aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support/APInt.cpp
blob: 80ea80489cc43799de76dfbb4d0d35cbe7d2a96e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"

#if 0
#include "llvm/DerivedTypes.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
#include <cstdlib>
using namespace llvm;

/// mul_1 - This function performs the multiplication operation on a
/// large integer (represented as an integer array) and a uint64_t integer.
/// @returns the carry of the multiplication.
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
                     unsigned len, uint64_t y) {
  // Split y into high 32-bit part and low 32-bit part.
  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
  uint64_t carry = 0, lx, hx;
  for (unsigned i = 0; i < len; ++i) {
    lx = x[i] & 0xffffffffULL;
    hx = x[i] >> 32;
    // hasCarry - A flag to indicate if has carry.
    // hasCarry == 0, no carry
    // hasCarry == 1, has carry
    // hasCarry == 2, no carry and the calculation result == 0.
    uint8_t hasCarry = 0;
    dest[i] = carry + lx * ly;
    // Determine if the add above introduces carry.
    hasCarry = (dest[i] < carry) ? 1 : 0;
    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 
    // (2^32 - 1) + 2^32 = 2^64.
    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);

    carry += (lx * hy) & 0xffffffffULL;
    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 
            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
  }

  return carry;
}

/// mul - This function multiplies integer array x[] by integer array y[] and
/// stores the result into integer array dest[].
/// Note the array dest[]'s size should no less than xlen + ylen.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
               uint64_t y[], unsigned ylen) {
  dest[xlen] = mul_1(dest, x, xlen, y[0]);

  for (unsigned i = 1; i < ylen; ++i) {
    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
    uint64_t carry = 0, lx, hx;
    for (unsigned j = 0; j < xlen; ++j) {
      lx = x[j] & 0xffffffffULL;
      hx = x[j] >> 32;
      // hasCarry - A flag to indicate if has carry.
      // hasCarry == 0, no carry
      // hasCarry == 1, has carry
      // hasCarry == 2, no carry and the calculation result == 0.
      uint8_t hasCarry = 0;
      uint64_t resul = carry + lx * ly;
      hasCarry = (resul < carry) ? 1 : 0;
      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);

      carry += (lx * hy) & 0xffffffffULL;
      resul = (carry << 32) | (resul & 0xffffffffULL);
      dest[i+j] += resul;
      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 
              ((lx * hy) >> 32) + hx * hy;
    }
    dest[i+xlen] = carry;
  }
}

/// add_1 - This function adds the integer array x[] by integer y and
/// returns the carry.
/// @returns the carry of the addition.
static uint64_t add_1(uint64_t dest[], uint64_t x[],
                      unsigned len, uint64_t y) {
  uint64_t carry = y;

  for (unsigned i = 0; i < len; ++i) {
    dest[i] = carry + x[i];
    carry = (dest[i] < carry) ? 1 : 0;
  }
  return carry;
}

/// add - This function adds the integer array x[] by integer array
/// y[] and returns the carry.
static uint64_t add(uint64_t dest[], uint64_t x[],
                    uint64_t y[], unsigned len) {
  unsigned carry = 0;
  
  for (unsigned i = 0; i< len; ++i) {
    carry += x[i];
    dest[i] = carry + y[i];
    carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
  }
  return carry;
}

/// sub_1 - This function subtracts the integer array x[] by
/// integer y and returns the borrow-out carry.
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
  uint64_t cy = y;

  for (unsigned i = 0; i < len; ++i) {
    uint64_t X = x[i];
    x[i] -= cy;
    if (cy > X) 
      cy = 1;
    else {
      cy = 0;
      break;
    }
  }

  return cy;
}

/// sub - This function subtracts the integer array x[] by
/// integer array y[], and returns the borrow-out carry.
static uint64_t sub(uint64_t dest[], uint64_t x[],
                    uint64_t y[], unsigned len) {
  // Carry indicator.
  uint64_t cy = 0;
  
  for (unsigned i = 0; i < len; ++i) {
    uint64_t Y = y[i], X = x[i];
    Y += cy;

    cy = Y < cy ? 1 : 0;
    Y = X - Y;
    cy += Y > X ? 1 : 0;
    dest[i] = Y;
  }
  return cy;
}

/// UnitDiv - This function divides N by D, 
/// and returns (remainder << 32) | quotient.
/// Assumes (N >> 32) < D.
static uint64_t unitDiv(uint64_t N, unsigned D) {
  uint64_t q, r;                   // q: quotient, r: remainder.
  uint64_t a1 = N >> 32;           // a1: high 32-bit part of N.
  uint64_t a0 = N & 0xffffffffL;   // a0: low 32-bit part of N
  if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
      q = N / D;
      r = N % D;
  }
  else {
    // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
    uint64_t c = N - ((uint64_t) D << 31);
    // Divide (c1*2^32 + c0) by d
    q = c / D;
    r = c % D;
    // Add 2^31 to quotient 
    q += 1 << 31;
  }

  return (r << 32) | (q & 0xFFFFFFFFl);
}

/// subMul - This function substracts x[len-1:0] * y from 
/// dest[offset+len-1:offset], and returns the most significant 
/// word of the product, minus the borrow-out from the subtraction.
static unsigned subMul(unsigned dest[], unsigned offset, 
                        unsigned x[], unsigned len, unsigned y) {
  uint64_t yl = (uint64_t) y & 0xffffffffL;
  unsigned carry = 0;
  unsigned j = 0;
  do {
    uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
    unsigned prod_low = (unsigned) prod;
    unsigned prod_high = (unsigned) (prod >> 32);
    prod_low += carry;
    carry = (prod_low < carry ? 1 : 0) + prod_high;
    unsigned x_j = dest[offset+j];
    prod_low = x_j - prod_low;
    if (prod_low > x_j) ++carry;
    dest[offset+j] = prod_low;
  } while (++j < len);
  return carry;
}

/// div - This is basically Knuth's formulation of the classical algorithm.
/// Correspondance with Knuth's notation:
/// Knuth's u[0:m+n] == zds[nx:0].
/// Knuth's v[1:n] == y[ny-1:0]
/// Knuth's n == ny.
/// Knuth's m == nx-ny.
/// Our nx == Knuth's m+n.
/// Could be re-implemented using gmp's mpn_divrem:
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
  unsigned j = nx;
  do {                          // loop over digits of quotient
    // Knuth's j == our nx-j.
    // Knuth's u[j:j+n] == our zds[j:j-ny].
    unsigned qhat;  // treated as unsigned
    if (zds[j] == y[ny-1]) qhat = -1U;  // 0xffffffff
    else {
      uint64_t w = (((uint64_t)(zds[j])) << 32) + 
                   ((uint64_t)zds[j-1] & 0xffffffffL);
      qhat = (unsigned) unitDiv(w, y[ny-1]);
    }
    if (qhat) {
      unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
      unsigned save = zds[j];
      uint64_t num = ((uint64_t)save&0xffffffffL) - 
                     ((uint64_t)borrow&0xffffffffL);
      while (num) {
        qhat--;
        uint64_t carry = 0;
        for (unsigned i = 0;  i < ny; i++) {
          carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
            + ((uint64_t) y[i] & 0xffffffffL);
          zds[j-ny+i] = (unsigned) carry;
          carry >>= 32;
        }
        zds[j] += carry;
        num = carry - 1;
      }
    }
    zds[j] = qhat;
  } while (--j >= ny);
}

/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and 
/// store the len least significant words of the result in 
/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from 
/// the most significant digit.
static uint64_t lshift(uint64_t dest[], unsigned d_offset,
                       uint64_t x[], unsigned len, unsigned shiftAmt) {
  unsigned count = 64 - shiftAmt;
  int i = len - 1;
  uint64_t high_word = x[i], retVal = high_word >> count;
  ++d_offset;
  while (--i >= 0) {
    uint64_t low_word = x[i];
    dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
    high_word = low_word;
  }
  dest[d_offset+i] = high_word << shiftAmt;
  return retVal;
}

APInt::APInt(uint64_t val, unsigned numBits)
  : BitsNum(numBits) {
  assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
  assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
  if (isSingleWord()) 
    VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
  else {
    // Memory allocation and check if successful.
    assert((pVal = new uint64_t[getNumWords()]) && 
            "APInt memory allocation fails!");
    memset(pVal, 0, getNumWords() * 8);
    pVal[0] = val;
  }
}

APInt::APInt(unsigned numBits, uint64_t bigVal[])
  : BitsNum(numBits) {
  assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
  assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
  assert(bigVal && "Null pointer detected!");
  if (isSingleWord())
    VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
  else {
    // Memory allocation and check if successful.
    assert((pVal = new uint64_t[getNumWords()]) && 
           "APInt memory allocation fails!");
    // Calculate the actual length of bigVal[].
    unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
    unsigned maxN = std::max<unsigned>(n, getNumWords());
    unsigned minN = std::min<unsigned>(n, getNumWords());
    memcpy(pVal, bigVal, (minN - 1) * 8);
    pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - BitsNum % 64));
    if (maxN == getNumWords())
      memset(pVal+n, 0, (getNumWords() - n) * 8);
  }
}

/// @brief Create a new APInt by translating the char array represented
/// integer value.
APInt::APInt(const char StrStart[], unsigned slen, uint8_t radix) {
  StrToAPInt(StrStart, slen, radix);
}

/// @brief Create a new APInt by translating the string represented
/// integer value.
APInt::APInt(const std::string& Val, uint8_t radix) {
  assert(!Val.empty() && "String empty?");
  StrToAPInt(Val.c_str(), Val.size(), radix);
}

/// @brief Converts a char array into an integer.
void APInt::StrToAPInt(const char *StrStart, unsigned slen, uint8_t radix) {
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
         "Radix should be 2, 8, 10, or 16!");
  assert(StrStart && "String empty?");
  unsigned size = 0;
  // If the radix is a power of 2, read the input
  // from most significant to least significant.
  if ((radix & (radix - 1)) == 0) {
    unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
    uint64_t resDigit = 0;
    BitsNum = slen * bits_per_digit;
    if (getNumWords() > 1)
      assert((pVal = new uint64_t[getNumWords()]) && 
             "APInt memory allocation fails!");
    for (int i = slen - 1; i >= 0; --i) {
      uint64_t digit = StrStart[i] - 48;             // '0' == 48.
      resDigit |= digit << nextBitPos;
      nextBitPos += bits_per_digit;
      if (nextBitPos >= 64) {
        if (isSingleWord()) {
          VAL = resDigit;
           break;
        }
        pVal[size++] = resDigit;
        nextBitPos -= 64;
        resDigit = digit >> (bits_per_digit - nextBitPos);
      }
    }
    if (!isSingleWord() && size <= getNumWords()) 
      pVal[size] = resDigit;
  } else {   // General case.  The radix is not a power of 2.
    // For 10-radix, the max value of 64-bit integer is 18446744073709551615,
    // and its digits number is 14.
    const unsigned chars_per_word = 20;
    if (slen < chars_per_word || 
        (slen == chars_per_word &&             // In case the value <= 2^64 - 1
         strcmp(StrStart, "18446744073709551615") <= 0)) {
      BitsNum = 64;
      VAL = strtoull(StrStart, 0, 10);
    } else { // In case the value > 2^64 - 1
      BitsNum = (slen / chars_per_word + 1) * 64;
      assert((pVal = new uint64_t[getNumWords()]) && 
             "APInt memory allocation fails!");
      memset(pVal, 0, getNumWords() * 8);
      unsigned str_pos = 0;
      while (str_pos < slen) {
        unsigned chunk = slen - str_pos;
        if (chunk > chars_per_word - 1)
          chunk = chars_per_word - 1;
        uint64_t resDigit = StrStart[str_pos++] - 48;  // 48 == '0'.
        uint64_t big_base = radix;
        while (--chunk > 0) {
          resDigit = resDigit * radix + StrStart[str_pos++] - 48;
          big_base *= radix;
        }
       
        uint64_t carry;
        if (!size)
          carry = resDigit;
        else {
          carry = mul_1(pVal, pVal, size, big_base);
          carry += add_1(pVal, pVal, size, resDigit);
        }
        
        if (carry) pVal[size++] = carry;
      }
    }
  }
}

APInt::APInt(const APInt& APIVal)
  : BitsNum(APIVal.BitsNum) {
  if (isSingleWord()) VAL = APIVal.VAL;
  else {
    // Memory allocation and check if successful.
    assert((pVal = new uint64_t[getNumWords()]) && 
           "APInt memory allocation fails!");
    memcpy(pVal, APIVal.pVal, getNumWords() * 8);
  }
}

APInt::~APInt() {
  if (!isSingleWord() && pVal) delete[] pVal;
}

/// @brief Copy assignment operator. Create a new object from the given
/// APInt one by initialization.
APInt& APInt::operator=(const APInt& RHS) {
  if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
  else {
    unsigned minN = std::min(getNumWords(), RHS.getNumWords());
    memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
    if (getNumWords() != minN)
      memset(pVal + minN, 0, (getNumWords() - minN) * 8);
  }
  return *this;
}

/// @brief Assignment operator. Assigns a common case integer value to 
/// the APInt.
APInt& APInt::operator=(uint64_t RHS) {
  if (isSingleWord()) VAL = RHS;
  else {
    pVal[0] = RHS;
    memset(pVal, 0, (getNumWords() - 1) * 8);
  }
  TruncToBits();
  return *this;
}

/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
  if (isSingleWord()) ++VAL;
  else
    add_1(pVal, pVal, getNumWords(), 1);
  TruncToBits();
  return *this;
}

/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
  if (isSingleWord()) --VAL;
  else
    sub_1(pVal, getNumWords(), 1);
  TruncToBits();
  return *this;
}

/// @brief Addition assignment operator. Adds this APInt by the given APInt&
/// RHS and assigns the result to this APInt.
APInt& APInt::operator+=(const APInt& RHS) {
  if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
  else {
    if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL);
    else {
      if (getNumWords() <= RHS.getNumWords()) 
        add(pVal, pVal, RHS.pVal, getNumWords());
      else {
        uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords());
        add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(), 
              getNumWords() - RHS.getNumWords(), carry);
      }
    }
  }
  TruncToBits();
  return *this;
}

/// @brief Subtraction assignment operator. Subtracts this APInt by the given
/// APInt &RHS and assigns the result to this APInt.
APInt& APInt::operator-=(const APInt& RHS) {
  if (isSingleWord()) 
    VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
  else {
    if (RHS.isSingleWord())
      sub_1(pVal, getNumWords(), RHS.VAL);
    else {
      if (RHS.getNumWords() < getNumWords()) { 
        uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords());
        sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry); 
      }
      else
        sub(pVal, pVal, RHS.pVal, getNumWords());
    }
  }
  TruncToBits();
  return *this;
}

/// @brief Multiplication assignment operator. Multiplies this APInt by the 
/// given APInt& RHS and assigns the result to this APInt.
APInt& APInt::operator*=(const APInt& RHS) {
  if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
  else {
    // one-based first non-zero bit position.
    unsigned first = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
    unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
    if (!xlen) 
      return *this;
    else if (RHS.isSingleWord()) 
      mul_1(pVal, pVal, xlen, RHS.VAL);
    else {
      first = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
      unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
      if (!ylen) {
        memset(pVal, 0, getNumWords() * 8);
        return *this;
      }
      uint64_t *dest = new uint64_t[xlen+ylen];
      assert(dest && "Memory Allocation Failed!");
      mul(dest, pVal, xlen, RHS.pVal, ylen);
      memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ? 
                         getNumWords() : xlen + ylen) * 8);
      delete[] dest;
    }
  }
  TruncToBits();
  return *this;
}

/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator&=(const APInt& RHS) {
  if (isSingleWord()) {
    if (RHS.isSingleWord()) VAL &= RHS.VAL;
    else VAL &= RHS.pVal[0];
  } else {
    if (RHS.isSingleWord()) {
      memset(pVal, 0, (getNumWords() - 1) * 8);
      pVal[0] &= RHS.VAL;
    } else {
      unsigned minwords = getNumWords() < RHS.getNumWords() ? 
                          getNumWords() : RHS.getNumWords();
      for (unsigned i = 0; i < minwords; ++i)
        pVal[i] &= RHS.pVal[i];
      if (getNumWords() > minwords) 
        memset(pVal+minwords, 0, (getNumWords() - minwords) * 8);
    }
  }
  return *this;
}

/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on 
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator|=(const APInt& RHS) {
  if (isSingleWord()) {
    if (RHS.isSingleWord()) VAL |= RHS.VAL;
    else VAL |= RHS.pVal[0];
  } else {
    if (RHS.isSingleWord()) {
      pVal[0] |= RHS.VAL;
    } else {
      unsigned minwords = getNumWords() < RHS.getNumWords() ? 
                          getNumWords() : RHS.getNumWords();
      for (unsigned i = 0; i < minwords; ++i)
        pVal[i] |= RHS.pVal[i];
    }
  }
  TruncToBits();
  return *this;
}

/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator^=(const APInt& RHS) {
  if (isSingleWord()) {
    if (RHS.isSingleWord()) VAL ^= RHS.VAL;
    else VAL ^= RHS.pVal[0];
  } else {
    if (RHS.isSingleWord()) {
      for (unsigned i = 0; i < getNumWords(); ++i)
        pVal[i] ^= RHS.VAL;
    } else {
      unsigned minwords = getNumWords() < RHS.getNumWords() ? 
                          getNumWords() : RHS.getNumWords();
      for (unsigned i = 0; i < minwords; ++i)
        pVal[i] ^= RHS.pVal[i];
      if (getNumWords() > minwords)
        for (unsigned i = minwords; i < getNumWords(); ++i)
          pVal[i] ^= 0;
    }
  }
  TruncToBits();
  return *this;
}

/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator&(const APInt& RHS) const {
  APInt API(RHS);
  return API &= *this;
}

/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt 
/// and the given APInt& RHS.
APInt APInt::operator|(const APInt& RHS) const {
  APInt API(RHS);
  API |= *this;
  API.TruncToBits();
  return API;
}

/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator^(const APInt& RHS) const {
  APInt API(RHS);
  API ^= *this;
  API.TruncToBits();
  return API;
}

/// @brief Logical AND operator. Performs logical AND operation on this APInt
/// and the given APInt& RHS.
bool APInt::operator&&(const APInt& RHS) const {
  if (isSingleWord()) 
    return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
  else if (RHS.isSingleWord())
    return RHS.VAL && pVal[0];
  else {
    unsigned minN = std::min(getNumWords(), RHS.getNumWords());
    for (unsigned i = 0; i < minN; ++i)
      if (pVal[i] && RHS.pVal[i])
        return true;
  }
  return false;
}

/// @brief Logical OR operator. Performs logical OR operation on this APInt 
/// and the given APInt& RHS.
bool APInt::operator||(const APInt& RHS) const {
  if (isSingleWord()) 
    return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
  else if (RHS.isSingleWord())
    return RHS.VAL || pVal[0];
  else {
    unsigned minN = std::min(getNumWords(), RHS.getNumWords());
    for (unsigned i = 0; i < minN; ++i)
      if (pVal[i] || RHS.pVal[i])
        return true;
  }
  return false;
}

/// @brief Logical negation operator. Performs logical negation operation on
/// this APInt.
bool APInt::operator !() const {
  if (isSingleWord())
    return !VAL;
  else
    for (unsigned i = 0; i < getNumWords(); ++i)
       if (pVal[i]) 
         return false;
  return true;
}

/// @brief Multiplication operator. Multiplies this APInt by the given APInt& 
/// RHS.
APInt APInt::operator*(const APInt& RHS) const {
  APInt API(RHS);
  API *= *this;
  API.TruncToBits();
  return API;
}

/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
APInt APInt::operator+(const APInt& RHS) const {
  APInt API(*this);
  API += RHS;
  API.TruncToBits();
  return API;
}

/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
APInt APInt::operator-(const APInt& RHS) const {
  APInt API(*this);
  API -= RHS;
  return API;
}

/// @brief Array-indexing support.
bool APInt::operator[](unsigned bitPosition) const {
  return (maskBit(bitPosition) & (isSingleWord() ? 
          VAL : pVal[whichWord(bitPosition)])) != 0;
}

/// @brief Equality operator. Compare this APInt with the given APInt& RHS 
/// for the validity of the equality relationship.
bool APInt::operator==(const APInt& RHS) const {
  unsigned n1 = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros(), 
    n2 = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
  if (n1 != n2) return false;
  else if (isSingleWord()) 
    return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
  else {
    if (n1 <= 64)
      return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
    for (int i = whichWord(n1 - 1); i >= 0; --i)
      if (pVal[i] != RHS.pVal[i]) return false;
  }
  return true;
}

/// @brief Equality operator. Compare this APInt with the given uint64_t value 
/// for the validity of the equality relationship.
bool APInt::operator==(uint64_t Val) const {
  if (isSingleWord())
    return VAL == Val;
  else {
    unsigned n = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
    if (n <= 64)
      return pVal[0] == Val;
    else
      return false;
  }
}

/// @brief Less-than operator. Compare this APInt with the given APInt& RHS
/// for the validity of the less-than relationship.
bool APInt::operator <(const APInt& RHS) const {
  unsigned n1 = getNumWords() * 64 - CountLeadingZeros(), 
           n2 = RHS.getNumWords() * 64 - RHS.CountLeadingZeros();
  if (n1 < n2) return true;
  else if (n1 > n2) return false;
  else if (isSingleWord())
    return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
  else {
    if (n1 <= 64)
      return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
    for (int i = whichWord(n1 - 1); i >= 0; --i) {
      if (pVal[i] > RHS.pVal[i]) return false;
      else if (pVal[i] < RHS.pVal[i]) return true;
    }
  }
  return false;
}

/// @brief Less-than-or-equal operator. Compare this APInt with the given 
/// APInt& RHS for the validity of the less-than-or-equal relationship.
bool APInt::operator<=(const APInt& RHS) const {
  return (*this) == RHS || (*this) < RHS;
}

/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS
/// for the validity of the greater-than relationship.
bool APInt::operator >(const APInt& RHS) const {
  return !((*this) <= RHS);
}

/// @brief Greater-than-or-equal operator. Compare this APInt with the given 
/// APInt& RHS for the validity of the greater-than-or-equal relationship.
bool APInt::operator>=(const APInt& RHS) const {
  return !((*this) < RHS);
}  

/// Set the given bit to 1 whose poition is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& APInt::set(unsigned bitPosition) {
  if (isSingleWord()) VAL |= maskBit(bitPosition);
  else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
  return *this;
}

/// @brief Set every bit to 1.
APInt& APInt::set() {
  if (isSingleWord()) VAL = -1ULL;
  else
    for (unsigned i = 0; i < getNumWords(); ++i)
      pVal[i] = -1ULL;
  return *this;
}

/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
  if (isSingleWord()) VAL &= ~maskBit(bitPosition);
  else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
  return *this;
}

/// @brief Set every bit to 0.
APInt& APInt::clear() {
  if (isSingleWord()) VAL = 0;
  else 
    memset(pVal, 0, getNumWords() * 8);
  return *this;
}

/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
/// this APInt.
APInt APInt::operator~() const {
  APInt API(*this);
  API.flip();
  return API;
}

/// @brief Toggle every bit to its opposite value.
APInt& APInt::flip() {
  if (isSingleWord()) VAL = (~(VAL << (64 - BitsNum))) >> (64 - BitsNum);
  else {
    unsigned i = 0;
    for (; i < getNumWords() - 1; ++i)
      pVal[i] = ~pVal[i];
    unsigned offset = 64 - (BitsNum - 64 * (i - 1));
    pVal[i] = (~(pVal[i] << offset)) >> offset;
  }
  return *this;
}

/// Toggle a given bit to its opposite value whose position is given 
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
  assert(bitPosition < BitsNum && "Out of the bit-width range!");
  if ((*this)[bitPosition]) clear(bitPosition);
  else set(bitPosition);
  return *this;
}

/// to_string - This function translates the APInt into a string.
std::string APInt::to_string(uint8_t radix) const {
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
         "Radix should be 2, 8, 10, or 16!");
  char *buf = 0;
  unsigned n = getNumWords() * 64 - CountLeadingZeros();
  std::string format = radix == 8 ? 
                       "%0*llo" : (radix == 10 ? "%0*llu" : "%0*llx");
  // If the radix is a power of 2, set the format of ostringstream,
  // and output the value into buf.
  if ((radix & (radix - 1)) == 0) {
    assert((buf = new char[n / Log2_32(radix) + 2]) && 
           "Memory allocation failed");
    if (isSingleWord())
      sprintf(buf, format.c_str(), 0, VAL);
    else {
      unsigned offset = sprintf(buf, format.c_str(), 0, pVal[whichWord(n-1)]);
      for (int i = whichWord(n-1) - 1; i >= 0; --i)
        offset += sprintf(buf + offset, format.c_str(), 
          64 / Log2_32(radix) + (64 % Log2_32(radix) ? 1 : 0), pVal[i]);
    }
  }
  else {  // If the radix = 10, need to translate the value into a
          // string.
    assert((buf = new char[(n / 64 + 1) * 20]) && "Memory allocation failed");
    if (isSingleWord())
      sprintf(buf, format.c_str(), 0, VAL);
    else {
      // FIXME: To be supported.
    }
  }
  std::string retStr(buf);
  delete[] buf;
  return retStr;
}

/// getMaxValue - This function returns the largest value
/// for an APInt of the specified bit-width and if isSign == true,
/// it should be largest signed value, otherwise unsigned value.
APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
  APInt APIVal(numBits, 1);
  APIVal.set();
  return isSign ? APIVal.clear(numBits) : APIVal;
}

/// getMinValue - This function returns the smallest value for
/// an APInt of the given bit-width and if isSign == true,
/// it should be smallest signed value, otherwise zero.
APInt APInt::getMinValue(unsigned numBits, bool isSign) {
  APInt APIVal(0, numBits);
  return isSign ? APIVal : APIVal.set(numBits);
}

/// getAllOnesValue - This function returns an all-ones value for
/// an APInt of the specified bit-width.
APInt APInt::getAllOnesValue(unsigned numBits) {
  return getMaxValue(numBits, false);
}

/// getNullValue - This function creates an '0' value for an
/// APInt of the specified bit-width.
APInt APInt::getNullValue(unsigned numBits) {
  return getMinValue(numBits, true);
}

/// HiBits - This function returns the high "numBits" bits of this APInt.
APInt APInt::HiBits(unsigned numBits) const {
  return APIntOps::lshr(*this, BitsNum - numBits);
}

/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::LoBits(unsigned numBits) const {
  return APIntOps::lshr(APIntOps::shl(*this, BitsNum - numBits), 
                        BitsNum - numBits);
}

/// CountLeadingZeros - This function is a APInt version corresponding to 
/// llvm/include/llvm/Support/MathExtras.h's function 
/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting 
/// the number of zeros from the most significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::CountLeadingZeros() const {
  if (isSingleWord())
    return CountLeadingZeros_64(VAL);
  unsigned Count = 0;
  for (int i = getNumWords() - 1; i >= 0; --i) {
    unsigned tmp = CountLeadingZeros_64(pVal[i]);
    Count += tmp;
    if (tmp != 64)
      break;
  }
  return Count;
}

/// CountTrailingZero - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function 
/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting 
/// the number of zeros from the least significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::CountTrailingZeros() const {
  if (isSingleWord())
    return CountTrailingZeros_64(~VAL & (VAL - 1));
  APInt Tmp = ~(*this) & ((*this) - 1);
  return getNumWords() * 64 - Tmp.CountLeadingZeros();
}

/// CountPopulation - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// CountPopulation_{32, 64}. It counts the number of set bits in a value.
/// @returns 0 if the value is zero.
unsigned APInt::CountPopulation() const {
  if (isSingleWord())
    return CountPopulation_64(VAL);
  unsigned Count = 0;
  for (unsigned i = 0; i < getNumWords(); ++i)
    Count += CountPopulation_64(pVal[i]);
  return Count;
}


/// ByteSwap - This function returns a byte-swapped representation of the
/// this APInt.
APInt APInt::ByteSwap() const {
  if (BitsNum <= 32)
    return APInt(BitsNum, ByteSwap_32(unsigned(VAL)));
  else if (BitsNum <= 64)
    return APInt(BitsNum, ByteSwap_64(VAL));
  else
    return *this;
}

/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 
                                            const APInt& API2) {
  APInt A = API1, B = API2;
  while (!!B) {
    APInt T = B;
    B = APIntOps::urem(A, B);
    A = T;
  }
  return A;
}

/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(unsigned shiftAmt) const {
  APInt API(*this);
  if (API.isSingleWord())
    API.VAL = (((int64_t(API.VAL) << (64 - API.BitsNum)) >> (64 - API.BitsNum))
               >> shiftAmt) & (~uint64_t(0UL) >> (64 - API.BitsNum));
  else {
    if (shiftAmt >= API.BitsNum) {
      memset(API.pVal, API[API.BitsNum-1] ? 1 : 0, (API.getNumWords()-1) * 8);
      API.pVal[API.getNumWords() - 1] = ~uint64_t(0UL) >> 
                                        (64 - API.BitsNum % 64);
    } else {
      unsigned i = 0;
      for (; i < API.BitsNum - shiftAmt; ++i)
        if (API[i+shiftAmt]) 
          API.set(i);
        else
          API.clear(i);
      for (; i < API.BitsNum; ++i)
        API[API.BitsNum-1] ? API.set(i) : API.clear(i);
    }
  }
  return API;
}

/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(unsigned shiftAmt) const {
  APInt API(*this);
  if (API.isSingleWord())
    API.VAL >>= shiftAmt;
  else {
    if (shiftAmt >= API.BitsNum)
      memset(API.pVal, 0, API.getNumWords() * 8);
    unsigned i = 0;
    for (i = 0; i < API.BitsNum - shiftAmt; ++i)
      if (API[i+shiftAmt]) API.set(i);
      else API.clear(i);
    for (; i < API.BitsNum; ++i)
      API.clear(i);
  }
  return API;
}

/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt APInt::shl(unsigned shiftAmt) const {
  APInt API(*this);
  if (shiftAmt >= API.BitsNum) {
    if (API.isSingleWord()) 
      API.VAL = 0;
    else 
      memset(API.pVal, 0, API.getNumWords() * 8);
  } else {
    for (unsigned i = 0; i < shiftAmt; ++i) API.clear(i);
    for (unsigned i = shiftAmt; i < API.BitsNum; ++i) {
      if (API[i-shiftAmt]) API.set(i);
      else API.clear(i);
    }
  }
  return API;
}

/// Unsigned divide this APInt by APInt RHS.
/// @brief Unsigned division function for APInt.
APInt APInt::udiv(const APInt& RHS) const {
  APInt API(*this);
  unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD - 
                   RHS.CountLeadingZeros();
  unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
  assert(ylen && "Divided by zero???");
  if (API.isSingleWord()) {
    API.VAL = RHS.isSingleWord() ? (API.VAL / RHS.VAL) : 
              (ylen > 1 ? 0 : API.VAL / RHS.pVal[0]);
  } else {
    unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD - 
                      API.CountLeadingZeros();
    unsigned xlen = !first2 ? 0 : APInt::whichWord(first2 - 1) + 1;
    if (!xlen)
      return API;
    else if (API < RHS)
      memset(API.pVal, 0, API.getNumWords() * 8);
    else if (API == RHS) {
      memset(API.pVal, 0, API.getNumWords() * 8);
      API.pVal[0] = 1;
    } else if (xlen == 1)
      API.pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
    else {
      uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
      assert(xwords && ywords && "Memory Allocation Failed!");
      memcpy(xwords, API.pVal, xlen * 8);
      xwords[xlen] = 0;
      memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
      if (unsigned nshift = 63 - (first - 1) % 64) {
        lshift(ywords, 0, ywords, ylen, nshift);
        unsigned xlentmp = xlen;
        xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
      }
      div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
      memset(API.pVal, 0, API.getNumWords() * 8);
      memcpy(API.pVal, xwords + ylen, (xlen - ylen) * 8);
      delete[] xwords;
      delete[] ywords;
    }
  }
  return API;
}

/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
APInt APInt::urem(const APInt& RHS) const {
  APInt API(*this);
  unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
                   RHS.CountLeadingZeros();
  unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
  assert(ylen && "Performing remainder operation by zero ???");
  if (API.isSingleWord()) {
    API.VAL = RHS.isSingleWord() ? (API.VAL % RHS.VAL) : 
              (ylen > 1 ? API.VAL : API.VAL % RHS.pVal[0]);
  } else {
    unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD - 
                      API.CountLeadingZeros();
    unsigned xlen = !first2 ? 0 : API.whichWord(first2 - 1) + 1;
    if (!xlen || API < RHS)
      return API;
    else if (API == RHS) 
      memset(API.pVal, 0, API.getNumWords() * 8);
    else if (xlen == 1) 
      API.pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
    else {
      uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
      assert(xwords && ywords && "Memory Allocation Failed!");
      memcpy(xwords, API.pVal, xlen * 8);
      xwords[xlen] = 0;
      memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
      unsigned nshift = 63 - (first - 1) % 64;
      if (nshift) {
        lshift(ywords, 0, ywords, ylen, nshift);
        unsigned xlentmp = xlen;
        xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
      }
      div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
      memset(API.pVal, 0, API.getNumWords() * 8);
      for (unsigned i = 0; i < ylen-1; ++i)
        API.pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift));
      API.pVal[ylen-1] = xwords[ylen-1] >> nshift;
      delete[] xwords;
      delete[] ywords;
    }
  }
  return API;
}

#endif