1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
|
//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Neil Booth and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision floating
// point values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//
#include <cassert>
#include "llvm/ADT/APFloat.h"
using namespace llvm;
#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
/* Assumed in hexadecimal significand parsing. */
COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
namespace llvm {
/* Represents floating point arithmetic semantics. */
struct fltSemantics {
/* The largest E such that 2^E is representable; this matches the
definition of IEEE 754. */
exponent_t maxExponent;
/* The smallest E such that 2^E is a normalized number; this
matches the definition of IEEE 754. */
exponent_t minExponent;
/* Number of bits in the significand. This includes the integer
bit. */
unsigned char precision;
/* If the target format has an implicit integer bit. */
bool implicitIntegerBit;
};
const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
}
/* Put a bunch of private, handy routines in an anonymous namespace. */
namespace {
inline unsigned int
partCountForBits(unsigned int bits)
{
return ((bits) + integerPartWidth - 1) / integerPartWidth;
}
unsigned int
digitValue(unsigned int c)
{
unsigned int r;
r = c - '0';
if(r <= 9)
return r;
return -1U;
}
unsigned int
hexDigitValue (unsigned int c)
{
unsigned int r;
r = c - '0';
if(r <= 9)
return r;
r = c - 'A';
if(r <= 5)
return r + 10;
r = c - 'a';
if(r <= 5)
return r + 10;
return -1U;
}
/* This is ugly and needs cleaning up, but I don't immediately see
how whilst remaining safe. */
static int
totalExponent(const char *p, int exponentAdjustment)
{
integerPart unsignedExponent;
bool negative, overflow;
long exponent;
/* Move past the exponent letter and sign to the digits. */
p++;
negative = *p == '-';
if(*p == '-' || *p == '+')
p++;
unsignedExponent = 0;
overflow = false;
for(;;) {
unsigned int value;
value = digitValue(*p);
if(value == -1U)
break;
p++;
unsignedExponent = unsignedExponent * 10 + value;
if(unsignedExponent > 65535)
overflow = true;
}
if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
overflow = true;
if(!overflow) {
exponent = unsignedExponent;
if(negative)
exponent = -exponent;
exponent += exponentAdjustment;
if(exponent > 65535 || exponent < -65536)
overflow = true;
}
if(overflow)
exponent = negative ? -65536: 65535;
return exponent;
}
const char *
skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
{
*dot = 0;
while(*p == '0')
p++;
if(*p == '.') {
*dot = p++;
while(*p == '0')
p++;
}
return p;
}
/* Return the trailing fraction of a hexadecimal number.
DIGITVALUE is the first hex digit of the fraction, P points to
the next digit. */
lostFraction
trailingHexadecimalFraction(const char *p, unsigned int digitValue)
{
unsigned int hexDigit;
/* If the first trailing digit isn't 0 or 8 we can work out the
fraction immediately. */
if(digitValue > 8)
return lfMoreThanHalf;
else if(digitValue < 8 && digitValue > 0)
return lfLessThanHalf;
/* Otherwise we need to find the first non-zero digit. */
while(*p == '0')
p++;
hexDigit = hexDigitValue(*p);
/* If we ran off the end it is exactly zero or one-half, otherwise
a little more. */
if(hexDigit == -1U)
return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
else
return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
}
/* Return the fraction lost were a bignum truncated. */
lostFraction
lostFractionThroughTruncation(integerPart *parts,
unsigned int partCount,
unsigned int bits)
{
unsigned int lsb;
lsb = APInt::tcLSB(parts, partCount);
/* Note this is guaranteed true if bits == 0, or LSB == -1U. */
if(bits <= lsb)
return lfExactlyZero;
if(bits == lsb + 1)
return lfExactlyHalf;
if(bits <= partCount * integerPartWidth
&& APInt::tcExtractBit(parts, bits - 1))
return lfMoreThanHalf;
return lfLessThanHalf;
}
/* Shift DST right BITS bits noting lost fraction. */
lostFraction
shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
{
lostFraction lost_fraction;
lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
APInt::tcShiftRight(dst, parts, bits);
return lost_fraction;
}
}
/* Constructors. */
void
APFloat::initialize(const fltSemantics *ourSemantics)
{
unsigned int count;
semantics = ourSemantics;
count = partCount();
if(count > 1)
significand.parts = new integerPart[count];
}
void
APFloat::freeSignificand()
{
if(partCount() > 1)
delete [] significand.parts;
}
void
APFloat::assign(const APFloat &rhs)
{
assert(semantics == rhs.semantics);
sign = rhs.sign;
category = rhs.category;
exponent = rhs.exponent;
if(category == fcNormal)
copySignificand(rhs);
}
void
APFloat::copySignificand(const APFloat &rhs)
{
assert(category == fcNormal);
assert(rhs.partCount() >= partCount());
APInt::tcAssign(significandParts(), rhs.significandParts(),
partCount());
}
APFloat &
APFloat::operator=(const APFloat &rhs)
{
if(this != &rhs) {
if(semantics != rhs.semantics) {
freeSignificand();
initialize(rhs.semantics);
}
assign(rhs);
}
return *this;
}
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
{
initialize(&ourSemantics);
sign = 0;
zeroSignificand();
exponent = ourSemantics.precision - 1;
significandParts()[0] = value;
normalize(rmNearestTiesToEven, lfExactlyZero);
}
APFloat::APFloat(const fltSemantics &ourSemantics,
fltCategory ourCategory, bool negative)
{
initialize(&ourSemantics);
category = ourCategory;
sign = negative;
if(category == fcNormal)
category = fcZero;
}
APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
{
initialize(&ourSemantics);
convertFromString(text, rmNearestTiesToEven);
}
APFloat::APFloat(const APFloat &rhs)
{
initialize(rhs.semantics);
assign(rhs);
}
APFloat::~APFloat()
{
freeSignificand();
}
unsigned int
APFloat::partCount() const
{
return partCountForBits(semantics->precision + 1);
}
unsigned int
APFloat::semanticsPrecision(const fltSemantics &semantics)
{
return semantics.precision;
}
const integerPart *
APFloat::significandParts() const
{
return const_cast<APFloat *>(this)->significandParts();
}
integerPart *
APFloat::significandParts()
{
assert(category == fcNormal);
if(partCount() > 1)
return significand.parts;
else
return &significand.part;
}
/* Combine the effect of two lost fractions. */
lostFraction
APFloat::combineLostFractions(lostFraction moreSignificant,
lostFraction lessSignificant)
{
if(lessSignificant != lfExactlyZero) {
if(moreSignificant == lfExactlyZero)
moreSignificant = lfLessThanHalf;
else if(moreSignificant == lfExactlyHalf)
moreSignificant = lfMoreThanHalf;
}
return moreSignificant;
}
void
APFloat::zeroSignificand()
{
category = fcNormal;
APInt::tcSet(significandParts(), 0, partCount());
}
/* Increment an fcNormal floating point number's significand. */
void
APFloat::incrementSignificand()
{
integerPart carry;
carry = APInt::tcIncrement(significandParts(), partCount());
/* Our callers should never cause us to overflow. */
assert(carry == 0);
}
/* Add the significand of the RHS. Returns the carry flag. */
integerPart
APFloat::addSignificand(const APFloat &rhs)
{
integerPart *parts;
parts = significandParts();
assert(semantics == rhs.semantics);
assert(exponent == rhs.exponent);
return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
}
/* Subtract the significand of the RHS with a borrow flag. Returns
the borrow flag. */
integerPart
APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
{
integerPart *parts;
parts = significandParts();
assert(semantics == rhs.semantics);
assert(exponent == rhs.exponent);
return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
partCount());
}
/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
on to the full-precision result of the multiplication. Returns the
lost fraction. */
lostFraction
APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
{
unsigned int omsb; // One, not zero, based MSB.
unsigned int partsCount, newPartsCount, precision;
integerPart *lhsSignificand;
integerPart scratch[4];
integerPart *fullSignificand;
lostFraction lost_fraction;
assert(semantics == rhs.semantics);
precision = semantics->precision;
newPartsCount = partCountForBits(precision * 2);
if(newPartsCount > 4)
fullSignificand = new integerPart[newPartsCount];
else
fullSignificand = scratch;
lhsSignificand = significandParts();
partsCount = partCount();
APInt::tcFullMultiply(fullSignificand, lhsSignificand,
rhs.significandParts(), partsCount);
lost_fraction = lfExactlyZero;
omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
exponent += rhs.exponent;
if(addend) {
Significand savedSignificand = significand;
const fltSemantics *savedSemantics = semantics;
fltSemantics extendedSemantics;
opStatus status;
unsigned int extendedPrecision;
/* Normalize our MSB. */
extendedPrecision = precision + precision - 1;
if(omsb != extendedPrecision)
{
APInt::tcShiftLeft(fullSignificand, newPartsCount,
extendedPrecision - omsb);
exponent -= extendedPrecision - omsb;
}
/* Create new semantics. */
extendedSemantics = *semantics;
extendedSemantics.precision = extendedPrecision;
if(newPartsCount == 1)
significand.part = fullSignificand[0];
else
significand.parts = fullSignificand;
semantics = &extendedSemantics;
APFloat extendedAddend(*addend);
status = extendedAddend.convert(extendedSemantics, rmTowardZero);
assert(status == opOK);
lost_fraction = addOrSubtractSignificand(extendedAddend, false);
/* Restore our state. */
if(newPartsCount == 1)
fullSignificand[0] = significand.part;
significand = savedSignificand;
semantics = savedSemantics;
omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
}
exponent -= (precision - 1);
if(omsb > precision) {
unsigned int bits, significantParts;
lostFraction lf;
bits = omsb - precision;
significantParts = partCountForBits(omsb);
lf = shiftRight(fullSignificand, significantParts, bits);
lost_fraction = combineLostFractions(lf, lost_fraction);
exponent += bits;
}
APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
if(newPartsCount > 4)
delete [] fullSignificand;
return lost_fraction;
}
/* Multiply the significands of LHS and RHS to DST. */
lostFraction
APFloat::divideSignificand(const APFloat &rhs)
{
unsigned int bit, i, partsCount;
const integerPart *rhsSignificand;
integerPart *lhsSignificand, *dividend, *divisor;
integerPart scratch[4];
lostFraction lost_fraction;
assert(semantics == rhs.semantics);
lhsSignificand = significandParts();
rhsSignificand = rhs.significandParts();
partsCount = partCount();
if(partsCount > 2)
dividend = new integerPart[partsCount * 2];
else
dividend = scratch;
divisor = dividend + partsCount;
/* Copy the dividend and divisor as they will be modified in-place. */
for(i = 0; i < partsCount; i++) {
dividend[i] = lhsSignificand[i];
divisor[i] = rhsSignificand[i];
lhsSignificand[i] = 0;
}
exponent -= rhs.exponent;
unsigned int precision = semantics->precision;
/* Normalize the divisor. */
bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
if(bit) {
exponent += bit;
APInt::tcShiftLeft(divisor, partsCount, bit);
}
/* Normalize the dividend. */
bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
if(bit) {
exponent -= bit;
APInt::tcShiftLeft(dividend, partsCount, bit);
}
if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
exponent--;
APInt::tcShiftLeft(dividend, partsCount, 1);
assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
}
/* Long division. */
for(bit = precision; bit; bit -= 1) {
if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
APInt::tcSubtract(dividend, divisor, 0, partsCount);
APInt::tcSetBit(lhsSignificand, bit - 1);
}
APInt::tcShiftLeft(dividend, partsCount, 1);
}
/* Figure out the lost fraction. */
int cmp = APInt::tcCompare(dividend, divisor, partsCount);
if(cmp > 0)
lost_fraction = lfMoreThanHalf;
else if(cmp == 0)
lost_fraction = lfExactlyHalf;
else if(APInt::tcIsZero(dividend, partsCount))
lost_fraction = lfExactlyZero;
else
lost_fraction = lfLessThanHalf;
if(partsCount > 2)
delete [] dividend;
return lost_fraction;
}
unsigned int
APFloat::significandMSB() const
{
return APInt::tcMSB(significandParts(), partCount());
}
unsigned int
APFloat::significandLSB() const
{
return APInt::tcLSB(significandParts(), partCount());
}
/* Note that a zero result is NOT normalized to fcZero. */
lostFraction
APFloat::shiftSignificandRight(unsigned int bits)
{
/* Our exponent should not overflow. */
assert((exponent_t) (exponent + bits) >= exponent);
exponent += bits;
return shiftRight(significandParts(), partCount(), bits);
}
/* Shift the significand left BITS bits, subtract BITS from its exponent. */
void
APFloat::shiftSignificandLeft(unsigned int bits)
{
assert(bits < semantics->precision);
if(bits) {
unsigned int partsCount = partCount();
APInt::tcShiftLeft(significandParts(), partsCount, bits);
exponent -= bits;
assert(!APInt::tcIsZero(significandParts(), partsCount));
}
}
APFloat::cmpResult
APFloat::compareAbsoluteValue(const APFloat &rhs) const
{
int compare;
assert(semantics == rhs.semantics);
assert(category == fcNormal);
assert(rhs.category == fcNormal);
compare = exponent - rhs.exponent;
/* If exponents are equal, do an unsigned bignum comparison of the
significands. */
if(compare == 0)
compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
partCount());
if(compare > 0)
return cmpGreaterThan;
else if(compare < 0)
return cmpLessThan;
else
return cmpEqual;
}
/* Handle overflow. Sign is preserved. We either become infinity or
the largest finite number. */
APFloat::opStatus
APFloat::handleOverflow(roundingMode rounding_mode)
{
/* Infinity? */
if(rounding_mode == rmNearestTiesToEven
|| rounding_mode == rmNearestTiesToAway
|| (rounding_mode == rmTowardPositive && !sign)
|| (rounding_mode == rmTowardNegative && sign))
{
category = fcInfinity;
return (opStatus) (opOverflow | opInexact);
}
/* Otherwise we become the largest finite number. */
category = fcNormal;
exponent = semantics->maxExponent;
APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
semantics->precision);
return opInexact;
}
/* This routine must work for fcZero of both signs, and fcNormal
numbers. */
bool
APFloat::roundAwayFromZero(roundingMode rounding_mode,
lostFraction lost_fraction)
{
/* QNaNs and infinities should not have lost fractions. */
assert(category == fcNormal || category == fcZero);
/* Our caller has already handled this case. */
assert(lost_fraction != lfExactlyZero);
switch(rounding_mode) {
default:
assert(0);
case rmNearestTiesToAway:
return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
case rmNearestTiesToEven:
if(lost_fraction == lfMoreThanHalf)
return true;
/* Our zeroes don't have a significand to test. */
if(lost_fraction == lfExactlyHalf && category != fcZero)
return significandParts()[0] & 1;
return false;
case rmTowardZero:
return false;
case rmTowardPositive:
return sign == false;
case rmTowardNegative:
return sign == true;
}
}
APFloat::opStatus
APFloat::normalize(roundingMode rounding_mode,
lostFraction lost_fraction)
{
unsigned int omsb; /* One, not zero, based MSB. */
int exponentChange;
if(category != fcNormal)
return opOK;
/* Before rounding normalize the exponent of fcNormal numbers. */
omsb = significandMSB() + 1;
if(omsb) {
/* OMSB is numbered from 1. We want to place it in the integer
bit numbered PRECISON if possible, with a compensating change in
the exponent. */
exponentChange = omsb - semantics->precision;
/* If the resulting exponent is too high, overflow according to
the rounding mode. */
if(exponent + exponentChange > semantics->maxExponent)
return handleOverflow(rounding_mode);
/* Subnormal numbers have exponent minExponent, and their MSB
is forced based on that. */
if(exponent + exponentChange < semantics->minExponent)
exponentChange = semantics->minExponent - exponent;
/* Shifting left is easy as we don't lose precision. */
if(exponentChange < 0) {
assert(lost_fraction == lfExactlyZero);
shiftSignificandLeft(-exponentChange);
return opOK;
}
if(exponentChange > 0) {
lostFraction lf;
/* Shift right and capture any new lost fraction. */
lf = shiftSignificandRight(exponentChange);
lost_fraction = combineLostFractions(lf, lost_fraction);
/* Keep OMSB up-to-date. */
if(omsb > (unsigned) exponentChange)
omsb -= (unsigned) exponentChange;
else
omsb = 0;
}
}
/* Now round the number according to rounding_mode given the lost
fraction. */
/* As specified in IEEE 754, since we do not trap we do not report
underflow for exact results. */
if(lost_fraction == lfExactlyZero) {
/* Canonicalize zeroes. */
if(omsb == 0)
category = fcZero;
return opOK;
}
/* Increment the significand if we're rounding away from zero. */
if(roundAwayFromZero(rounding_mode, lost_fraction)) {
if(omsb == 0)
exponent = semantics->minExponent;
incrementSignificand();
omsb = significandMSB() + 1;
/* Did the significand increment overflow? */
if(omsb == (unsigned) semantics->precision + 1) {
/* Renormalize by incrementing the exponent and shifting our
significand right one. However if we already have the
maximum exponent we overflow to infinity. */
if(exponent == semantics->maxExponent) {
category = fcInfinity;
return (opStatus) (opOverflow | opInexact);
}
shiftSignificandRight(1);
return opInexact;
}
}
/* The normal case - we were and are not denormal, and any
significand increment above didn't overflow. */
if(omsb == semantics->precision)
return opInexact;
/* We have a non-zero denormal. */
assert(omsb < semantics->precision);
assert(exponent == semantics->minExponent);
/* Canonicalize zeroes. */
if(omsb == 0)
category = fcZero;
/* The fcZero case is a denormal that underflowed to zero. */
return (opStatus) (opUnderflow | opInexact);
}
APFloat::opStatus
APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
{
switch(convolve(category, rhs.category)) {
default:
assert(0);
case convolve(fcQNaN, fcZero):
case convolve(fcQNaN, fcNormal):
case convolve(fcQNaN, fcInfinity):
case convolve(fcQNaN, fcQNaN):
case convolve(fcNormal, fcZero):
case convolve(fcInfinity, fcNormal):
case convolve(fcInfinity, fcZero):
return opOK;
case convolve(fcZero, fcQNaN):
case convolve(fcNormal, fcQNaN):
case convolve(fcInfinity, fcQNaN):
category = fcQNaN;
return opOK;
case convolve(fcNormal, fcInfinity):
case convolve(fcZero, fcInfinity):
category = fcInfinity;
sign = rhs.sign ^ subtract;
return opOK;
case convolve(fcZero, fcNormal):
assign(rhs);
sign = rhs.sign ^ subtract;
return opOK;
case convolve(fcZero, fcZero):
/* Sign depends on rounding mode; handled by caller. */
return opOK;
case convolve(fcInfinity, fcInfinity):
/* Differently signed infinities can only be validly
subtracted. */
if(sign ^ rhs.sign != subtract) {
category = fcQNaN;
return opInvalidOp;
}
return opOK;
case convolve(fcNormal, fcNormal):
return opDivByZero;
}
}
/* Add or subtract two normal numbers. */
lostFraction
APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
{
integerPart carry;
lostFraction lost_fraction;
int bits;
/* Determine if the operation on the absolute values is effectively
an addition or subtraction. */
subtract ^= (sign ^ rhs.sign);
/* Are we bigger exponent-wise than the RHS? */
bits = exponent - rhs.exponent;
/* Subtraction is more subtle than one might naively expect. */
if(subtract) {
APFloat temp_rhs(rhs);
bool reverse;
if(bits == 0) {
reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
lost_fraction = lfExactlyZero;
} else if(bits > 0) {
lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
shiftSignificandLeft(1);
reverse = false;
} else if(bits < 0) {
lost_fraction = shiftSignificandRight(-bits - 1);
temp_rhs.shiftSignificandLeft(1);
reverse = true;
}
if(reverse) {
carry = temp_rhs.subtractSignificand
(*this, lost_fraction != lfExactlyZero);
copySignificand(temp_rhs);
sign = !sign;
} else {
carry = subtractSignificand
(temp_rhs, lost_fraction != lfExactlyZero);
}
/* Invert the lost fraction - it was on the RHS and
subtracted. */
if(lost_fraction == lfLessThanHalf)
lost_fraction = lfMoreThanHalf;
else if(lost_fraction == lfMoreThanHalf)
lost_fraction = lfLessThanHalf;
/* The code above is intended to ensure that no borrow is
necessary. */
assert(!carry);
} else {
if(bits > 0) {
APFloat temp_rhs(rhs);
lost_fraction = temp_rhs.shiftSignificandRight(bits);
carry = addSignificand(temp_rhs);
} else {
lost_fraction = shiftSignificandRight(-bits);
carry = addSignificand(rhs);
}
/* We have a guard bit; generating a carry cannot happen. */
assert(!carry);
}
return lost_fraction;
}
APFloat::opStatus
APFloat::multiplySpecials(const APFloat &rhs)
{
switch(convolve(category, rhs.category)) {
default:
assert(0);
case convolve(fcQNaN, fcZero):
case convolve(fcQNaN, fcNormal):
case convolve(fcQNaN, fcInfinity):
case convolve(fcQNaN, fcQNaN):
case convolve(fcZero, fcQNaN):
case convolve(fcNormal, fcQNaN):
case convolve(fcInfinity, fcQNaN):
category = fcQNaN;
return opOK;
case convolve(fcNormal, fcInfinity):
case convolve(fcInfinity, fcNormal):
case convolve(fcInfinity, fcInfinity):
category = fcInfinity;
return opOK;
case convolve(fcZero, fcNormal):
case convolve(fcNormal, fcZero):
case convolve(fcZero, fcZero):
category = fcZero;
return opOK;
case convolve(fcZero, fcInfinity):
case convolve(fcInfinity, fcZero):
category = fcQNaN;
return opInvalidOp;
case convolve(fcNormal, fcNormal):
return opOK;
}
}
APFloat::opStatus
APFloat::divideSpecials(const APFloat &rhs)
{
switch(convolve(category, rhs.category)) {
default:
assert(0);
case convolve(fcQNaN, fcZero):
case convolve(fcQNaN, fcNormal):
case convolve(fcQNaN, fcInfinity):
case convolve(fcQNaN, fcQNaN):
case convolve(fcInfinity, fcZero):
case convolve(fcInfinity, fcNormal):
case convolve(fcZero, fcInfinity):
case convolve(fcZero, fcNormal):
return opOK;
case convolve(fcZero, fcQNaN):
case convolve(fcNormal, fcQNaN):
case convolve(fcInfinity, fcQNaN):
category = fcQNaN;
return opOK;
case convolve(fcNormal, fcInfinity):
category = fcZero;
return opOK;
case convolve(fcNormal, fcZero):
category = fcInfinity;
return opDivByZero;
case convolve(fcInfinity, fcInfinity):
case convolve(fcZero, fcZero):
category = fcQNaN;
return opInvalidOp;
case convolve(fcNormal, fcNormal):
return opOK;
}
}
/* Change sign. */
void
APFloat::changeSign()
{
/* Look mummy, this one's easy. */
sign = !sign;
}
/* Normalized addition or subtraction. */
APFloat::opStatus
APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
bool subtract)
{
opStatus fs;
fs = addOrSubtractSpecials(rhs, subtract);
/* This return code means it was not a simple case. */
if(fs == opDivByZero) {
lostFraction lost_fraction;
lost_fraction = addOrSubtractSignificand(rhs, subtract);
fs = normalize(rounding_mode, lost_fraction);
/* Can only be zero if we lost no fraction. */
assert(category != fcZero || lost_fraction == lfExactlyZero);
}
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
positive zero unless rounding to minus infinity, except that
adding two like-signed zeroes gives that zero. */
if(category == fcZero) {
if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
sign = (rounding_mode == rmTowardNegative);
}
return fs;
}
/* Normalized addition. */
APFloat::opStatus
APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
{
return addOrSubtract(rhs, rounding_mode, false);
}
/* Normalized subtraction. */
APFloat::opStatus
APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
{
return addOrSubtract(rhs, rounding_mode, true);
}
/* Normalized multiply. */
APFloat::opStatus
APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
{
opStatus fs;
sign ^= rhs.sign;
fs = multiplySpecials(rhs);
if(category == fcNormal) {
lostFraction lost_fraction = multiplySignificand(rhs, 0);
fs = normalize(rounding_mode, lost_fraction);
if(lost_fraction != lfExactlyZero)
fs = (opStatus) (fs | opInexact);
}
return fs;
}
/* Normalized divide. */
APFloat::opStatus
APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
{
opStatus fs;
sign ^= rhs.sign;
fs = divideSpecials(rhs);
if(category == fcNormal) {
lostFraction lost_fraction = divideSignificand(rhs);
fs = normalize(rounding_mode, lost_fraction);
if(lost_fraction != lfExactlyZero)
fs = (opStatus) (fs | opInexact);
}
return fs;
}
/* Normalized fused-multiply-add. */
APFloat::opStatus
APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
const APFloat &addend,
roundingMode rounding_mode)
{
opStatus fs;
/* Post-multiplication sign, before addition. */
sign ^= multiplicand.sign;
/* If and only if all arguments are normal do we need to do an
extended-precision calculation. */
if(category == fcNormal
&& multiplicand.category == fcNormal
&& addend.category == fcNormal) {
lostFraction lost_fraction;
lost_fraction = multiplySignificand(multiplicand, &addend);
fs = normalize(rounding_mode, lost_fraction);
if(lost_fraction != lfExactlyZero)
fs = (opStatus) (fs | opInexact);
/* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
positive zero unless rounding to minus infinity, except that
adding two like-signed zeroes gives that zero. */
if(category == fcZero && sign != addend.sign)
sign = (rounding_mode == rmTowardNegative);
} else {
fs = multiplySpecials(multiplicand);
/* FS can only be opOK or opInvalidOp. There is no more work
to do in the latter case. The IEEE-754R standard says it is
implementation-defined in this case whether, if ADDEND is a
quiet QNaN, we raise invalid op; this implementation does so.
If we need to do the addition we can do so with normal
precision. */
if(fs == opOK)
fs = addOrSubtract(addend, rounding_mode, false);
}
return fs;
}
/* Comparison requires normalized numbers. */
APFloat::cmpResult
APFloat::compare(const APFloat &rhs) const
{
cmpResult result;
assert(semantics == rhs.semantics);
switch(convolve(category, rhs.category)) {
default:
assert(0);
case convolve(fcQNaN, fcZero):
case convolve(fcQNaN, fcNormal):
case convolve(fcQNaN, fcInfinity):
case convolve(fcQNaN, fcQNaN):
case convolve(fcZero, fcQNaN):
case convolve(fcNormal, fcQNaN):
case convolve(fcInfinity, fcQNaN):
return cmpUnordered;
case convolve(fcInfinity, fcNormal):
case convolve(fcInfinity, fcZero):
case convolve(fcNormal, fcZero):
if(sign)
return cmpLessThan;
else
return cmpGreaterThan;
case convolve(fcNormal, fcInfinity):
case convolve(fcZero, fcInfinity):
case convolve(fcZero, fcNormal):
if(rhs.sign)
return cmpGreaterThan;
else
return cmpLessThan;
case convolve(fcInfinity, fcInfinity):
if(sign == rhs.sign)
return cmpEqual;
else if(sign)
return cmpLessThan;
else
return cmpGreaterThan;
case convolve(fcZero, fcZero):
return cmpEqual;
case convolve(fcNormal, fcNormal):
break;
}
/* Two normal numbers. Do they have the same sign? */
if(sign != rhs.sign) {
if(sign)
result = cmpLessThan;
else
result = cmpGreaterThan;
} else {
/* Compare absolute values; invert result if negative. */
result = compareAbsoluteValue(rhs);
if(sign) {
if(result == cmpLessThan)
result = cmpGreaterThan;
else if(result == cmpGreaterThan)
result = cmpLessThan;
}
}
return result;
}
APFloat::opStatus
APFloat::convert(const fltSemantics &toSemantics,
roundingMode rounding_mode)
{
unsigned int newPartCount;
opStatus fs;
newPartCount = partCountForBits(toSemantics.precision + 1);
/* If our new form is wider, re-allocate our bit pattern into wider
storage. */
if(newPartCount > partCount()) {
integerPart *newParts;
newParts = new integerPart[newPartCount];
APInt::tcSet(newParts, 0, newPartCount);
APInt::tcAssign(newParts, significandParts(), partCount());
freeSignificand();
significand.parts = newParts;
}
if(category == fcNormal) {
/* Re-interpret our bit-pattern. */
exponent += toSemantics.precision - semantics->precision;
semantics = &toSemantics;
fs = normalize(rounding_mode, lfExactlyZero);
} else {
semantics = &toSemantics;
fs = opOK;
}
return fs;
}
/* Convert a floating point number to an integer according to the
rounding mode. If the rounded integer value is out of range this
returns an invalid operation exception. If the rounded value is in
range but the floating point number is not the exact integer, the C
standard doesn't require an inexact exception to be raised. IEEE
854 does require it so we do that.
Note that for conversions to integer type the C standard requires
round-to-zero to always be used. */
APFloat::opStatus
APFloat::convertToInteger(integerPart *parts, unsigned int width,
bool isSigned,
roundingMode rounding_mode) const
{
lostFraction lost_fraction;
unsigned int msb, partsCount;
int bits;
/* Handle the three special cases first. */
if(category == fcInfinity || category == fcQNaN)
return opInvalidOp;
partsCount = partCountForBits(width);
if(category == fcZero) {
APInt::tcSet(parts, 0, partsCount);
return opOK;
}
/* Shift the bit pattern so the fraction is lost. */
APFloat tmp(*this);
bits = (int) semantics->precision - 1 - exponent;
if(bits > 0) {
lost_fraction = tmp.shiftSignificandRight(bits);
} else {
tmp.shiftSignificandLeft(-bits);
lost_fraction = lfExactlyZero;
}
if(lost_fraction != lfExactlyZero
&& tmp.roundAwayFromZero(rounding_mode, lost_fraction))
tmp.incrementSignificand();
msb = tmp.significandMSB();
/* Negative numbers cannot be represented as unsigned. */
if(!isSigned && tmp.sign && msb != -1U)
return opInvalidOp;
/* It takes exponent + 1 bits to represent the truncated floating
point number without its sign. We lose a bit for the sign, but
the maximally negative integer is a special case. */
if(msb + 1 > width) /* !! Not same as msb >= width !! */
return opInvalidOp;
if(isSigned && msb + 1 == width
&& (!tmp.sign || tmp.significandLSB() != msb))
return opInvalidOp;
APInt::tcAssign(parts, tmp.significandParts(), partsCount);
if(tmp.sign)
APInt::tcNegate(parts, partsCount);
if(lost_fraction == lfExactlyZero)
return opOK;
else
return opInexact;
}
APFloat::opStatus
APFloat::convertFromUnsignedInteger(integerPart *parts,
unsigned int partCount,
roundingMode rounding_mode)
{
unsigned int msb, precision;
lostFraction lost_fraction;
msb = APInt::tcMSB(parts, partCount) + 1;
precision = semantics->precision;
category = fcNormal;
exponent = precision - 1;
if(msb > precision) {
exponent += (msb - precision);
lost_fraction = shiftRight(parts, partCount, msb - precision);
msb = precision;
} else
lost_fraction = lfExactlyZero;
/* Copy the bit image. */
zeroSignificand();
APInt::tcAssign(significandParts(), parts, partCountForBits(msb));
return normalize(rounding_mode, lost_fraction);
}
APFloat::opStatus
APFloat::convertFromInteger(const integerPart *parts,
unsigned int partCount, bool isSigned,
roundingMode rounding_mode)
{
unsigned int width;
opStatus status;
integerPart *copy;
copy = new integerPart[partCount];
APInt::tcAssign(copy, parts, partCount);
width = partCount * integerPartWidth;
sign = false;
if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
sign = true;
APInt::tcNegate(copy, partCount);
}
status = convertFromUnsignedInteger(copy, partCount, rounding_mode);
delete [] copy;
return status;
}
APFloat::opStatus
APFloat::convertFromHexadecimalString(const char *p,
roundingMode rounding_mode)
{
lostFraction lost_fraction;
integerPart *significand;
unsigned int bitPos, partsCount;
const char *dot, *firstSignificantDigit;
zeroSignificand();
exponent = 0;
category = fcNormal;
significand = significandParts();
partsCount = partCount();
bitPos = partsCount * integerPartWidth;
/* Skip leading zeroes and any(hexa)decimal point. */
p = skipLeadingZeroesAndAnyDot(p, &dot);
firstSignificantDigit = p;
for(;;) {
integerPart hex_value;
if(*p == '.') {
assert(dot == 0);
dot = p++;
}
hex_value = hexDigitValue(*p);
if(hex_value == -1U) {
lost_fraction = lfExactlyZero;
break;
}
p++;
/* Store the number whilst 4-bit nibbles remain. */
if(bitPos) {
bitPos -= 4;
hex_value <<= bitPos % integerPartWidth;
significand[bitPos / integerPartWidth] |= hex_value;
} else {
lost_fraction = trailingHexadecimalFraction(p, hex_value);
while(hexDigitValue(*p) != -1U)
p++;
break;
}
}
/* Hex floats require an exponent but not a hexadecimal point. */
assert(*p == 'p' || *p == 'P');
/* Ignore the exponent if we are zero. */
if(p != firstSignificantDigit) {
int expAdjustment;
/* Implicit hexadecimal point? */
if(!dot)
dot = p;
/* Calculate the exponent adjustment implicit in the number of
significant digits. */
expAdjustment = dot - firstSignificantDigit;
if(expAdjustment < 0)
expAdjustment++;
expAdjustment = expAdjustment * 4 - 1;
/* Adjust for writing the significand starting at the most
significant nibble. */
expAdjustment += semantics->precision;
expAdjustment -= partsCount * integerPartWidth;
/* Adjust for the given exponent. */
exponent = totalExponent(p, expAdjustment);
}
return normalize(rounding_mode, lost_fraction);
}
APFloat::opStatus
APFloat::convertFromString(const char *p, roundingMode rounding_mode)
{
/* Handle a leading minus sign. */
if(*p == '-')
sign = 1, p++;
else
sign = 0;
if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
return convertFromHexadecimalString(p + 2, rounding_mode);
else
{
assert(0 && "Decimal to binary conversions not yet imlemented");
abort();
}
}
|