerPart) 0; /* A lot. */
}
/* Place pow(5, power) in DST, and return the number of parts used.
DST must be at least one part larger than size of the answer. */
static unsigned int
powerOf5(integerPart *dst, unsigned int power)
{
static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
15625, 78125 };
integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
pow5s[0] = 78125 * 5;
unsigned int partsCount[16] = { 1 };
integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
unsigned int result;
assert(power <= maxExponent);
p1 = dst;
p2 = scratch;
*p1 = firstEightPowers[power & 7];
power >>= 3;
result = 1;
pow5 = pow5s;
for (unsigned int n = 0; power; power >>= 1, n++) {
unsigned int pc;
pc = partsCount[n];
/* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
if (pc == 0) {
pc = partsCount[n - 1];
APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
pc *= 2;
if (pow5[pc - 1] == 0)
pc--;
partsCount[n] = pc;
}
if (power & 1) {
integerPart *tmp;
APInt::tcFullMultiply(p2, p1, pow5, result, pc);
result += pc;
if (p2[result - 1] == 0)
result--;
/* Now result is in p1 with partsCount parts and p2 is scratch
space. */
tmp = p1, p1 = p2, p2 = tmp;
}
pow5 += pc;
}
if (p1 != dst)
APInt::tcAssign(dst, p1, result);
return result;
}
/* Zero at the end to avoid modular arithmetic when adding one; used
when rounding up during hexadecimal output. */
static const char hexDigitsLower[] = "0123456789abcdef0";
static const char hexDigitsUpper[] = "0123456789ABCDEF0";
static const char infinityL[] = "infinity";
static const char infinityU[] = "INFINITY";
static const char NaNL[] = "nan";
static const char NaNU[] = "NAN";
/* Write out an integerPart in hexadecimal, starting with the most
significant nibble. Write out exactly COUNT hexdigits, return
COUNT. */
static unsigned int
partAsHex (char *dst, integerPart part, unsigned int count,
const char *hexDigitChars)
{
unsigned int result = count;
assert(count != 0 && count <= integerPartWidth / 4);
part >>= (integerPartWidth - 4 * count);
while (count--) {
dst[count] = hexDigitChars[part & 0xf];
part >>= 4;
}
return result;
}
/* Write out an unsigned decimal integer. */
static char *
writeUnsignedDecimal (char *dst, unsigned int n)
{
char buff[40], *p;
p = buff;
do
*p++ = '0' + n % 10;
while (n /= 10);
do
*dst++ = *--p;
while (p != buff);
return dst;
}
/* Write out a signed decimal integer. */
static char *
writeSignedDecimal (char *dst, int value)
{
if (value < 0) {
*dst++ = '-';
dst = writeUnsignedDecimal(dst, -(unsigned) value);
} else
dst = writeUnsignedDecimal(dst, value);
return dst;
}
/* Constructors. */
void
APFloat::initialize(const fltSemantics *ourSemantics)
{
unsigned int count;
semantics = ourSemantics;
count = partCount();
if (count > 1)
significand.parts = new integerPart[count];
}
void
APFloat::freeSignificand()
{
if (needsCleanup())
delete [] significand.parts;
}
void
APFloat::assign(const APFloat &rhs)
{
assert(semantics == rhs.semantics);
sign = rhs.sign;
category = rhs.category;
exponent = rhs.exponent;
if (isFiniteNonZero() || category == fcNaN)
copySignificand(rhs);
}
void
APFloat::copySignificand(const APFloat &rhs)
{
assert(isFiniteNonZero() || category == fcNaN);
assert(rhs.partCount() >= partCount());
APInt::tcAssign(significandParts(), rhs.significandParts(),
partCount());
}
/* Make this number a NaN, with an arbitrary but deterministic value
for the significand. If double or longer, this is a signalling NaN,
which may not be ideal. If float, this is QNaN(0). */
void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
{
category = fcNaN;
sign = Negative;
integerPart *significand = significandParts();
unsigned numParts = partCount();
// Set the significand bits to the fill.
if (!fill || fill->getNumWords() < numParts)
APInt::tcSet(significand, 0, numParts);
if (fill) {
APInt::tcAssign(significand, fill->getRawData(),
std::min(fill->getNumWords(), numParts));
// Zero out the excess bits of the significand.
unsigned bitsToPreserve = semantics->precision - 1;
unsigned part = bitsToPreserve / 64;
bitsToPreserve %= 64;
significand[part] &= ((1ULL << bitsToPreserve) - 1);
for (part++; part != numParts; ++part)
significand[part] = 0;
}
unsigned QNaNBit = semantics->precision - 2;
if (SNaN) {
// We always have to clear the QNaN bit to make it an SNaN.
APInt::tcClearBit(significand, QNaNBit);
// If there are no bits set in the payload, we have to set
// *something* to make it a NaN instead of an infinity;
// conventionally, this is the next bit down from the QNaN bit.
if (APInt::tcIsZero(significand, numParts))
APInt::tcSetBit(significand, QNaNBit - 1);
} else {
// We always have to set the QNaN bit to make it a QNaN.
APInt::tcSetBit(significand, QNaNBit);
}
// For x87 extended precision, we want to make a NaN, not a
// pseudo-NaN. Maybe we should expose the ability to make
// pseudo-NaNs?
if (semantics == &APFloat::x87DoubleExtended)
APInt::tcSetBit(significand, QNaNBit + 1);
}
APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
const APInt *fill) {
APFloat value(Sem, uninitialized);
value.makeNaN(SNaN, Negative, fill);
return value;
}
APFloat &
APFloat::operator=(const APFloat &rhs)
{
if (this != &rhs) {
if (semantics != rhs.semantics) {
freeSignificand();
initialize(rhs.semantics);
}
assign(rhs);
}
return *this;
}
bool
APFloat::isDenormal() const {
return isFiniteNonZero() && (exponent == semantics->minExponent) &&
(APInt::tcExtractBit(significandParts(),
semantics->precision - 1) == 0);
}
bool
APFloat::isSmallest() const {
// The smallest number by magnitude in our format will be the smallest
// denormal, i.e. the floating point number with exponent being minimum
// exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
return isFiniteNonZero() && exponent == semantics->minExponent &&
significandMSB() == 0;
}
bool APFloat::isSignificandAllOnes() const {
// Test if the significand excluding the integral bit is all ones. This allows
// us to test for binade boundaries.
const integerPart *Parts = significandParts();
const unsigned PartCount = partCount();
for (unsigned i = 0; i < PartCount - 1; i++)
if (~Parts[i])
return false;
// Set the unused high bits to all ones when we compare.
const unsigned NumHighBits =
PartCount*integerPartWidth - semantics->precision + 1;
assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
"fill than integerPartWidth");
const integerPart HighBitFill =
~integerPart(0) << (integerPartWidth - NumHighBits);
if (~(Parts[PartCount - 1] | HighBitFill))
return false;
return true;
}
bool APFloat::isSignificandAllZeros() const {
// Test if the significand excluding the integral bit is all zeros. This
// allows us to test for binade boundaries.
const integerPart *Parts = significandParts();
const unsigned PartCount = partCount();
for (unsigned i = 0; i < PartCount - 1; i++)
if (Parts[i])
return false;
const unsigned NumHighBits =
PartCount*integerPartWidth - semantics->precision + 1;
assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
"clear than integerPartWidth");
const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
if (Parts[PartCount - 1] & HighBitMask)
return false;
return true;
}
bool
APFloat::isLargest() const {
// The largest number by magnitude in our format will be the floating point
// number with maximum exponent and with significand that is all ones.
return isFiniteNonZero() && exponent == semantics->maxExponent
&& isSignificandAllOnes();
}
bool
APFloat::bitwiseIsEqual(const APFloat &rhs) const {
if (this == &rhs)
return true;
if (semantics != rhs.semantics ||
category != rhs.category ||
sign != rhs.sign)
return false;
if (category==fcZero || category==fcInfinity)
return true;
else if (isFiniteNonZero() && exponent!=rhs.exponent)
return false;
else {
int i= partCount();
const integerPart* p=significandParts();
const integerPart* q=rhs.significandParts();
for (; i>0; i--, p++, q++) {
if (*p != *q)
return false;
}
return true;
}
}
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
initialize(&ourSemantics);
sign = 0;
category = fcNormal;
zeroSignificand();
exponent = ourSemantics.precision - 1;
significandParts()[0] = value;
normalize(rmNearestTiesToEven, lfExactlyZero);
}
APFloat::APFloat(const fltSemantics &ourSemantics) {
initialize(&ourSemantics);
category = fcZero;
sign = false;
}
APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
// Allocates storage if necessary but does not initialize it.
initialize(&ourSemantics);
}
APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
initialize(&ourSemantics);
convertFromString(text, rmNearestTiesToEven);
}
APFloat::APFloat(const APFloat &rhs) {
initialize(rhs.semantics);
assign(rhs);
}
APFloat::~APFloat()
{
freeSignificand();
}
// Profile - This method 'profiles' an APFloat for use with FoldingSet.
void APFloat::Profile(FoldingSetNodeID& ID) const {
ID.Add(bitcastToAPInt());
}
unsigned int
APFloat::partCount() const
{
return partCountForBits(semantics->precision + 1);
}
unsigned int
APFloat::semanticsPrecision(const fltSemantics &semantics)
{
return semantics.precision;
}
const integerPart *
APFloat::significandParts() const
{
return const_cast<APFloat *>(this)->significandParts();
}
integerPart *
APFloat::significandParts()
{
if (partCount() > 1)
return significand.parts;
else
return &significand.part;
}
void
APFloat::zeroSignificand()
{
APInt::tcSet(significandParts(), 0, partCount());
}
/* Increment an fcNormal floating point number's significand. */
void
APFloat::incrementSignificand()
{
integerPart carry;
carry = APInt::tcIncrement(significandParts(), partCount());
/* Our callers should never cause us to overflow. */
assert(carry == 0);
(void)carry;
}
/* Add the significand of the RHS. Returns the carry flag. */
integerPart
APFloat::addSignificand(const APFloat &rhs)
{
integerPart *parts;
parts = significandParts();
assert(semantics == rhs.semantics);
assert(exponent == rhs.exponent);
return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
}
/* Subtract the significand of the RHS with a borrow flag. Returns
the borrow flag. */
integerPart
APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
{
integerPart *parts;
parts = significandParts();
assert(semantics == rhs.semantics);
assert(exponent == rhs.exponent);
return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
partCount());
}
/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
on to the full-precision result of the multiplication. Returns the
lost fraction. */
lostFraction
APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
{
unsigned int omsb; // One, not zero, based MSB.
unsigned int partsCount, newPartsCount, precision;
integerPart *lhsSignificand;
integerPart scratch[4];
integerPart *fullSignificand;
lostFraction lost_fraction;
bool ignored;
assert(semantics == rhs.semantics);
precision = semantics->precision;
newPartsCount = partCountForBits(precision * 2);
if (newPartsCount > 4)
fullSignificand = new integerPart[newPartsCount];
else
fullSignificand = scratch;
lhsSignificand = significandParts();
partsCount = partCount();
APInt::tcFullMultiply(fullSignificand, lhsSignificand,
rhs.significandParts(), partsCount, partsCount);
lost_fraction = lfExactlyZero;
omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
exponent += rhs.exponent;
// Assume the operands involved in the multiplication are single-precision
// FP, and the two multiplicants are:
// *this = a23 . a22 ... a0 * 2^e1
// rhs = b23 . b22 ... b0 * 2^e2
// the result of multiplication is:
// *this = c47 c46 . c45 ... c0 * 2^(e1+e2)
// Note that there are two significant bits at the left-hand side of the
// radix point. Move the radix point toward left by one bit, and adjust
// exponent accordingly.
exponent += 1;
if (addend) {
// The intermediate result of the multiplication has "2 * precision"
// signicant bit; adjust the addend to be consistent with mul result.
//
Significand savedSignificand = significand;
const fltSemantics *savedSemantics = semantics;
fltSemantics extendedSemantics;
opStatus status;
unsigned int extendedPrecision;
/* Normalize our MSB. */
extendedPrecision = 2 * precision;
if (omsb != extendedPrecision) {
assert(extendedPrecision > omsb);
APInt::tcShiftLeft(fullSignificand, newPartsCount,
extendedPrecision - omsb);
exponent -= extendedPrecision - omsb;
}
/* Create new semantics. */
extendedSemantics = *semantics;
extendedSemantics.precision = extendedPrecision;
if (newPartsCount == 1)
significand.part = fullSignificand[0];
else
significand.parts = fullSignificand;
semantics = &extendedSemantics;
APFloat extendedAddend(*addend);
status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
assert(status == opOK);
(void)status;
lost_fraction = addOrSubtractSignificand(extendedAddend, false);
/* Restore our state. */
if (newPartsCount == 1)
fullSignificand[0] = significand.part;
significand = savedSignificand;
semantics = savedSemantics;
omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
}
// Convert the result having "2 * precision" significant-bits back to the one
// having "precision" significant-bits. First, move the radix point from
// poision "2*precision - 1" to "precision - 1". The exponent need to be
// adjusted by "2*precision - 1" - "precision - 1" = "precision".
exponent -= precision;
// In case MSB resides at the left-hand side of radix point, shift the
// mantissa right by some amount to make sure the MSB reside right before
// the radix point (i.e. "MSB . rest-significant-bits").
//
// Note that the result is not normalized when "omsb < precision". So, the
// caller needs to call APFloat::normalize() if normalized value is expected.
if (omsb > precision) {
unsigned int bits, significantParts;
lostFraction lf;
bits = omsb - precision;
significantParts = partCountForBits(omsb);
lf = shiftRight(fullSignificand, significantParts, bits);
lost_fraction = combineLostFractions(lf, lost_fraction);
exponent += bits;
}
APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
if (newPartsCount > 4)
delete [] fullSignificand;
return lost_fraction;
}
/* Multiply the significands of LHS and RHS to DST. */
lostFraction
APFloat::divideSignificand(const APFloat &rhs)
{
unsigned int bit, i, partsCount;
const integerPart *rhsSignificand;
integerPart *lhsSignificand, *dividend, *divisor;
integerPart scratch[4];
lostFraction lost_fraction;
assert(semantics == rhs.semantics);
lhsSignificand = significandParts();
rhsSignificand = rhs.significandParts();
partsCount = partCount();
if (partsCount > 2)
dividend = new integerPart[partsCount * 2];
else
dividend = scratch;
divisor = dividend + partsCount;
/* Copy the dividend and divisor as they will be modified in-place. */
for (i = 0; i < partsCount; i++) {
dividend[i] = lhsSignificand[i];
divisor[i] = rhsSignificand[i];
lhsSignificand[i] = 0;
}
exponent -= rhs.exponent;
unsigned int precision = semantics->precision;
/* Normalize the divisor. */
bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
if (bit) {
exponent += bit;
APInt::tcShiftLeft(divisor, partsCount, bit);
}
/* Normalize the dividend. */
bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
if (bit) {
exponent -= bit;
APInt::tcShiftLeft(dividend, partsCount, bit);
}
/* Ensure the dividend >= divisor initially for the loop below.
Incidentally, this means that the division loop below is
guaranteed to set the integer bit to one. */
if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
exponent--;
APInt::tcShiftLeft(dividend, partsCount, 1);
assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
}
/* Long division. */
for (bit = precision; bit; bit -= 1) {
if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
APInt::tcSubtract(dividend, divisor, 0, partsCount);
APInt::tcSetBit(lhsSignificand, bit - 1);
}
APInt::tcShiftLeft(dividend, partsCount, 1);
}
/* Figure out the lost fraction. */
int cmp = APInt::tcCompare(dividend, divisor, partsCount);
if (cmp > 0)
lost_fraction = lfMoreThanHalf;
else if (cmp == 0)
lost_fraction = lfExactlyHalf;
else if (APInt::tcIsZero(dividend, partsCount))
lost_fraction = lfExactlyZero;
else
lost_fraction = lfLessThanHalf;
if (partsCount > 2)
delete [] dividend;
return lost_fraction;
}
unsigned int
APFloat::significandMSB() const
{
return APInt::tcMSB(significandParts(), partCount());
}
unsigned int
APFloat::significandLSB() const
{
return APInt::tcLSB(significandParts(), partCount());
}
/* Note that a zero result is NOT normalized to fcZero. */
lostFraction
APFloat::shiftSignificandRight(unsigned int bits)
{
/* Our exponent should not overflow. */
assert((ExponentType) (exponent + bits) >= exponent);
exponent += bits;
return shiftRight(significandParts(), partCount(), bits);
}
/* Shift the significand left BITS bits, subtract BITS from its exponent. */
void
APFloat::shiftSignificandLeft(unsigned int bits)
{
assert(bits < semantics->precision);
if (bits) {
unsigned int partsCount = partCount();
APInt::tcShiftLeft(significandParts(), partsCount, bits);
exponent -= bits;
assert(!APInt::tcIsZero(significandParts(), partsCount));
}
}
APFloat::cmpResult
APFloat::compareAbsoluteValue(const APFloat &rhs) const
{
int compare;
assert(semantics == rhs.semantics);
assert(isFiniteNonZero());
assert(rhs.isFiniteNonZero());
compare = exponent - rhs.exponent;
/* If exponents are equal, do an unsigned bignum comparison of the
significands. */
if (compare == 0)
compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
partCount());
if (compare > 0)
return cmpGreaterThan;
else if (compare < 0)
return cmpLessThan;
else
return cmpEqual;
}
/* Handle overflow. Sign is preserved. We either become infinity or
the largest finite number. */
APFloat::opStatus
APFloat::handleOverflow(roundingMode rounding_mode)
{
/* Infinity? */
if (rounding_mode == rmNearestTiesToEven ||
rounding_mode == rmNearestTiesToAway ||
(rounding_mode == rmTowardPositive && !sign) ||
(rounding_mode == rmTowardNegative && sign)) {
category = fcInfinity;
return (opStatus) (opOverflow | opInexact);
}
/* Otherwise we become the largest finite number. */
category = fcNormal;
exponent = semantics->maxExponent;
APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
semantics->precision);
return opInexact;
}
/* Returns TRUE if, when truncating the current number, with BIT the
new LSB, with the given lost fraction and rounding mode, the result
would need to be rounded away from zero (i.e., by increasing the
signficand). This routine must work for fcZero of both signs, and
fcNormal numbers. */
bool
APFloat::roundAwayFromZero(roundingMode rounding_mode,
lostFraction lost_fraction,
unsigned int bit) const
{
/* NaNs and infinities should not have lost fractions. */
assert(isFiniteNonZero() || category == fcZero);
/* Current callers never pass this so we don't handle it. */
assert(lost_fraction != lfExactlyZero);
switch (rounding_mode) {
case rmNearestTiesToAway:
return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
case rmNearestTiesToEven:
if (lost_fraction == lfMoreThanHalf)
return true;
/* Our zeroes don't have a significand to test. */
if (lost_fraction == lfExactlyHalf && category != fcZero)
return APInt::tcExtractBit(significandParts(), bit);
return false;
case rmTowardZero:
return false;
case rmTowardPositive:
return sign == false;
case rmTowardNegative:
return sign == true;
}
llvm_unreachable("Invalid rounding mode found");
}
APFloat::opStatus
APFloat::normalize(roundingMode rounding_mode,
lostFraction lost_fraction)
{
unsigned int omsb; /* One, not zero, based MSB. */
int exponentChange;
if (!isFiniteNonZero())
return opOK;
/* Before rounding normalize the exponent of fcNormal numbers. */
omsb = significandMSB() + 1;
if (omsb) {
/* OMSB is numbered from 1. We want to place it in the integer
bit numbered PRECISION if possible, with a compensating change in
the exponent. */
exponentChange = omsb - semantics->precision;
/* If the resulting exponent is too high, overflow according to
the rounding mode. */
if (exponent + exponentChange > semantics->maxExponent)
return handleOverflow(rounding_mode);
/* Subnormal numbers have exponent minExponent, and their MSB
is forced based on that. */
if (exponent + exponentChange < semantics->minExponent)
exponentChange = semantics->minExponent - exponent;
/* Shifting left is easy as we don't lose precision. */
if (exponentChange < 0) {
assert(lost_fraction == lfExactlyZero);
shiftSignificandLeft(-exponentChange);
return opOK;
}
if (exponentChange > 0) {
lostFraction lf;
/* Shift right and capture any new lost fraction. */
lf = shiftSignificandRight(exponentChange);
lost_fraction = combineLostFractions(lf, lost_fraction);
/* Keep OMSB up-to-date. */
if (omsb > (unsigned) exponentChange)
omsb -= exponentChange;
else
omsb = 0;
}
}
/* Now round the number according to rounding_mode given the lost
fraction. */
/* As specified in IEEE 754, since we do not trap we do not report
underflow for exact results. */
if (lost_fraction == lfExactlyZero) {
/* Canonicalize zeroes. */
if (omsb == 0)
category = fcZero;
return opOK;
}
/* Increment the significand if we're rounding away from zero. */
if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
if (omsb == 0)
exponent = semantics->minExponent;
incrementSignificand();
omsb = significandMSB() + 1;
/* Did the significand increment overflow? */
if (omsb == (unsigned) semantics->precision + 1) {
/* Renormalize by incrementing the exponent and shifting our
significand right one. However if we already have the
maximum exponent we overflow to infinity. */
if (exponent == semantics->maxExponent) {
category = fcInfinity;
return (opStatus) (opOverflow | opInexact);
}
shiftSignificandRight(1);
return opInexact;
}
}
/* The normal case - we were and are not denormal, and any
significand increment above didn't overflow. */
if (omsb == semantics->precision)
return opInexact;
/* We have a non-zero denormal. */
assert(omsb < semantics->precision);
/* Canonicalize zeroes. */
if (omsb == 0)
category = fcZero;
/* The fcZero case is a denormal that underflowed to zero. */
return (opStatus) (opUnderflow | opInexact);
}
APFloat::opStatus
APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
{
switch (PackCategoriesIntoKey(category, rhs.category)) {
default:
llvm_unreachable(0);
case PackCategoriesIntoKey(fcNaN, fcZero):
case PackCategoriesIntoKey(fcNaN, fcNormal):
case PackCategoriesIntoKey(fcNaN, fcInfinity):
case PackCategoriesIntoKey(fcNaN, fcNaN):
case PackCategoriesIntoKey(fcNormal, fcZero):
case PackCategoriesIntoKey(fcInfinity, fcNormal):
case PackCategoriesIntoKey(fcInfinity, fcZero):
return opOK;
case PackCategoriesIntoKey(fcZero, fcNaN):
case PackCategoriesIntoKey(fcNormal, fcNaN):
case PackCategoriesIntoKey(fcInfinity, fcNaN):
sign = false;
category = fcNaN;
copySignificand(rhs);
return opOK;
case PackCategoriesIntoKey(fcNormal, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcInfinity):
category = fcInfinity;
sign = rhs.sign ^ subtract;
return opOK;
case PackCategoriesIntoKey(fcZero, fcNormal):
assign(rhs);
sign = rhs.sign ^ subtract;
return opOK;
case PackCategoriesIntoKey(fcZero, fcZero):
/* Sign depends on rounding mode; handled by caller. */
return opOK;
case PackCategoriesIntoKey(fcInfinity, fcInfinity):
/* Differently signed infinities can only be validly
subtracted. */
if (((sign ^ rhs.sign)!=0) != subtract) {
makeNaN();
return opInvalidOp;
}
return opOK;
case PackCategoriesIntoKey(fcNormal, fcNormal):
return opDivByZero;
}
}
/* Add or subtract two normal numbers. */
lostFraction
APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
{
integerPart carry;
lostFraction lost_fraction;
int bits;
/* Determine if the operation on the absolute values is effectively
an addition or subtraction. */
subtract ^= (sign ^ rhs.sign) ? true : false;
/* Are we bigger exponent-wise than the RHS? */
bits = exponent - rhs.exponent;
/* Subtraction is more subtle than one might naively expect. */
if (subtract) {
APFloat temp_rhs(rhs);
bool reverse;
if (bits == 0) {
reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
lost_fraction = lfExactlyZero;
} else if (bits > 0) {
lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
shiftSignificandLeft(1);
reverse = false;
} else {
lost_fraction = shiftSignificandRight(-bits - 1);
temp_rhs.shiftSignificandLeft(1);
reverse = true;
}
if (reverse) {
carry = temp_rhs.subtractSignificand
(*this, lost_fraction != lfExactlyZero);
copySignificand(temp_rhs);
sign = !sign;
} else {
carry = subtractSignificand
(temp_rhs, lost_fraction != lfExactlyZero);
}
/* Invert the lost fraction - it was on the RHS and
subtracted. */
if (lost_fraction == lfLessThanHalf)
lost_fraction = lfMoreThanHalf;
else if (lost_fraction == lfMoreThanHalf)
lost_fraction = lfLessThanHalf;
/* The code above is intended to ensure that no borrow is
necessary. */
assert(!carry);
(void)carry;
} else {
if (bits > 0) {
APFloat temp_rhs(rhs);
lost_fraction = temp_rhs.shiftSignificandRight(bits);
carry = addSignificand(temp_rhs);
} else {
lost_fraction = shiftSignificandRight(-bits);
carry = addSignificand(rhs);
}
/* We have a guard bit; generating a carry cannot happen. */
assert(!carry);
(void)carry;
}
return lost_fraction;
}
APFloat::opStatus
APFloat::multiplySpecials(const APFloat &rhs)
{
switch (PackCategoriesIntoKey(category, rhs.category)) {
default:
llvm_unreachable(0);
case PackCategoriesIntoKey(fcNaN, fcZero):
case PackCategoriesIntoKey(fcNaN, fcNormal):
case PackCategoriesIntoKey(fcNaN, fcInfinity):
case PackCategoriesIntoKey(fcNaN, fcNaN):
sign = false;
return opOK;
case PackCategoriesIntoKey(fcZero, fcNaN):
case PackCategoriesIntoKey(fcNormal, fcNaN):
case PackCategoriesIntoKey(fcInfinity, fcNaN):
sign = false;
category = fcNaN;
copySignificand(rhs);
return opOK;
case PackCategoriesIntoKey(fcNormal, fcInfinity):
case PackCategoriesIntoKey(fcInfinity, fcNormal):
case PackCategoriesIntoKey(fcInfinity, fcInfinity):
category = fcInfinity;
return opOK;
case PackCategoriesIntoKey(fcZero, fcNormal):
case PackCategoriesIntoKey(fcNormal, fcZero):
case PackCategoriesIntoKey(fcZero, fcZero):
category = fcZero;
return opOK;
case PackCategoriesIntoKey(fcZero, fcInfinity):
case PackCategoriesIntoKey(fcInfinity, fcZero):
makeNaN();
return opInvalidOp;
case PackCategoriesIntoKey(fcNormal, fcNormal):
return opOK;
}
}
APFloat::opStatus
APFloat::divideSpecials(const APFloat &rhs)
{
switch (PackCategoriesIntoKey(category, rhs.category)) {
default:
llvm_unreachable(0);
case PackCategoriesIntoKey(fcZero, fcNaN):
case PackCategoriesIntoKey(fcNormal, fcNaN):
case PackCategoriesIntoKey(fcInfinity, fcNaN):
category = fcNaN;
copySignificand(rhs);
case PackCategoriesIntoKey(fcNaN, fcZero):
case PackCategoriesIntoKey(fcNaN, fcNormal):
case PackCategoriesIntoKey(fcNaN, fcInfinity):
case PackCategoriesIntoKey(fcNaN, fcNaN):
sign = false;
case PackCategoriesIntoKey(fcInfinity, fcZero):
case PackCategoriesIntoKey(fcInfinity, fcNormal):
case PackCategoriesIntoKey(fcZero, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcNormal):
return opOK;
case PackCategoriesIntoKey(fcNormal, fcInfinity):
category = fcZero;
return opOK;
case PackCategoriesIntoKey(fcNormal, fcZero):
category = fcInfinity;
return opDivByZero;
case PackCategoriesIntoKey(fcInfinity, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcZero):
makeNaN();
return opInvalidOp;
case PackCategoriesIntoKey(fcNormal, fcNormal):
return opOK;
}
}
APFloat::opStatus
APFloat::modSpecials(const APFloat &rhs)
{
switch (PackCategoriesIntoKey(category, rhs.category)) {
default:
llvm_unreachable(0);
case PackCategoriesIntoKey(fcNaN, fcZero):
case PackCategoriesIntoKey(fcNaN, fcNormal):
case PackCategoriesIntoKey(fcNaN, fcInfinity):
case PackCategoriesIntoKey(fcNaN, fcNaN):
case PackCategoriesIntoKey(fcZero, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcNormal):
case PackCategoriesIntoKey(fcNormal, fcInfinity):
return opOK;
case PackCategoriesIntoKey(fcZero, fcNaN):
case PackCategoriesIntoKey(fcNormal, fcNaN):
case PackCategoriesIntoKey(fcInfinity, fcNaN):
sign = false;
category = fcNaN;
copySignificand(rhs);
return opOK;
case PackCategoriesIntoKey(fcNormal, fcZero):
case PackCategoriesIntoKey(fcInfinity, fcZero):
case PackCategoriesIntoKey(fcInfinity, fcNormal):
case PackCategoriesIntoKey(fcInfinity, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcZero):
makeNaN();
return opInvalidOp;
case PackCategoriesIntoKey(fcNormal, fcNormal):
return opOK;
}
}
/* Change sign. */
void
APFloat::changeSign()
{
/* Look mummy, this one's easy. */
sign = !sign;
}
void
APFloat::clearSign()
{
/* So is this one. */
sign = 0;
}
void
APFloat::copySign(const APFloat &rhs)
{
/* And this one. */
sign = rhs.sign;
}
/* Normalized addition or subtraction. */
APFloat::opStatus
APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
bool subtract)
{
opStatus fs;
fs = addOrSubtractSpecials(rhs, subtract);
/* This return code means it was not a simple case. */
if (fs == opDivByZero) {
lostFraction lost_fraction;
lost_fraction = addOrSubtractSignificand(rhs, subtract);
fs = normalize(rounding_mode, lost_fraction);
/* Can only be zero if we lost no fraction. */
assert(category != fcZero || lost_fraction == lfExactlyZero);
}
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
positive zero unless rounding to minus infinity, except that
adding two like-signed zeroes gives that zero. */
if (category == fcZero) {
if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
sign = (rounding_mode == rmTowardNegative);
}
return fs;
}
/* Normalized addition. */
APFloat::opStatus
APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
{
return addOrSubtract(rhs, rounding_mode, false);
}
/* Normalized subtraction. */
APFloat::opStatus
APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
{
return addOrSubtract(rhs, rounding_mode, true);
}
/* Normalized multiply. */
APFloat::opStatus
APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
{
opStatus fs;
sign ^= rhs.sign;
fs = multiplySpecials(rhs);
if (isFiniteNonZero()) {
lostFraction lost_fraction = multiplySignificand(rhs, 0);
fs = normalize(rounding_mode, lost_fraction);
if (lost_fraction != lfExactlyZero)
fs = (opStatus) (fs | opInexact);
}
return fs;
}
/* Normalized divide. */
APFloat::opStatus
APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
{
opStatus fs;
sign ^= rhs.sign;
fs = divideSpecials(rhs);
if (isFiniteNonZero()) {
lostFraction lost_fraction = divideSignificand(rhs);
fs = normalize(rounding_mode, lost_fraction);
if (lost_fraction != lfExactlyZero)
fs = (opStatus) (fs | opInexact);
}
return fs;
}
/* Normalized remainder. This is not currently correct in all cases. */
APFloat::opStatus
APFloat::remainder(const APFloat &rhs)
{
opStatus fs;
APFloat V = *this;
unsigned int origSign = sign;
fs = V.divide(rhs, rmNearestTiesToEven);
if (fs == opDivByZero)
return fs;
int parts = partCount();
integerPart *x = new integerPart[parts];
bool ignored;
fs = V.convertToInteger(x, parts * integerPartWidth, true,
rmNearestTiesToEven, &ignored);
if (fs==opInvalidOp)
return fs;
fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
rmNearestTiesToEven);
assert(fs==opOK); // should always work
fs = V.multiply(rhs, rmNearestTiesToEven);
assert(fs==opOK || fs==opInexact); // should not overflow or underflow
fs = subtract(V, rmNearestTiesToEven);
assert(fs==opOK || fs==opInexact); // likewise
if (isZero())
sign = origSign; // IEEE754 requires this
delete[] x;
return fs;
}
/* Normalized llvm frem (C fmod).
This is not currently correct in all cases. */
APFloat::opStatus
APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
{
opStatus fs;
fs = modSpecials(rhs);
if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
APFloat V = *this;
unsigned int origSign = sign;
fs = V.divide(rhs, rmNearestTiesToEven);
if (fs == opDivByZero)
return fs;
int parts = partCount();
integerPart *x = new integerPart[parts];
bool ignored;
fs = V.convertToInteger(x, parts * integerPartWidth, true,
rmTowardZero, &ignored);
if (fs==opInvalidOp)
return fs;
fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
rmNearestTiesToEven);
assert(fs==opOK); // should always work
fs = V.multiply(rhs, rounding_mode);
assert(fs==opOK || fs==opInexact); // should not overflow or underflow
fs = subtract(V, rounding_mode);
assert(fs==opOK || fs==opInexact); // likewise
if (isZero())
sign = origSign; // IEEE754 requires this
delete[] x;
}
return fs;
}
/* Normalized fused-multiply-add. */
APFloat::opStatus
APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
const APFloat &addend,
roundingMode rounding_mode)
{
opStatus fs;
/* Post-multiplication sign, before addition. */
sign ^= multiplicand.sign;
/* If and only if all arguments are normal do we need to do an
extended-precision calculation. */
if (isFiniteNonZero() &&
multiplicand.isFiniteNonZero() &&
addend.isFiniteNonZero()) {
lostFraction lost_fraction;
lost_fraction = multiplySignificand(multiplicand, &addend);
fs = normalize(rounding_mode, lost_fraction);
if (lost_fraction != lfExactlyZero)
fs = (opStatus) (fs | opInexact);
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
positive zero unless rounding to minus infinity, except that
adding two like-signed zeroes gives that zero. */
if (category == fcZero && sign != addend.sign)
sign = (rounding_mode == rmTowardNegative);
} else {
fs = multiplySpecials(multiplicand);
/* FS can only be opOK or opInvalidOp. There is no more work
to do in the latter case. The IEEE-754R standard says it is
implementation-defined in this case whether, if ADDEND is a
quiet NaN, we raise invalid op; this implementation does so.
If we need to do the addition we can do so with normal
precision. */
if (fs == opOK)
fs = addOrSubtract(addend, rounding_mode, false);
}
return fs;
}
/* Rounding-mode corrrect round to integral value. */
APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
opStatus fs;
// If the exponent is large enough, we know that this value is already
// integral, and the arithmetic below would potentially cause it to saturate
// to +/-Inf. Bail out early instead.
if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
return opOK;
// The algorithm here is quite simple: we add 2^(p-1), where p is the
// precision of our format, and then subtract it back off again. The choice
// of rounding modes for the addition/subtraction determines the rounding mode
// for our integral rounding as well.
// NOTE: When the input value is negative, we do subtraction followed by
// addition instead.
APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
IntegerConstant <<= semanticsPrecision(*semantics)-1;
APFloat MagicConstant(*semantics);
fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
rmNearestTiesToEven);
MagicConstant.copySign(*this);
if (fs != opOK)
return fs;
// Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
bool inputSign = isNegative();
fs = add(MagicConstant, rounding_mode);
if (fs != opOK && fs != opInexact)
return fs;
fs = subtract(MagicConstant, rounding_mode);
// Restore the input sign.
if (inputSign != isNegative())
changeSign();
return fs;
}
/* Comparison requires normalized numbers. */
APFloat::cmpResult
APFloat::compare(const APFloat &rhs) const
{
cmpResult result;
assert(semantics == rhs.semantics);
switch (PackCategoriesIntoKey(category, rhs.category)) {
default:
llvm_unreachable(0);
case PackCategoriesIntoKey(fcNaN, fcZero):
case PackCategoriesIntoKey(fcNaN, fcNormal):
case PackCategoriesIntoKey(fcNaN, fcInfinity):
case PackCategoriesIntoKey(fcNaN, fcNaN):
case PackCategoriesIntoKey(fcZero, fcNaN):
case PackCategoriesIntoKey(fcNormal, fcNaN):
case PackCategoriesIntoKey(fcInfinity, fcNaN):
return cmpUnordered;
case PackCategoriesIntoKey(fcInfinity, fcNormal):
case PackCategoriesIntoKey(fcInfinity, fcZero):
case PackCategoriesIntoKey(fcNormal, fcZero):
if (sign)
return cmpLessThan;
else
return cmpGreaterThan;
case PackCategoriesIntoKey(fcNormal, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcInfinity):
case PackCategoriesIntoKey(fcZero, fcNormal):
if (rhs.sign)
return cmpGreaterThan;
else
return cmpLessThan;
case PackCategoriesIntoKey(fcInfinity, fcInfinity):
if (sign == rhs.sign)
return cmpEqual;
else if (sign)
return cmpLessThan;
else
return cmpGreaterThan;
case PackCategoriesIntoKey(fcZero, fcZero):
return cmpEqual;
case PackCategoriesIntoKey(fcNormal, fcNormal):
break;
}
/* Two normal numbers. Do they have the same sign? */
if (sign != rhs.sign) {
if (sign)
result = cmpLessThan;
else
result = cmpGreaterThan;
} else {
/* Compare absolute values; invert result if negative. */
result = compareAbsoluteValue(rhs);
if (sign) {
if (result == cmpLessThan)
result = cmpGreaterThan;
else if (result == cmpGreaterThan)
result = cmpLessThan;
}
}
return result;
}
/// APFloat::convert - convert a value of one floating point type to another.
/// The return value corresponds to the IEEE754 exceptions. *losesInfo
/// records whether the transformation lost information, i.e. whether
/// converting the result back to the original type will produce the
/// original value (this is almost the same as return value==fsOK, but there
/// are edge cases where this is not so).
APFloat::opStatus
APFloat::convert(const fltSemantics &toSemantics,
roundingMode rounding_mode, bool *losesInfo)
{
lostFraction lostFraction;
unsigned int newPartCount, oldPartCount;
opStatus fs;
int shift;
const fltSemantics &fromSemantics = *semantics;
lostFraction = lfExactlyZero;
newPartCount = partCountForBits(toSemantics.precision + 1);
oldPartCount = partCount();
shift = toSemantics.precision - fromSemantics.precision;
bool X86SpecialNan = false;
if (&fromSemantics == &APFloat::x87DoubleExtended &&
&toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
(!(*significandParts() & 0x8000000000000000ULL) ||
!(*significandParts() & 0x4000000000000000ULL))) {
// x86 has some unusual NaNs which cannot be represented in any other
// format; note them here.
X86SpecialNan = true;
}
// If this is a truncation of a denormal number, and the target semantics
// has larger exponent range than the source semantics (this can happen
// when truncating from PowerPC double-double to double format), the
// right shift could lose result mantissa bits. Adjust exponent instead
// of performing excessive shift.
if (shift < 0 && isFiniteNonZero()) {
int exponentChange = significandMSB() + 1 - fromSemantics.precision;
if (exponent + exponentChange < toSemantics.minExponent)
exponentChange = toSemantics.minExponent - exponent;
if (exponentChange < shift)
exponentChange = shift;
if (exponentChange < 0) {
shift -= exponentChange;
exponent += exponentChange;
}
}
// If this is a truncation, perform the shift before we narrow the storage.
if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
// Fix the storage so it can hold to new value.
if (newPartCount > oldPartCount) {
// The new type requires more storage; make it available.
integerPart *newParts;
newParts = new integerPart[newPartCount];
APInt::tcSet(newParts, 0, newPartCount);
if (isFiniteNonZero() || category==fcNaN)
APInt::tcAssign(newParts, significandParts(), oldPartCount);
freeSignificand();
significand.parts = newParts;
} else if (newPartCount == 1 && oldPartCount != 1) {
// Switch to built-in storage for a single part.
integerPart newPart = 0;
if (isFiniteNonZero() || category==fcNaN)
newPart = significandParts()[0];
freeSignificand();
significand.part = newPart;
}
// Now that we have the right storage, switch the semantics.
semantics = &toSemantics;
// If this is an extension, perform the shift now that the storage is
// available.
if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
APInt::tcShiftLeft(significandParts(), newPartCount, shift);
if (isFiniteNonZero()) {
fs = normalize(rounding_mode, lostFraction);
*losesInfo = (fs != opOK);
} else if (category == fcNaN) {
*losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
// For x87 extended precision, we want to make a NaN, not a special NaN if
// the input wasn't special either.
if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
APInt::tcSetBit(significandParts(), semantics->precision - 1);
// gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
// does not give you back the same bits. This is dubious, and we
// don't currently do it. You're really supposed to get
// an invalid operation signal at runtime, but nobody does that.
fs = opOK;
} else {
*losesInfo = false;
fs = opOK;
}
return fs;
}
/* Convert a floating point number to an integer according to the
rounding mode. If the rounded integer value is out of range this
returns an invalid operation exception and the contents of the
destination parts are unspecified. If the rounded value is in
range but the floating point number is not the exact integer, the C
standard doesn't require an inexact exception to be raised. IEEE
854 does require it so we do that.
Note that for conversions to integer type the C standard requires
round-to-zero to always be used. */
APFloat::opStatus
APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
bool isSigned,
roundingMode rounding_mode,
bool *isExact) const
{
lostFraction lost_fraction;
const integerPart *src;
unsigned int dstPartsCount, truncatedBits;
*isExact = false;
/* Handle the three special cases first. */
if (category == fcInfinity || category == fcNaN)
return opInvalidOp;
dstPartsCount = partCountForBits(width);
if (category == fcZero) {
APInt::tcSet(parts, 0, dstPartsCount);
// Negative zero can't be represented as an int.
*isExact = !sign;
return opOK;
}
src = significandParts();
/* Step 1: place our absolute value, with any fraction truncated, in
the destination. */
if (exponent < 0) {
/* Our absolute value is less than one; truncate everything. */
APInt::tcSet(parts, 0, dstPartsCount);
/* For exponent -1 the integer bit represents .5, look at that.
For smaller exponents leftmost truncated bit is 0. */
truncatedBits = semantics->precision -1U - exponent;
} else {
/* We want the most significant (exponent + 1) bits; the rest are
truncated. */
unsigned int bits = exponent + 1U;
/* Hopelessly large in magnitude? */
if (bits > width)
return opInvalidOp;
if (bits < semantics->precision) {
/* We truncate (semantics->precision - bits) bits. */
truncatedBits = semantics->precision - bits;
APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
} else {
/* We want at least as many bits as are available. */
APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
truncatedBits = 0;
}
}
/* Step 2: work out any lost fraction, and increment the absolute
value if we would round away from zero. */
if (truncatedBits) {
lost_fraction = lostFractionThroughTruncation(src, partCount(),
truncatedBits);
if (lost_fraction != lfExactlyZero &&
roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
if (APInt::tcIncrement(parts, dstPartsCount))
return opInvalidOp; /* Overflow. */
}
} else {
lost_fraction = lfExactlyZero;
}
/* Step 3: check if we fit in the destination. */
unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
if (sign) {
if (!isSigned) {
/* Negative numbers cannot be represented as unsigned. */
if (omsb != 0)
return opInvalidOp;
} else {
/* It takes omsb bits to represent the unsigned integer value.
We lose a bit for the sign, but care is needed as the
maximally negative integer is a special case. */
if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
return opInvalidOp;
/* This case can happen because of rounding. */
if (omsb > width)
return opInvalidOp;
}
APInt::tcNegate (parts, dstPartsCount);
} else {
if (omsb >= width + !isSigned)
return opInvalidOp;
}
if (lost_fraction == lfExactlyZero) {
*isExact = true;
return opOK;
} else
return opInexact;
}
/* Same as convertToSignExtendedInteger, except we provide
deterministic values in case of an invalid operation exception,
namely zero for NaNs and the minimal or maximal value respectively
for underflow or overflow.
The *isExact output tells whether the result is exact, in the sense
that converting it back to the original floating point type produces
the original value. This is almost equivalent to result==opOK,
except for negative zeroes.
*/
APFloat::opStatus
APFloat::convertToInteger(integerPart *parts, unsigned int width,
bool isSigned,
roundingMode rounding_mode, bool *isExact) const
{
opStatus fs;
fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
isExact);
if (fs == opInvalidOp) {
unsigned int bits, dstPartsCount;
dstPartsCount = partCountForBits(width);
if (category == fcNaN)
bits = 0;
else if (sign)
bits = isSigned;
else
bits = width - isSigned;
APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
if (sign && isSigned)
APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
}
return fs;
}
/* Same as convertToInteger(integerPart*, ...), except the result is returned in
an APSInt, whose initial bit-width and signed-ness are used to determine the
precision of the conversion.
*/
APFloat::opStatus
APFloat::convertToInteger(APSInt &result,
roundingMode rounding_mode, bool *isExact) const
{
unsigned bitWidth = result.getBitWidth();
SmallVector<uint64_t, 4> parts(result.getNumWords());
opStatus status = convertToInteger(
parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
// Keeps the original signed-ness.
result = APInt(bitWidth, parts);
return status;
}
/* Convert an unsigned integer SRC to a floating point number,
rounding according to ROUNDING_MODE. The sign of the floating
point number is not modified. */
APFloat::opStatus
APFloat::convertFromUnsignedParts(const integerPart *src,
unsigned int srcCount,
roundingMode rounding_mode)
{
unsigned int omsb, precision, dstCount;
integerPart *dst;
lostFraction lost_fraction;
category = fcNormal;
omsb = APInt::tcMSB(src, srcCount) + 1;
dst = significandParts();
dstCount = partCount();
precision = semantics->precision;
/* We want the most significant PRECISION bits of SRC. There may not
be that many; extract what we can. */
if (precision <= omsb) {
exponent = omsb - 1;
lost_fraction = lostFractionThroughTruncation(src, srcCount,
omsb - precision);
APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
} else {
exponent = precision - 1;
lost_fraction = lfExactlyZero;
APInt::tcExtract(dst, dstCount, src, omsb, 0);
}
return normalize(rounding_mode, lost_fraction);
}
APFloat::opStatus
APFloat::convertFromAPInt(const APInt &Val,
bool isSigned,
roundingMode rounding_mode)
{
unsigned int partCount = Val.getNumWords();
APInt api = Val;
sign = false;
if (isSigned && api.isNegative()) {
sign = true;
api = -api;
}
return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
}
/* Convert a two's complement integer SRC to a floating point number,
rounding according to ROUNDING_MODE. ISSIGNED is true if the
integer is signed, in which case it must be sign-extended. */
APFloat::opStatus
APFloat::convertFromSignExtendedInteger(const integerPart *src,
unsigned int srcCount,
bool isSigned,
roundingMode rounding_mode)
{
opStatus status;
if (isSigned &&
APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
integerPart *copy;
/* If we're signed and negative negate a copy. */
sign = true;
copy = new integerPart[srcCount];
APInt::tcAssign(copy, src, srcCount);
APInt::tcNegate(copy, srcCount);
status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
delete [] copy;
} else {
sign = false;
status = convertFromUnsignedParts(src, srcCount, rounding_mode);
}
return status;
}
/* FIXME: should this just take a const APInt reference? */
APFloat::opStatus
APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
unsigned int width, bool isSigned,
roundingMode rounding_mode)
{
unsigned int partCount = partCountForBits(width);
APInt api = APInt(width, makeArrayRef(parts, partCount));
sign = false;
if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
sign = true;
api = -api;
}
return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
}
APFloat::opStatus
APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
{
lostFraction lost_fraction = lfExactlyZero;
category = fcNormal;
zeroSignificand();
exponent = 0;
integerPart *significand = significandParts();
unsigned partsCount = partCount();
unsigned bitPos = partsCount * integerPartWidth;
bool computedTrailingFraction = false;
// Skip leading zeroes and any (hexa)decimal point.
StringRef::iterator begin = s.begin();
StringRef::iterator end = s.end();
StringRef::iterator dot;
StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
StringRef::iterator firstSignificantDigit = p;
while (p != end) {
integerPart hex_value;
if (*p == '.') {
assert(dot == end && "String contains multiple dots");
dot = p++;
continue;
}
hex_value = hexDigitValue(*p);
if (hex_value == -1U)
break;
p++;
// Store the number while we have space.
if (bitPos) {
bitPos -= 4;
hex_value <<= bitPos % integerPartWidth;
significand[bitPos / integerPartWidth] |= hex_value;
} else if (!computedTrailingFraction) {
lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
computedTrailingFraction = true;
}
}
/* Hex floats require an exponent but not a hexadecimal point. */
assert(p != end && "Hex strings require an exponent");
assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
assert(p != begin && "Significand has no digits");
assert((dot == end || p - begin != 1) && "Significand has no digits");
/* Ignore the exponent if we are zero. */
if (p != firstSignificantDigit) {
int expAdjustment;
/* Implicit hexadecimal point? */
if (dot == end)
dot = p;
/* Calculate the exponent adjustment implicit in the number of
significant digits. */
expAdjustment = static_cast<int>(dot - firstSignificantDigit);
if (expAdjustment < 0)
expAdjustment++;
expAdjustment = expAdjustment * 4 - 1;
/* Adjust for writing the significand starting at the most
significant nibble. */
expAdjustment += semantics->precision;
expAdjustment -= partsCount * integerPartWidth;
/* Adjust for the given exponent. */
exponent = totalExponent(p + 1, end, expAdjustment);
}
return normalize(rounding_mode, lost_fraction);
}
APFloat::opStatus
APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
unsigned sigPartCount, int exp,
roundingMode rounding_mode)
{
unsigned int parts, pow5PartCount;
fltSemantics calcSemantics = { 32767, -32767, 0 };
integerPart pow5Parts[maxPowerOfFiveParts];
bool isNearest;
isNearest = (rounding_mode == rmNearestTiesToEven ||
rounding_mode == rmNearestTiesToAway);
parts = partCountForBits(semantics->precision + 11);
/* Calculate pow(5, abs(exp)). */
pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
for (;; parts *= 2) {
opStatus sigStatus, powStatus;
unsigned int excessPrecision, truncatedBits;
calcSemantics.precision = parts * integerPartWidth - 1;
excessPrecision = calcSemantics.precision - semantics->precision;
truncatedBits = excessPrecision;
APFloat decSig = APFloat::getZero(calcSemantics, sign);
APFloat pow5(calcSemantics);
sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
rmNearestTiesToEven);
powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
rmNearestTiesToEven);
/* Add exp, as 10^n = 5^n * 2^n. */
decSig.exponent += exp;
lostFraction calcLostFraction;
integerPart HUerr, HUdistance;
unsigned int powHUerr;
if (exp >= 0) {
/* multiplySignificand leaves the precision-th bit set to 1. */
calcLostFraction = decSig.multiplySignificand(pow5, NULL);
powHUerr = powStatus != opOK;
} else {
calcLostFraction = decSig.divideSignificand(pow5);
/* Denormal numbers have less precision. */
if (decSig.exponent < semantics->minExponent) {
excessPrecision += (semantics->minExponent - decSig.exponent);
truncatedBits = excessPrecision;
if (excessPrecision > calcSemantics.precision)
excessPrecision = calcSemantics.precision;
}
/* Extra half-ulp lost in reciprocal of exponent. */
powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
}
/* Both multiplySignificand and divideSignificand return the
result with the integer bit set. */
assert(APInt::tcExtractBit
(decSig.significandParts(), calcSemantics.precision - 1) == 1);
HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
powHUerr);
HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
excessPrecision, isNearest);
/* Are we guaranteed to round correctly if we truncate? */
if (HUdistance >= HUerr) {
APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
calcSemantics.precision - excessPrecision,
excessPrecision);
/* Take the exponent of decSig. If we tcExtract-ed less bits
above we must adjust our exponent to compensate for the
implicit right shift. */
exponent = (decSig.exponent + semantics->precision
- (calcSemantics.precision - excessPrecision));
calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
decSig.partCount(),
truncatedBits);
return normalize(rounding_mode, calcLostFraction);
}
}
}
APFloat::opStatus
APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
{
decimalInfo D;
opStatus fs;
/* Scan the text. */
StringRef::iterator p = str.begin();
interpretDecimal(p, str.end(), &D);
/* Handle the quick cases. First the case of no significant digits,
i.e. zero, and then exponents that are obviously too large or too
small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
definitely overflows if
(exp - 1) * L >= maxExponent
and definitely underflows to zero where
(exp + 1) * L <= minExponent - precision
With integer arithmetic the tightest bounds for L are
93/28 < L < 196/59 [ numerator <= 256 ]
42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
*/
// Test if we have a zero number allowing for strings with no null terminators
// and zero decimals with non-zero exponents.
//
// We computed firstSigDigit by ignoring all zeros and dots. Thus if
// D->firstSigDigit equals str.end(), every digit must be a zero and there can
// be at most one dot. On the other hand, if we have a zero with a non-zero
// exponent, then we know that D.firstSigDigit will be non-numeric.
if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
category = fcZero;
fs = opOK;
/* Check whether the normalized exponent is high enough to overflow
max during the log-rebasing in the max-exponent check below. */
} else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
fs = handleOverflow(rounding_mode);
/* If it wasn't, then it also wasn't high enough to overflow max
during the log-rebasing in the min-exponent check. Check that it
won't overflow min in either check, then perform the min-exponent
check. */
} else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
(D.normalizedExponent + 1) * 28738 <=
8651 * (semantics->minExponent - (int) semantics->precision)) {
/* Underflow to zero and round. */
category = fcNormal;
zeroSignificand();
fs = normalize(rounding_mode, lfLessThanHalf);
/* We can finally safely perform the max-exponent check. */
} else if ((D.normalizedExponent - 1) * 42039
>= 12655 * semantics->maxExponent) {
/* Overflow and round. */
fs = handleOverflow(rounding_mode);
} else {
integerPart *decSignificand;
unsigned int partCount;
/* A tight upper bound on number of bits required to hold an
N-digit decimal integer is N * 196 / 59. Allocate enough space
to hold the full significand, and an extra part required by
tcMultiplyPart. */
partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
partCount = partCountForBits(1 + 196 * partCount / 59);
decSignificand = new integerPart[partCount + 1];
partCount = 0;
/* Convert to binary efficiently - we do almost all multiplication
in an integerPart. When this would overflow do we do a single
bignum multiplication, and then revert again to multiplication
in an integerPart. */
do {
integerPart decValue, val, multiplier;
val = 0;
multiplier = 1;
do {
if (*p == '.') {
p++;
if (p == str.end()) {
break;
}
}
decValue = decDigitValue(*p++);
assert(decValue < 10U && "Invalid character in significand");
multiplier *= 10;
val = val * 10 + decValue;
/* The maximum number that can be multiplied by ten with any
digit added without overflowing an integerPart. */
} while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
/* Multiply out the current part. */
APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
partCount, partCount + 1, false);
/* If we used another part (likely but not guaranteed), increase
the count. */
if (decSignificand[partCount])
partCount++;
} while (p <= D.lastSigDigit);
category = fcNormal;
fs = roundSignificandWithExponent(decSignificand, partCount,
D.exponent, rounding_mode);
delete [] decSignificand;
}
return fs;
}
bool
APFloat::convertFromStringSpecials(StringRef str) {
if (str.equals("inf") || str.equals("INFINITY")) {
makeInf(false);
return true;
}
if (str.equals("-inf") || str.equals("-INFINITY")) {
makeInf(true);
return true;
}
if (str.equals("nan") || str.equals("NaN")) {
makeNaN(false, false);
return true;
}
if (str.equals("-nan") || str.equals("-NaN")) {
makeNaN(false, true);
return true;
}
return false;
}
APFloat::opStatus
APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
{
assert(!str.empty() && "Invalid string length");
// Handle special cases.
if (convertFromStringSpecials(str))
return opOK;
/* Handle a leading minus sign. */
StringRef::iterator p = str.begin();
size_t slen = str.size();
sign = *p == '-' ? 1 : 0;
if (*p == '-' || *p == '+') {
p++;
slen--;
assert(slen && "String has no digits");
}
if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
assert(slen - 2 && "Invalid string");
return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
rounding_mode);
}
return convertFromDecimalString(StringRef(p, slen), rounding_mode);
}
/* Write out a hexadecimal representation of the floating point value
to DST, which must be of sufficient size, in the C99 form
[-]0xh.hhhhp[+-]d. Return the number of characters written,
excluding the terminating NUL.
If UPPERCASE, the output is in upper case, otherwise in lower case.
HEXDIGITS digits appear altogether, rounding the value if
necessary. If HEXDIGITS is 0, the minimal precision to display the
number precisely is used instead. If nothing would appear after
the decimal point it is suppressed.
The decimal exponent is always printed and has at least one digit.
Zero values display an exponent of zero. Infinities and NaNs
appear as "infinity" or "nan" respectively.
The above rules are as specified by C99. There is ambiguity about
what the leading hexadecimal digit should be. This implementation
uses whatever is necessary so that the exponent is displayed as
stored. This implies the exponent will fall within the IEEE format
range, and the leading hexadecimal digit will be 0 (for denormals),
1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
any other digits zero).
*/
unsigned int
APFloat::convertToHexString(char *dst, unsigned int hexDigits,
bool upperCase, roundingMode rounding_mode) const
{
char *p;
p = dst;
if (sign)
*dst++ = '-';
switch (category) {
case fcInfinity:
memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
dst += sizeof infinityL - 1;
break;
case fcNaN:
memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
dst += sizeof NaNU - 1;
break;
case fcZero:
*dst++ = '0';
*dst++ = upperCase ? 'X': 'x';
*dst++ = '0';
if (hexDigits > 1) {
*dst++ = '.';
memset (dst, '0', hexDigits - 1);
dst += hexDigits - 1;
}
*dst++ = upperCase ? 'P': 'p';
*dst++ = '0';
break;
case fcNormal:
dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
break;
}
*dst = 0;
return static_cast<unsigned int>(dst - p);
}
/* Does the hard work of outputting the correctly rounded hexadecimal
form of a normal floating point number with the specified number of
hexadecimal digits. If HEXDIGITS is zero the minimum number of
digits necessary to print the value precisely is output. */
char *
APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
bool upperCase,
roundingMode rounding_mode) const
{
unsigned int count, valueBits, shift, partsCount, outputDigits;
const char *hexDigitChars;
const integerPart *significand;
char *p;
bool roundUp;
*dst++ = '0';
*dst++ = upperCase ? 'X': 'x';
roundUp = false;
hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
significand = significandParts();
partsCount = partCount();
/* +3 because the first digit only uses the single integer bit, so
we have 3 virtual zero most-significant-bits. */
valueBits = semantics->precision + 3;
shift = integerPartWidth - valueBits % integerPartWidth;
/* The natural number of digits required ignoring trailing
insignificant zeroes. */
outputDigits = (valueBits - significandLSB () + 3) / 4;
/* hexDigits of zero means use the required number for the
precision. Otherwise, see if we are truncating. If we are,
find out if we need to round away from zero. */
if (hexDigits) {
if (hexDigits < outputDigits) {
/* We are dropping non-zero bits, so need to check how to round.
"bits" is the number of dropped bits. */
unsigned int bits;
lostFraction fraction;
bits = valueBits - hexDigits * 4;
fraction = lostFractionThroughTruncation (significand, partsCount, bits);
roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
}
outputDigits = hexDigits;
}
/* Write the digits consecutively, and start writing in the location
of the hexadecimal point. We move the most significant digit
left and add the hexadecimal point later. */
p = ++dst;
count = (valueBits + integerPartWidth - 1) / integerPartWidth;
while (outputDigits && count) {
integerPart part;
/* Put the most significant integerPartWidth bits in "part". */
if (--count == partsCount)
part = 0; /* An imaginary higher zero part. */
else
part = significand[count] << shift;
if (count && shift)
part |= significand[count - 1] >> (integerPartWidth - shift);
/* Convert as much of "part" to hexdigits as we can. */
unsigned int curDigits = integerPartWidth / 4;
if (curDigits > outputDigits)
curDigits = outputDigits;
dst += partAsHex (dst, part, curDigits, hexDigitChars);
outputDigits -= curDigits;
}
if (roundUp) {
char *q = dst;
/* Note that hexDigitChars has a trailing '0'. */
do {
q--;
*q = hexDigitChars[hexDigitValue (*q) + 1];
} while (*q == '0');
assert(q >= p);
} else {
/* Add trailing zeroes. */
memset (dst, '0', outputDigits);
dst += outputDigits;
}
/* Move the most significant digit to before the point, and if there
is something after the decimal point add it. This must come
after rounding above. */
p[-1] = p[0];
if (dst -1 == p)
dst--;
else
p[0] = '.';
/* Finally output the exponent. */
*dst++ = upperCase ? 'P': 'p';
return writeSignedDecimal (dst, exponent);
}
hash_code llvm::hash_value(const APFloat &Arg) {
if (!Arg.isFiniteNonZero())
return hash_combine((uint8_t)Arg.category,
// NaN has no sign, fix it at zero.
Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
Arg.semantics->precision);
// Normal floats need their exponent and significand hashed.
return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
Arg.semantics->precision, Arg.exponent,
hash_combine_range(
Arg.significandParts(),
Arg.significandParts() + Arg.partCount()));
}
// Conversion from APFloat to/from host float/double. It may eventually be
// possible to eliminate these and have everybody deal with APFloats, but that
// will take a while. This approach will not easily extend to long double.
// Current implementation requires integerPartWidth==64, which is correct at
// the moment but could be made more general.
// Denormals have exponent minExponent in APFloat, but minExponent-1 in
// the actual IEEE respresentations. We compensate for that here.
APInt
APFloat::convertF80LongDoubleAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
assert(partCount()==2);
uint64_t myexponent, mysignificand;
if (isFiniteNonZero()) {
myexponent = exponent+16383; //bias
mysignificand = significandParts()[0];
if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
myexponent = 0; // denormal
} else if (category==fcZero) {
myexponent = 0;
mysignificand = 0;
} else if (category==fcInfinity) {
myexponent = 0x7fff;
mysignificand = 0x8000000000000000ULL;
} else {
assert(category == fcNaN && "Unknown category");
myexponent = 0x7fff;
mysignificand = significandParts()[0];
}
uint64_t words[2];
words[0] = mysignificand;
words[1] = ((uint64_t)(sign & 1) << 15) |
(myexponent & 0x7fffLL);
return APInt(80, words);
}
APInt
APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
assert(partCount()==2);
uint64_t words[2];
opStatus fs;
bool losesInfo;
// Convert number to double. To avoid spurious underflows, we re-
// normalize against the "double" minExponent first, and only *then*
// truncate the mantissa. The result of that second conversion
// may be inexact, but should never underflow.
// Declare fltSemantics before APFloat that uses it (and
// saves pointer to it) to ensure correct destruction order.
fltSemantics extendedSemantics = *semantics;
extendedSemantics.minExponent = IEEEdouble.minExponent;
APFloat extended(*this);
fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
APFloat u(extended);
fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK || fs == opInexact);
(void)fs;
words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
// If conversion was exact or resulted in a special case, we're done;
// just set the second double to zero. Otherwise, re-convert back to
// the extended format and compute the difference. This now should
// convert exactly to double.
if (u.isFiniteNonZero() && losesInfo) {
fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
APFloat v(extended);
v.subtract(u, rmNearestTiesToEven);
fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
} else {
words[1] = 0;
}
return APInt(128, words);
}
APInt
APFloat::convertQuadrupleAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
assert(partCount()==2);
uint64_t myexponent, mysignificand, mysignificand2;
if (isFiniteNonZero()) {
myexponent = exponent+16383; //bias
mysignificand = significandParts()[0];
mysignificand2 = significandParts()[1];
if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
myexponent = 0; // denormal
} else if (category==fcZero) {
myexponent = 0;
mysignificand = mysignificand2 = 0;
} else if (category==fcInfinity) {
myexponent = 0x7fff;
mysignificand = mysignificand2 = 0;
} else {
assert(category == fcNaN && "Unknown category!");
myexponent = 0x7fff;
mysignificand = significandParts()[0];
mysignificand2 = significandParts()[1];
}
uint64_t words[2];
words[0] = mysignificand;
words[1] = ((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7fff) << 48) |
(mysignificand2 & 0xffffffffffffLL);
return APInt(128, words);
}
APInt
APFloat::convertDoubleAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
assert(partCount()==1);
uint64_t myexponent, mysignificand;
if (isFiniteNonZero()) {
myexponent = exponent+1023; //bias
mysignificand = *significandParts();
if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
myexponent = 0; // denormal
} else if (category==fcZero) {
myexponent = 0;
mysignificand = 0;
} else if (category==fcInfinity) {
myexponent = 0x7ff;
mysignificand = 0;
} else {
assert(category == fcNaN && "Unknown category!");
myexponent = 0x7ff;
mysignificand = *significandParts();
}
return APInt(64, ((((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7ff) << 52) |
(mysignificand & 0xfffffffffffffLL))));
}
APInt
APFloat::convertFloatAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
assert(partCount()==1);
uint32_t myexponent, mysignificand;
if (isFiniteNonZero()) {
myexponent = exponent+127; //bias
mysignificand = (uint32_t)*significandParts();
if (myexponent == 1 && !(mysignificand & 0x800000))
myexponent = 0; // denormal
} else if (category==fcZero) {
myexponent = 0;
mysignificand = 0;
} else if (category==fcInfinity) {
myexponent = 0xff;
mysignificand = 0;
} else {
assert(category == fcNaN && "Unknown category!");
myexponent = 0xff;
mysignificand = (uint32_t)*significandParts();
}
return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
(mysignificand & 0x7fffff)));
}
APInt
APFloat::convertHalfAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
assert(partCount()==1);
uint32_t myexponent, mysignificand;
if (isFiniteNonZero()) {
myexponent = exponent+15; //bias
mysignificand = (uint32_t)*significandParts();
if (myexponent == 1 && !(mysignificand & 0x400))
myexponent = 0; // denormal
} else if (category==fcZero) {
myexponent = 0;
mysignificand = 0;
} else if (category==fcInfinity) {
myexponent = 0x1f;
mysignificand = 0;
} else {
assert(category == fcNaN && "Unknown category!");
myexponent = 0x1f;
mysignificand = (uint32_t)*significandParts();
}
return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
(mysignificand & 0x3ff)));
}
// This function creates an APInt that is just a bit map of the floating
// point constant as it would appear in memory. It is not a conversion,
// and treating the result as a normal integer is unlikely to be useful.
APInt
APFloat::bitcastToAPInt() const
{
if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
return convertHalfAPFloatToAPInt();
if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
return convertFloatAPFloatToAPInt();
if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
return convertDoubleAPFloatToAPInt();
if (semantics == (const llvm::fltSemantics*)&IEEEquad)
return convertQuadrupleAPFloatToAPInt();
if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
return convertPPCDoubleDoubleAPFloatToAPInt();
assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
"unknown format!");
return convertF80LongDoubleAPFloatToAPInt();
}
float
APFloat::convertToFloat() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
"Float semantics are not IEEEsingle");
APInt api = bitcastToAPInt();
return api.bitsToFloat();
}
double
APFloat::convertToDouble() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
"Float semantics are not IEEEdouble");
APInt api = bitcastToAPInt();
return api.bitsToDouble();
}
/// Integer bit is explicit in this format. Intel hardware (387 and later)
/// does not support these bit patterns:
/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
/// exponent = 0, integer bit 1 ("pseudodenormal")
/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
/// At the moment, the first two are treated as NaNs, the second two as Normal.
void
APFloat::initFromF80LongDoubleAPInt(const APInt &api)
{
assert(api.getBitWidth()==80);
uint64_t i1 = api.getRawData()[0];
uint64_t i2 = api.getRawData()[1];
uint64_t myexponent = (i2 & 0x7fff);
uint64_t mysignificand = i1;
initialize(&APFloat::x87DoubleExtended);
assert(partCount()==2);
sign = static_cast<unsigned int>(i2>>15);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
} else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
// exponent, significand meaningless
category = fcInfinity;
} else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
// exponent meaningless
category = fcNaN;
significandParts()[0] = mysignificand;
significandParts()[1] = 0;
} else {
category = fcNormal;
exponent = myexponent - 16383;
significandParts()[0] = mysignificand;
significandParts()[1] = 0;
if (myexponent==0) // denormal
exponent = -16382;
}
}
void
APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
{
assert(api.getBitWidth()==128);
uint64_t i1 = api.getRawData()[0];
uint64_t i2 = api.getRawData()[1];
opStatus fs;
bool losesInfo;
// Get the first double and convert to our format.
initFromDoubleAPInt(APInt(64, i1));
fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
// Unless we have a special case, add in second double.
if (isFiniteNonZero()) {
APFloat v(IEEEdouble, APInt(64, i2));
fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
add(v, rmNearestTiesToEven);
}
}
void
APFloat::initFromQuadrupleAPInt(const APInt &api)
{
assert(api.getBitWidth()==128);
uint64_t i1 = api.getRawData()[0];
uint64_t i2 = api.getRawData()[1];
uint64_t myexponent = (i2 >> 48) & 0x7fff;
uint64_t mysignificand = i1;
uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
initialize(&APFloat::IEEEquad);
assert(partCount()==2);
sign = static_cast<unsigned int>(i2>>63);
if (myexponent==0 &&
(mysignificand==0 && mysignificand2==0)) {
// exponent, significand meaningless
category = fcZero;
} else if (myexponent==0x7fff &&
(mysignificand==0 && mysignificand2==0)) {
// exponent, significand meaningless
category = fcInfinity;
} else if (myexponent==0x7fff &&
(mysignificand!=0 || mysignificand2 !=0)) {
// exponent meaningless
category = fcNaN;
significandParts()[0] = mysignificand;
significandParts()[1] = mysignificand2;
} else {
category = fcNormal;
exponent = myexponent - 16383;
significandParts()[0] = mysignificand;
significandParts()[1] = mysignificand2;
if (myexponent==0) // denormal
exponent = -16382;
else
significandParts()[1] |= 0x1000000000000LL; // integer bit
}
}
void
APFloat::initFromDoubleAPInt(const APInt &api)
{
assert(api.getBitWidth()==64);
uint64_t i = *api.getRawData();
uint64_t myexponent = (i >> 52) & 0x7ff;
uint64_t mysignificand = i & 0xfffffffffffffLL;
initialize(&APFloat::IEEEdouble);
assert(partCount()==1);
sign = static_cast<unsigned int>(i>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
} else if (myexponent==0x7ff && mysignificand==0) {
// exponent, significand meaningless
category = fcInfinity;
} else if (myexponent==0x7ff && mysignificand!=0) {
// exponent meaningless
category = fcNaN;
*significandParts() = mysignificand;
} else {
category = fcNormal;
exponent = myexponent - 1023;
*significandParts() = mysignificand;
if (myexponent==0) // denormal
exponent = -1022;
else
*significandParts() |= 0x10000000000000LL; // integer bit
}
}
void
APFloat::initFromFloatAPInt(const APInt & api)
{
assert(api.getBitWidth()==32);
uint32_t i = (uint32_t)*api.getRawData();
uint32_t myexponent = (i >> 23) & 0xff;
uint32_t mysignificand = i & 0x7fffff;
initialize(&APFloat::IEEEsingle);
assert(partCount()==1);
sign = i >> 31;
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
} else if (myexponent==0xff && mysignificand==0) {
// exponent, significand meaningless
category = fcInfinity;
} else if (myexponent==0xff && mysignificand!=0) {
// sign, exponent, significand meaningless
category = fcNaN;
*significandParts() = mysignificand;
} else {
category = fcNormal;
exponent = myexponent - 127; //bias
*significandParts() = mysignificand;
if (myexponent==0) // denormal
exponent = -126;
else
*significandParts() |= 0x800000; // integer bit
}
}
void
APFloat::initFromHalfAPInt(const APInt & api)
{
assert(api.getBitWidth()==16);
uint32_t i = (uint32_t)*api.getRawData();
uint32_t myexponent = (i >> 10) & 0x1f;
uint32_t mysignificand = i & 0x3ff;
initialize(&APFloat::IEEEhalf);
assert(partCount()==1);
sign = i >> 15;
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
} else if (myexponent==0x1f && mysignificand==0) {
// exponent, significand meaningless
category = fcInfinity;
} else if (myexponent==0x1f && mysignificand!=0) {
// sign, exponent, significand meaningless
category = fcNaN;
*significandParts() = mysignificand;
} else {
category = fcNormal;
exponent = myexponent - 15; //bias
*significandParts() = mysignificand;
if (myexponent==0) // denormal
exponent = -14;
else
*significandParts() |= 0x400; // integer bit
}
}
/// Treat api as containing the bits of a floating point number. Currently
/// we infer the floating point type from the size of the APInt. The
/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
/// when the size is anything else).
void
APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
{
if (Sem == &IEEEhalf)
return initFromHalfAPInt(api);
if (Sem == &IEEEsingle)
return initFromFloatAPInt(api);
if (Sem == &IEEEdouble)
return initFromDoubleAPInt(api);
if (Sem == &x87DoubleExtended)
return initFromF80LongDoubleAPInt(api);
if (Sem == &IEEEquad)
return initFromQuadrupleAPInt(api);
if (Sem == &PPCDoubleDouble)
return initFromPPCDoubleDoubleAPInt(api);
llvm_unreachable(0);
}
APFloat
APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
{
switch (BitWidth) {
case 16:
return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
case 32:
return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
case 64:
return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
case 80:
return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
case 128:
if (isIEEE)
return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
default:
llvm_unreachable("Unknown floating bit width");
}
}
/// Make this number the largest magnitude normal number in the given
/// semantics.
void APFloat::makeLargest(bool Negative) {
// We want (in interchange format):
// sign = {Negative}
// exponent = 1..10
// significand = 1..1
category = fcNormal;
sign = Negative;
exponent = semantics->maxExponent;
// Use memset to set all but the highest integerPart to all ones.
integerPart *significand = significandParts();
unsigned PartCount = partCount();
memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
// Set the high integerPart especially setting all unused top bits for
// internal consistency.
const unsigned NumUnusedHighBits =
PartCount*integerPartWidth - semantics->precision;
significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits;
}
/// Make this number the smallest magnitude denormal number in the given
/// semantics.
void APFloat::makeSmallest(bool Negative) {
// We want (in interchange format):
// sign = {Negative}
// exponent = 0..0
// significand = 0..01
category = fcNormal;
sign = Negative;
exponent = semantics->minExponent;
APInt::tcSet(significandParts(), 1, partCount());
}
APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
// We want (in interchange format):
// sign = {Negative}
// exponent = 1..10
// significand = 1..1
APFloat Val(Sem, uninitialized);
Val.makeLargest(Negative);
return Val;
}
APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
// We want (in interchange format):
// sign = {Negative}
// exponent = 0..0
// significand = 0..01
APFloat Val(Sem, uninitialized);
Val.makeSmallest(Negative);
return Val;
}
APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
APFloat Val(Sem, uninitialized);
// We want (in interchange format):
// sign = {Negative}
// exponent = 0..0
// significand = 10..0
Val.category = fcNormal;
Val.zeroSignificand();
Val.sign = Negative;
Val.exponent = Sem.minExponent;
Val.significandParts()[partCountForBits(Sem.precision)-1] |=
(((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
return Val;
}
APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
initFromAPInt(&Sem, API);
}
APFloat::APFloat(float f) {
initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
}
APFloat::APFloat(double d) {
initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
}
namespace {
void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
Buffer.append(Str.begin(), Str.end());
}
/// Removes data from the given significand until it is no more
/// precise than is required for the desired precision.
void AdjustToPrecision(APInt &significand,
int &exp, unsigned FormatPrecision) {
unsigned bits = significand.getActiveBits();
// 196/59 is a very slight overestimate of lg_2(10).
unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
if (bits <= bitsRequired) return;
unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
if (!tensRemovable) return;
exp += tensRemovable;
APInt divisor(significand.getBitWidth(), 1);
APInt powten(significand.getBitWidth(), 10);
while (true) {
if (tensRemovable & 1)
divisor *= powten;
tensRemovable >>= 1;
if (!tensRemovable) break;
powten *= powten;
}
significand = significand.udiv(divisor);
// Truncate the significand down to its active bit count.
significand = significand.trunc(significand.getActiveBits());
}
void AdjustToPrecision(SmallVectorImpl<char> &buffer,
int &exp, unsigned FormatPrecision) {
unsigned N = buffer.size();
if (N <= FormatPrecision) return;
// The most significant figures are the last ones in the buffer.
unsigned FirstSignificant = N - FormatPrecision;
// Round.
// FIXME: this probably shouldn't use 'round half up'.
// Rounding down is just a truncation, except we also want to drop
// trailing zeros from the new result.
if (buffer[FirstSignificant - 1] < '5') {
while (FirstSignificant < N && buffer[FirstSignificant] == '0')
FirstSignificant++;
exp += FirstSignificant;
buffer.erase(&buffer[0], &buffer[FirstSignificant]);
return;
}
// Rounding up requires a decimal add-with-carry. If we continue
// the carry, the newly-introduced zeros will just be truncated.
for (unsigned I = FirstSignificant; I != N; ++I) {
if (buffer[I] == '9') {
FirstSignificant++;
} else {
buffer[I]++;
break;
}
}
// If we carried through, we have exactly one digit of precision.
if (FirstSignificant == N) {
exp += FirstSignificant;
buffer.clear();
buffer.push_back('1');
return;
}
exp += FirstSignificant;
buffer.erase(&buffer[0], &buffer[FirstSignificant]);
}
}
void APFloat::toString(SmallVectorImpl<char> &Str,
unsigned FormatPrecision,
unsigned FormatMaxPadding) const {
switch (category) {
case fcInfinity:
if (isNegative())
return append(Str, "-Inf");
else
return append(Str, "+Inf");
case fcNaN: return append(Str, "NaN");
case fcZero:
if (isNegative())
Str.push_back('-');
if (!FormatMaxPadding)
append(Str, "0.0E+0");
else
Str.push_back('0');
return;
case fcNormal:
break;
}
if (isNegative())
Str.push_back('-');
// Decompose the number into an APInt and an exponent.
int exp = exponent - ((int) semantics->precision - 1);
APInt significand(semantics->precision,
makeArrayRef(significandParts(),
partCountForBits(semantics->precision)));
// Set FormatPrecision if zero. We want to do this before we
// truncate trailing zeros, as those are part of the precision.
if (!FormatPrecision) {
// We use enough digits so the number can be round-tripped back to an
// APFloat. The formula comes from "How to Print Floating-Point Numbers
// Accurately" by Steele and White.
// FIXME: Using a formula based purely on the precision is conservative;
// we can print fewer digits depending on the actual value being printed.
// FormatPrecision = 2 + floor(significandBits / lg_2(10))
FormatPrecision = 2 + semantics->precision * 59 / 196;
}
// Ignore trailing binary zeros.
int trailingZeros = significand.countTrailingZeros();
exp += trailingZeros;
significand = significand.lshr(trailingZeros);
// Change the exponent from 2^e to 10^e.
if (exp == 0) {
// Nothing to do.
} else if (exp > 0) {
// Just shift left.
significand = significand.zext(semantics->precision + exp);
significand <<= exp;
exp = 0;
} else { /* exp < 0 */
int texp = -exp;
// We transform this using the identity:
// (N)(2^-e) == (N)(5^e)(10^-e)
// This means we have to multiply N (the significand) by 5^e.
// To avoid overflow, we have to operate on numbers large
// enough to store N * 5^e:
// log2(N * 5^e) == log2(N) + e * log2(5)
// <= semantics->precision + e * 137 / 59
// (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
unsigned precision = semantics->precision + (137 * texp + 136) / 59;
// Multiply significand by 5^e.
// N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
significand = significand.zext(precision);
APInt five_to_the_i(precision, 5);
while (true) {
if (texp & 1) significand *= five_to_the_i;
texp >>= 1;
if (!texp) break;
five_to_the_i *= five_to_the_i;
}
}
AdjustToPrecision(significand, exp, FormatPrecision);
SmallVector<char, 256> buffer;
// Fill the buffer.
unsigned precision = significand.getBitWidth();
APInt ten(precision, 10);
APInt digit(precision, 0);
bool inTrail = true;
while (significand != 0) {
// digit <- significand % 10
// significand <- significand / 10
APInt::udivrem(significand, ten, significand, digit);
unsigned d = digit.getZExtValue();
// Drop trailing zeros.
if (inTrail && !d) exp++;
else {
buffer.push_back((char) ('0' + d));
inTrail = false;
}
}
assert(!buffer.empty() && "no characters in buffer!");
// Drop down to FormatPrecision.
// TODO: don't do more precise calculations above than are required.
AdjustToPrecision(buffer, exp, FormatPrecision);
unsigned NDigits = buffer.size();
// Check whether we should use scientific notation.
bool FormatScientific;
if (!FormatMaxPadding)
FormatScientific = true;
else {
if (exp >= 0) {
// 765e3 --> 765000
// ^^^
// But we shouldn't make the number look more precise than it is.
FormatScientific = ((unsigned) exp > FormatMaxPadding ||
NDigits + (unsigned) exp > FormatPrecision);
} else {
// Power of the most significant digit.
int MSD = exp + (int) (NDigits - 1);
if (MSD >= 0) {
// 765e-2 == 7.65
FormatScientific = false;
} else {
// 765e-5 == 0.00765
// ^ ^^
FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
}
}
}
// Scientific formatting is pretty straightforward.
if (FormatScientific) {
exp += (NDigits - 1);
Str.push_back(buffer[NDigits-1]);
Str.push_back('.');
if (NDigits == 1)
Str.push_back('0');
else
for (unsigned I = 1; I != NDigits; ++I)
Str.push_back(buffer[NDigits-1-I]);
Str.push_back('E');
Str.push_back(exp >= 0 ? '+' : '-');
if (exp < 0) exp = -exp;
SmallVector<char, 6> expbuf;
do {
expbuf.push_back((char) ('0' + (exp % 10)));
exp /= 10;
} while (exp);
for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
Str.push_back(expbuf[E-1-I]);
return;
}
// Non-scientific, positive exponents.
if (exp >= 0) {
for (unsigned I = 0; I != NDigits; ++I)
Str.push_back(buffer[NDigits-1-I]);
for (unsigned I = 0; I != (unsigned) exp; ++I)
Str.push_back('0');
return;
}
// Non-scientific, negative exponents.
// The number of digits to the left of the decimal point.
int NWholeDigits = exp + (int) NDigits;
unsigned I = 0;
if (NWholeDigits > 0) {
for (; I != (unsigned) NWholeDigits; ++I)
Str.push_back(buffer[NDigits-I-1]);
Str.push_back('.');
} else {
unsigned NZeros = 1 + (unsigned) -NWholeDigits;
Str.push_back('0');
Str.push_back('.');
for (unsigned Z = 1; Z != NZeros; ++Z)
Str.push_back('0');
}
for (; I != NDigits; ++I)
Str.push_back(buffer[NDigits-I-1]);
}
bool APFloat::getExactInverse(APFloat *inv) const {
// Special floats and denormals have no exact inverse.
if (!isFiniteNonZero())
return false;
// Check that the number is a power of two by making sure that only the
// integer bit is set in the significand.
if (significandLSB() != semantics->precision - 1)
return false;
// Get the inverse.
APFloat reciprocal(*semantics, 1ULL);
if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
return false;
// Avoid multiplication with a denormal, it is not safe on all platforms and
// may be slower than a normal division.
if (reciprocal.isDenormal())
return false;
assert(reciprocal.isFiniteNonZero() &&
reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
if (inv)
*inv = reciprocal;
return true;
}
bool APFloat::isSignaling() const {
if (!isNaN())
return false;
// IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
// first bit of the trailing significand being 0.
return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
}
/// IEEE-754R 2008 5.3.1: nextUp/nextDown.
///
/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
/// appropriate sign switching before/after the computation.
APFloat::opStatus APFloat::next(bool nextDown) {
// If we are performing nextDown, swap sign so we have -x.
if (nextDown)
changeSign();
// Compute nextUp(x)
opStatus result = opOK;
// Handle each float category separately.
switch (category) {
case fcInfinity:
// nextUp(+inf) = +inf
if (!isNegative())
break;
// nextUp(-inf) = -getLargest()
makeLargest(true);
break;
case fcNaN:
// IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
// IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
// change the payload.
if (isSignaling()) {
result = opInvalidOp;
// For consistency, propogate the sign of the sNaN to the qNaN.
makeNaN(false, isNegative(), 0);
}
break;
case fcZero:
// nextUp(pm 0) = +getSmallest()
makeSmallest(false);
break;
case fcNormal:
// nextUp(-getSmallest()) = -0
if (isSmallest() && isNegative()) {
APInt::tcSet(significandParts(), 0, partCount());
category = fcZero;
exponent = 0;
break;
}
// nextUp(getLargest()) == INFINITY
if (isLargest() && !isNegative()) {
APInt::tcSet(significandParts(), 0, partCount());
category = fcInfinity;
exponent = semantics->maxExponent + 1;
break;
}
// nextUp(normal) == normal + inc.
if (isNegative()) {
// If we are negative, we need to decrement the significand.
// We only cross a binade boundary that requires adjusting the exponent
// if:
// 1. exponent != semantics->minExponent. This implies we are not in the
// smallest binade or are dealing with denormals.
// 2. Our significand excluding the integral bit is all zeros.
bool WillCrossBinadeBoundary =
exponent != semantics->minExponent && isSignificandAllZeros();
// Decrement the significand.
//
// We always do this since:
// 1. If we are dealing with a non binade decrement, by definition we
// just decrement the significand.
// 2. If we are dealing with a normal -> normal binade decrement, since
// we have an explicit integral bit the fact that all bits but the
// integral bit are zero implies that subtracting one will yield a
// significand with 0 integral bit and 1 in all other spots. Thus we
// must just adjust the exponent and set the integral bit to 1.
// 3. If we are dealing with a normal -> denormal binade decrement,
// since we set the integral bit to 0 when we represent denormals, we
// just decrement the significand.
integerPart *Parts = significandParts();
APInt::tcDecrement(Parts, partCount());
if (WillCrossBinadeBoundary) {
// Our result is a normal number. Do the following:
// 1. Set the integral bit to 1.
// 2. Decrement the exponent.
APInt::tcSetBit(Parts, semantics->precision - 1);
exponent--;
}
} else {
// If we are positive, we need to increment the significand.
// We only cross a binade boundary that requires adjusting the exponent if
// the input is not a denormal and all of said input's significand bits
// are set. If all of said conditions are true: clear the significand, set
// the integral bit to 1, and increment the exponent. If we have a
// denormal always increment since moving denormals and the numbers in the
// smallest normal binade have the same exponent in our representation.
bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
if (WillCrossBinadeBoundary) {
integerPart *Parts = significandParts();
APInt::tcSet(Parts, 0, partCount());
APInt::tcSetBit(Parts, semantics->precision - 1);
assert(exponent != semantics->maxExponent &&
"We can not increment an exponent beyond the maxExponent allowed"
" by the given floating point semantics.");
exponent++;
} else {
incrementSignificand();
}
}
break;
}
// If we are performing nextDown, swap sign so we have -nextUp(-x)
if (nextDown)
changeSign();
return result;
}
void
APFloat::makeInf(bool Negative) {
category = fcInfinity;
sign = Negative;
exponent = semantics->maxExponent + 1;
APInt::tcSet(significandParts(), 0, partCount());
}
void
APFloat::makeZero(bool Negative) {
category = fcZero;
sign = Negative;
exponent = semantics->minExponent-1;
APInt::tcSet(significandParts(), 0, partCount());
}
|