aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support/APInt.cpp
blob: 03652a8f8931719b2433e8c790c1defb7d5b7bbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
#include <cstdlib>
#ifndef NDEBUG
#include <iostream>
#include <iomanip>
#endif

using namespace llvm;

// A utility function for allocating memory, checking for allocation failures,
// and ensuring the contents is zeroed.
inline static uint64_t* getClearedMemory(uint32_t numWords) {
  uint64_t * result = new uint64_t[numWords];
  assert(result && "APInt memory allocation fails!");
  memset(result, 0, numWords * sizeof(uint64_t));
  return result;
}

// A utility function for allocating memory and checking for allocation failure.
inline static uint64_t* getMemory(uint32_t numWords) {
  uint64_t * result = new uint64_t[numWords];
  assert(result && "APInt memory allocation fails!");
  return result;
}

APInt::APInt(uint32_t numBits, uint64_t val)
  : BitWidth(numBits), VAL(0) {
  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
  if (isSingleWord()) 
    VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
  else {
    pVal = getClearedMemory(getNumWords());
    pVal[0] = val;
  }
}

APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
  : BitWidth(numBits), VAL(0)  {
  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
  assert(bigVal && "Null pointer detected!");
  if (isSingleWord())
    VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
  else {
    pVal = getMemory(getNumWords());
    // Calculate the actual length of bigVal[].
    uint32_t maxN = std::max<uint32_t>(numWords, getNumWords());
    uint32_t minN = std::min<uint32_t>(numWords, getNumWords());
    memcpy(pVal, bigVal, (minN - 1) * APINT_WORD_SIZE);
    pVal[minN-1] = bigVal[minN-1] & 
                    (~uint64_t(0ULL) >> 
                     (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD));
    if (maxN == getNumWords())
      memset(pVal+numWords, 0, (getNumWords() - numWords) * APINT_WORD_SIZE);
  }
}

/// @brief Create a new APInt by translating the char array represented
/// integer value.
APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, 
             uint8_t radix) 
  : BitWidth(numbits), VAL(0) {
  fromString(numbits, StrStart, slen, radix);
}

/// @brief Create a new APInt by translating the string represented
/// integer value.
APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
  : BitWidth(numbits), VAL(0) {
  assert(!Val.empty() && "String empty?");
  fromString(numbits, Val.c_str(), Val.size(), radix);
}

/// @brief Copy constructor
APInt::APInt(const APInt& that)
  : BitWidth(that.BitWidth), VAL(0) {
  if (isSingleWord()) 
    VAL = that.VAL;
  else {
    pVal = getMemory(getNumWords());
    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
  }
}

APInt::~APInt() {
  if (!isSingleWord() && pVal) 
    delete[] pVal;
}

/// @brief Copy assignment operator. Create a new object from the given
/// APInt one by initialization.
APInt& APInt::operator=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) 
    VAL = RHS.VAL;
  else
    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
  return *this;
}

/// @brief Assignment operator. Assigns a common case integer value to 
/// the APInt.
APInt& APInt::operator=(uint64_t RHS) {
  if (isSingleWord()) 
    VAL = RHS;
  else {
    pVal[0] = RHS;
    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
  }
  return *this;
}

/// add_1 - This function adds a single "digit" integer, y, to the multiple 
/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
static uint64_t add_1(uint64_t dest[], 
                             uint64_t x[], uint32_t len, 
                             uint64_t y) {
  for (uint32_t i = 0; i < len; ++i) {
    dest[i] = y + x[i];
    if (dest[i] < y)
      y = 1;
    else {
      y = 0;
      break;
    }
  }
  return y;
}

/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
  if (isSingleWord()) 
    ++VAL;
  else
    add_1(pVal, pVal, getNumWords(), 1);
  clearUnusedBits();
  return *this;
}

/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from 
/// the multi-digit integer array, x[], propagating the borrowed 1 value until 
/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
static uint64_t sub_1(uint64_t x[], uint32_t len, 
                             uint64_t y) {
  for (uint32_t i = 0; i < len; ++i) {
    uint64_t X = x[i];
    x[i] -= y;
    if (y > X) 
      y = 1;  // We have to "borrow 1" from next "digit"
    else {
      y = 0;  // No need to borrow
      break;  // Remaining digits are unchanged so exit early
    }
  }
  return y;
}

/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
  if (isSingleWord()) 
    --VAL;
  else
    sub_1(pVal, getNumWords(), 1);
  clearUnusedBits();
  return *this;
}

/// add - This function adds the integer array x[] by integer array
/// y[] and returns the carry.
static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], uint32_t len) {
  uint64_t carry = 0;
  for (uint32_t i = 0; i< len; ++i) {
    dest[i] = x[i] + y[i] + carry;
    uint64_t limit = std::min(x[i],y[i]);
    carry = dest[i] < limit || (carry && dest[i] == limit);
  }
  return carry;
}

/// @brief Addition assignment operator. Adds this APInt by the given APInt&
/// RHS and assigns the result to this APInt.
APInt& APInt::operator+=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) 
    VAL += RHS.VAL;
  else {
    add(pVal, pVal, RHS.pVal, getNumWords());
  }
  clearUnusedBits();
  return *this;
}

/// sub - This function subtracts the integer array x[] by
/// integer array y[], and returns the borrow-out carry.
static uint64_t sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 
                    uint32_t len) {
  bool borrow = false;
  for (uint32_t i = 0; i < len; ++i) {
    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
    dest[i] = x_tmp - y[i];
  }
  return borrow;
}

/// @brief Subtraction assignment operator. Subtracts this APInt by the given
/// APInt &RHS and assigns the result to this APInt.
APInt& APInt::operator-=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) 
    VAL -= RHS.VAL;
  else
    sub(pVal, pVal, RHS.pVal, getNumWords());
  clearUnusedBits();
  return *this;
}

/// mul_1 - This function performs the multiplication operation on a
/// large integer (represented as an integer array) and a uint64_t integer.
/// @returns the carry of the multiplication.
static uint64_t mul_1(uint64_t dest[], 
                             uint64_t x[], uint32_t len, 
                             uint64_t y) {
  // Split y into high 32-bit part and low 32-bit part.
  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
  uint64_t carry = 0, lx, hx;
  for (uint32_t i = 0; i < len; ++i) {
    lx = x[i] & 0xffffffffULL;
    hx = x[i] >> 32;
    // hasCarry - A flag to indicate if has carry.
    // hasCarry == 0, no carry
    // hasCarry == 1, has carry
    // hasCarry == 2, no carry and the calculation result == 0.
    uint8_t hasCarry = 0;
    dest[i] = carry + lx * ly;
    // Determine if the add above introduces carry.
    hasCarry = (dest[i] < carry) ? 1 : 0;
    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 
    // (2^32 - 1) + 2^32 = 2^64.
    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);

    carry += (lx * hy) & 0xffffffffULL;
    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 
            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
  }

  return carry;
}

/// mul - This function multiplies integer array x[] by integer array y[] and
/// stores the result into integer array dest[].
/// Note the array dest[]'s size should no less than xlen + ylen.
static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen,
                uint64_t y[], uint32_t ylen) {
  dest[xlen] = mul_1(dest, x, xlen, y[0]);

  for (uint32_t i = 1; i < ylen; ++i) {
    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
    uint64_t carry = 0, lx = 0, hx = 0;
    for (uint32_t j = 0; j < xlen; ++j) {
      lx = x[j] & 0xffffffffULL;
      hx = x[j] >> 32;
      // hasCarry - A flag to indicate if has carry.
      // hasCarry == 0, no carry
      // hasCarry == 1, has carry
      // hasCarry == 2, no carry and the calculation result == 0.
      uint8_t hasCarry = 0;
      uint64_t resul = carry + lx * ly;
      hasCarry = (resul < carry) ? 1 : 0;
      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);

      carry += (lx * hy) & 0xffffffffULL;
      resul = (carry << 32) | (resul & 0xffffffffULL);
      dest[i+j] += resul;
      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 
              ((lx * hy) >> 32) + hx * hy;
    }
    dest[i+xlen] = carry;
  }
}

/// @brief Multiplication assignment operator. Multiplies this APInt by the 
/// given APInt& RHS and assigns the result to this APInt.
APInt& APInt::operator*=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    VAL *= RHS.VAL;
    clearUnusedBits();
    return *this;
  }

  // Get some bit facts about LHS and check for zero
  uint32_t lhsBits = getActiveBits();
  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
  if (!lhsWords) 
    // 0 * X ===> 0
    return *this;

  // Get some bit facts about RHS and check for zero
  uint32_t rhsBits = RHS.getActiveBits();
  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
  if (!rhsWords) {
    // X * 0 ===> 0
    clear();
    return *this;
  }

  // Allocate space for the result
  uint32_t destWords = rhsWords + lhsWords;
  uint64_t *dest = getMemory(destWords);

  // Perform the long multiply
  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);

  // Copy result back into *this
  clear();
  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);

  // delete dest array and return
  delete[] dest;
  return *this;
}

/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator&=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    VAL &= RHS.VAL;
    return *this;
  }
  uint32_t numWords = getNumWords();
  for (uint32_t i = 0; i < numWords; ++i)
    pVal[i] &= RHS.pVal[i];
  return *this;
}

/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on 
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator|=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    VAL |= RHS.VAL;
    return *this;
  }
  uint32_t numWords = getNumWords();
  for (uint32_t i = 0; i < numWords; ++i)
    pVal[i] |= RHS.pVal[i];
  return *this;
}

/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator^=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    VAL ^= RHS.VAL;
    this->clearUnusedBits();
    return *this;
  } 
  uint32_t numWords = getNumWords();
  for (uint32_t i = 0; i < numWords; ++i)
    pVal[i] ^= RHS.pVal[i];
  this->clearUnusedBits();
  return *this;
}

/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator&(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord())
    return APInt(getBitWidth(), VAL & RHS.VAL);

  APInt Result(*this);
  uint32_t numWords = getNumWords();
  for (uint32_t i = 0; i < numWords; ++i)
    Result.pVal[i] &= RHS.pVal[i];
  return Result;
}

/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt 
/// and the given APInt& RHS.
APInt APInt::operator|(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord())
    return APInt(getBitWidth(), VAL | RHS.VAL);

  APInt Result(*this);
  uint32_t numWords = getNumWords();
  for (uint32_t i = 0; i < numWords; ++i)
    Result.pVal[i] |= RHS.pVal[i];
  return Result;
}

/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator^(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    APInt Result(BitWidth, VAL ^ RHS.VAL);
    Result.clearUnusedBits();
    return Result;
  }
  APInt Result(*this);
  uint32_t numWords = getNumWords();
  for (uint32_t i = 0; i < numWords; ++i)
    Result.pVal[i] ^= RHS.pVal[i];
  return Result;
}

/// @brief Logical negation operator. Performs logical negation operation on
/// this APInt.
bool APInt::operator !() const {
  if (isSingleWord())
    return !VAL;

  for (uint32_t i = 0; i < getNumWords(); ++i)
    if (pVal[i]) 
      return false;
  return true;
}

/// @brief Multiplication operator. Multiplies this APInt by the given APInt& 
/// RHS.
APInt APInt::operator*(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    APInt Result(BitWidth, VAL * RHS.VAL);
    Result.clearUnusedBits();
    return Result;
  }
  APInt Result(*this);
  Result *= RHS;
  Result.clearUnusedBits();
  return Result;
}

/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
APInt APInt::operator+(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    APInt Result(BitWidth, VAL + RHS.VAL);
    Result.clearUnusedBits();
    return Result;
  }
  APInt Result(BitWidth, 0);
  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
  Result.clearUnusedBits();
  return Result;
}

/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
APInt APInt::operator-(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    APInt Result(BitWidth, VAL - RHS.VAL);
    Result.clearUnusedBits();
    return Result;
  }
  APInt Result(BitWidth, 0);
  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
  Result.clearUnusedBits();
  return Result;
}

/// @brief Array-indexing support.
bool APInt::operator[](uint32_t bitPosition) const {
  return (maskBit(bitPosition) & (isSingleWord() ? 
          VAL : pVal[whichWord(bitPosition)])) != 0;
}

/// @brief Equality operator. Compare this APInt with the given APInt& RHS 
/// for the validity of the equality relationship.
bool APInt::operator==(const APInt& RHS) const {
  if (isSingleWord())
    return VAL == RHS.VAL;

  uint32_t n1 = getActiveBits();
  uint32_t n2 = RHS.getActiveBits();
  if (n1 != n2) 
    return false;

  if (n1 <= APINT_BITS_PER_WORD)
    return pVal[0] == RHS.pVal[0];

  for (int i = whichWord(n1 - 1); i >= 0; --i)
    if (pVal[i] != RHS.pVal[i]) 
      return false;
  return true;
}

/// @brief Equality operator. Compare this APInt with the given uint64_t value 
/// for the validity of the equality relationship.
bool APInt::operator==(uint64_t Val) const {
  if (isSingleWord())
    return VAL == Val;

  uint32_t n = getActiveBits(); 
  if (n <= APINT_BITS_PER_WORD)
    return pVal[0] == Val;
  else
    return false;
}

/// @brief Unsigned less than comparison
bool APInt::ult(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
  if (isSingleWord())
    return VAL < RHS.VAL;
  else {
    uint32_t n1 = getActiveBits();
    uint32_t n2 = RHS.getActiveBits();
    if (n1 < n2)
      return true;
    else if (n2 < n1)
      return false;
    else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
      return pVal[0] < RHS.pVal[0];
    for (int i = whichWord(n1 - 1); i >= 0; --i) {
      if (pVal[i] > RHS.pVal[i]) return false;
      else if (pVal[i] < RHS.pVal[i]) return true;
    }
  }
  return false;
}

/// @brief Signed less than comparison
bool APInt::slt(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
  if (isSingleWord()) {
    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
    return lhsSext < rhsSext;
  }

  APInt lhs(*this);
  APInt rhs(*this);
  bool lhsNegative = false;
  bool rhsNegative = false;
  if (lhs[BitWidth-1]) {
    lhsNegative = true;
    lhs.flip();
    lhs++;
  }
  if (rhs[BitWidth-1]) {
    rhsNegative = true;
    rhs.flip();
    rhs++;
  }
  if (lhsNegative)
    if (rhsNegative)
      return !lhs.ult(rhs);
    else
      return true;
  else if (rhsNegative)
    return false;
  else 
    return lhs.ult(rhs);
}

/// Set the given bit to 1 whose poition is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& APInt::set(uint32_t bitPosition) {
  if (isSingleWord()) VAL |= maskBit(bitPosition);
  else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
  return *this;
}

/// @brief Set every bit to 1.
APInt& APInt::set() {
  if (isSingleWord()) 
    VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
  else {
    for (uint32_t i = 0; i < getNumWords() - 1; ++i)
      pVal[i] = -1ULL;
    pVal[getNumWords() - 1] = ~0ULL >> 
      (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
  }
  return *this;
}

/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(uint32_t bitPosition) {
  if (isSingleWord()) 
    VAL &= ~maskBit(bitPosition);
  else 
    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
  return *this;
}

/// @brief Set every bit to 0.
APInt& APInt::clear() {
  if (isSingleWord()) 
    VAL = 0;
  else 
    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
  return *this;
}

/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
/// this APInt.
APInt APInt::operator~() const {
  APInt API(*this);
  API.flip();
  return API;
}

/// @brief Toggle every bit to its opposite value.
APInt& APInt::flip() {
  if (isSingleWord()) VAL = (~(VAL << 
        (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth);
  else {
    uint32_t i = 0;
    for (; i < getNumWords() - 1; ++i)
      pVal[i] = ~pVal[i];
    uint32_t offset = 
      APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1));
    pVal[i] = (~(pVal[i] << offset)) >> offset;
  }
  return *this;
}

/// Toggle a given bit to its opposite value whose position is given 
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(uint32_t bitPosition) {
  assert(bitPosition < BitWidth && "Out of the bit-width range!");
  if ((*this)[bitPosition]) clear(bitPosition);
  else set(bitPosition);
  return *this;
}

/// getMaxValue - This function returns the largest value
/// for an APInt of the specified bit-width and if isSign == true,
/// it should be largest signed value, otherwise unsigned value.
APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
  APInt Result(numBits, 0);
  Result.set();
  if (isSign) 
    Result.clear(numBits - 1);
  return Result;
}

/// getMinValue - This function returns the smallest value for
/// an APInt of the given bit-width and if isSign == true,
/// it should be smallest signed value, otherwise zero.
APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
  APInt Result(numBits, 0);
  if (isSign) 
    Result.set(numBits - 1);
  return Result;
}

/// getAllOnesValue - This function returns an all-ones value for
/// an APInt of the specified bit-width.
APInt APInt::getAllOnesValue(uint32_t numBits) {
  return getMaxValue(numBits, false);
}

/// getNullValue - This function creates an '0' value for an
/// APInt of the specified bit-width.
APInt APInt::getNullValue(uint32_t numBits) {
  return getMinValue(numBits, false);
}

/// HiBits - This function returns the high "numBits" bits of this APInt.
APInt APInt::getHiBits(uint32_t numBits) const {
  return APIntOps::lshr(*this, BitWidth - numBits);
}

/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(uint32_t numBits) const {
  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 
                        BitWidth - numBits);
}

bool APInt::isPowerOf2() const {
  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
}

/// countLeadingZeros - This function is a APInt version corresponding to 
/// llvm/include/llvm/Support/MathExtras.h's function 
/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting 
/// the number of zeros from the most significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
uint32_t APInt::countLeadingZeros() const {
  uint32_t Count = 0;
  if (isSingleWord())
    Count = CountLeadingZeros_64(VAL);
  else {
    for (uint32_t i = getNumWords(); i > 0u; --i) {
      if (pVal[i-1] == 0)
        Count += APINT_BITS_PER_WORD;
      else {
        Count += CountLeadingZeros_64(pVal[i-1]);
        break;
      }
    }
  }
  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
  if (remainder)
    Count -= APINT_BITS_PER_WORD - remainder;
  return Count;
}

/// countTrailingZeros - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function 
/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting 
/// the number of zeros from the least significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
uint32_t APInt::countTrailingZeros() const {
  if (isSingleWord())
    return CountTrailingZeros_64(VAL);
  APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
  return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
}

/// countPopulation - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countPopulation_{32, 64}. It counts the number of set bits in a value.
/// @returns 0 if the value is zero.
uint32_t APInt::countPopulation() const {
  if (isSingleWord())
    return CountPopulation_64(VAL);
  uint32_t Count = 0;
  for (uint32_t i = 0; i < getNumWords(); ++i)
    Count += CountPopulation_64(pVal[i]);
  return Count;
}


/// byteSwap - This function returns a byte-swapped representation of the
/// this APInt.
APInt APInt::byteSwap() const {
  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
  if (BitWidth == 16)
    return APInt(BitWidth, ByteSwap_16(VAL));
  else if (BitWidth == 32)
    return APInt(BitWidth, ByteSwap_32(VAL));
  else if (BitWidth == 48) {
    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
    Tmp1 = ByteSwap_32(Tmp1);
    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
    Tmp2 = ByteSwap_16(Tmp2);
    return 
      APInt(BitWidth, 
            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
  } else if (BitWidth == 64)
    return APInt(BitWidth, ByteSwap_64(VAL));
  else {
    APInt Result(BitWidth, 0);
    char *pByte = (char*)Result.pVal;
    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
      char Tmp = pByte[i];
      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
    }
    return Result;
  }
}

/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 
                                            const APInt& API2) {
  APInt A = API1, B = API2;
  while (!!B) {
    APInt T = B;
    B = APIntOps::urem(A, B);
    A = T;
  }
  return A;
}

/// DoubleRoundToAPInt - This function convert a double value to
/// a APInt value.
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
  union {
    double D;
    uint64_t I;
  } T;
  T.D = Double;
  bool isNeg = T.I >> 63;
  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
  if (exp < 0)
    return APInt(64ull, 0u);
  uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
  if (exp < 52)
    return isNeg ? -APInt(64u, mantissa >> (52 - exp)) : 
                    APInt(64u, mantissa >> (52 - exp));
  APInt Tmp(exp + 1, mantissa);
  Tmp = Tmp.shl(exp - 52);
  return isNeg ? -Tmp : Tmp;
}

/// RoundToDouble - This function convert this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
///  --------------------------------------
/// |  Sign    Exponent    Fraction    Bias |
/// |-------------------------------------- |
/// |  1[63]   11[62-52]   52[51-00]   1023 |
///  -------------------------------------- 
double APInt::roundToDouble(bool isSigned) const {

  // Handle the simple case where the value is contained in one uint64_t.
  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
    if (isSigned) {
      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
      return double(sext);
    } else
      return double(VAL);
  }

  // Determine if the value is negative.
  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;

  // Construct the absolute value if we're negative.
  APInt Tmp(isNeg ? -(*this) : (*this));

  // Figure out how many bits we're using.
  uint32_t n = Tmp.getActiveBits();

  // The exponent (without bias normalization) is just the number of bits
  // we are using. Note that the sign bit is gone since we constructed the
  // absolute value.
  uint64_t exp = n;

  // Return infinity for exponent overflow
  if (exp > 1023) {
    if (!isSigned || !isNeg)
      return double(1.0E300 * 1.0E300); // positive infinity
    else 
      return double(-1.0E300 * 1.0E300); // negative infinity
  }
  exp += 1023; // Increment for 1023 bias

  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
  // extract the high 52 bits from the correct words in pVal.
  uint64_t mantissa;
  unsigned hiWord = whichWord(n-1);
  if (hiWord == 0) {
    mantissa = Tmp.pVal[0];
    if (n > 52)
      mantissa >>= n - 52; // shift down, we want the top 52 bits.
  } else {
    assert(hiWord > 0 && "huh?");
    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
    mantissa = hibits | lobits;
  }

  // The leading bit of mantissa is implicit, so get rid of it.
  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
  union {
    double D;
    uint64_t I;
  } T;
  T.I = sign | (exp << 52) | mantissa;
  return T.D;
}

// Truncate to new width.
void APInt::trunc(uint32_t width) {
  assert(width < BitWidth && "Invalid APInt Truncate request");
}

// Sign extend to a new width.
void APInt::sext(uint32_t width) {
  assert(width > BitWidth && "Invalid APInt SignExtend request");
}

//  Zero extend to a new width.
void APInt::zext(uint32_t width) {
  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
}

/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(uint32_t shiftAmt) const {
  APInt API(*this);
  if (API.isSingleWord())
    API.VAL = 
      (((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >> 
          (APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) & 
      (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth));
  else {
    if (shiftAmt >= API.BitWidth) {
      memset(API.pVal, API[API.BitWidth-1] ? 1 : 0, 
             (API.getNumWords()-1) * APINT_WORD_SIZE);
      API.pVal[API.getNumWords() - 1] = 
        ~uint64_t(0UL) >> 
          (APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD);
    } else {
      uint32_t i = 0;
      for (; i < API.BitWidth - shiftAmt; ++i)
        if (API[i+shiftAmt]) 
          API.set(i);
        else
          API.clear(i);
      for (; i < API.BitWidth; ++i)
        if (API[API.BitWidth-1]) 
          API.set(i);
        else API.clear(i);
    }
  }
  return API;
}

/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(uint32_t shiftAmt) const {
  APInt API(*this);
  if (API.isSingleWord())
    API.VAL >>= shiftAmt;
  else {
    if (shiftAmt >= API.BitWidth)
      memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
    uint32_t i = 0;
    for (i = 0; i < API.BitWidth - shiftAmt; ++i)
      if (API[i+shiftAmt]) API.set(i);
      else API.clear(i);
    for (; i < API.BitWidth; ++i)
      API.clear(i);
  }
  return API;
}

/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt APInt::shl(uint32_t shiftAmt) const {
  APInt API(*this);
  if (API.isSingleWord())
    API.VAL <<= shiftAmt;
  else if (shiftAmt >= API.BitWidth)
    memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
  else {
    if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) {
      for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i)
        API.pVal[i] = API.pVal[i-offset];
      memset(API.pVal, 0, offset * APINT_WORD_SIZE);
    }
    shiftAmt %= APINT_BITS_PER_WORD;
    uint32_t i;
    for (i = API.getNumWords() - 1; i > 0; --i)
      API.pVal[i] = (API.pVal[i] << shiftAmt) | 
                    (API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt));
    API.pVal[i] <<= shiftAmt;
  }
  API.clearUnusedBits();
  return API;
}

#if 0
/// subMul - This function substracts x[len-1:0] * y from 
/// dest[offset+len-1:offset], and returns the most significant 
/// word of the product, minus the borrow-out from the subtraction.
static uint32_t subMul(uint32_t dest[], uint32_t offset, 
                        uint32_t x[], uint32_t len, uint32_t y) {
  uint64_t yl = (uint64_t) y & 0xffffffffL;
  uint32_t carry = 0;
  uint32_t j = 0;
  do {
    uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl;
    uint32_t prod_low = (uint32_t) prod;
    uint32_t prod_high = (uint32_t) (prod >> 32);
    prod_low += carry;
    carry = (prod_low < carry ? 1 : 0) + prod_high;
    uint32_t x_j = dest[offset+j];
    prod_low = x_j - prod_low;
    if (prod_low > x_j) ++carry;
    dest[offset+j] = prod_low;
  } while (++j < len);
  return carry;
}

/// unitDiv - This function divides N by D, 
/// and returns (remainder << 32) | quotient.
/// Assumes (N >> 32) < D.
static uint64_t unitDiv(uint64_t N, uint32_t D) {
  uint64_t q, r;                   // q: quotient, r: remainder.
  uint64_t a1 = N >> 32;           // a1: high 32-bit part of N.
  uint64_t a0 = N & 0xffffffffL;   // a0: low 32-bit part of N
  if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
      q = N / D;
      r = N % D;
  }
  else {
    // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
    uint64_t c = N - ((uint64_t) D << 31);
    // Divide (c1*2^32 + c0) by d
    q = c / D;
    r = c % D;
    // Add 2^31 to quotient 
    q += 1 << 31;
  }

  return (r << 32) | (q & 0xFFFFFFFFl);
}

#endif

/// div - This is basically Knuth's formulation of the classical algorithm.
/// Correspondance with Knuth's notation:
/// Knuth's u[0:m+n] == zds[nx:0].
/// Knuth's v[1:n] == y[ny-1:0]
/// Knuth's n == ny.
/// Knuth's m == nx-ny.
/// Our nx == Knuth's m+n.
/// Could be re-implemented using gmp's mpn_divrem:
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).

/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
/// variables here have the same names as in the algorithm. Comments explain
/// the algorithm and any deviation from it.
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 
                     uint32_t m, uint32_t n) {
  assert(u && "Must provide dividend");
  assert(v && "Must provide divisor");
  assert(q && "Must provide quotient");
  assert(n>1 && "n must be > 1");

  // Knuth uses the value b as the base of the number system. In our case b
  // is 2^31 so we just set it to -1u.
  uint64_t b = uint64_t(1) << 32;

  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 
  // u and v by d. Note that we have taken Knuth's advice here to use a power 
  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 
  // 2 allows us to shift instead of multiply and it is easy to determine the 
  // shift amount from the leading zeros.  We are basically normalizing the u
  // and v so that its high bits are shifted to the top of v's range without
  // overflow. Note that this can require an extra word in u so that u must
  // be of length m+n+1.
  uint32_t shift = CountLeadingZeros_32(v[n-1]);
  uint32_t v_carry = 0;
  uint32_t u_carry = 0;
  if (shift) {
    for (uint32_t i = 0; i < m+n; ++i) {
      uint32_t u_tmp = u[i] >> (32 - shift);
      u[i] = (u[i] << shift) | u_carry;
      u_carry = u_tmp;
    }
    for (uint32_t i = 0; i < n; ++i) {
      uint32_t v_tmp = v[i] >> (32 - shift);
      v[i] = (v[i] << shift) | v_carry;
      v_carry = v_tmp;
    }
  }
  u[m+n] = u_carry;

  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
  int j = m;
  do {
    // D3. [Calculate q'.]. 
    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
    // on v[n-2] determines at high speed most of the cases in which the trial
    // value qp is one too large, and it eliminates all cases where qp is two 
    // too large. 
    uint64_t qp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) / v[n-1];
    uint64_t rp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) % v[n-1];
    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
      qp--;
      rp += v[n-1];
    }
    if (rp < b) 
      if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
        qp--;
        rp += v[n-1];
      }

    // D4. [Multiply and subtract.] Replace u with u - q*v (for each word).
    uint32_t borrow = 0;
    for (uint32_t i = 0; i < n; i++) {
      uint32_t save = u[j+i];
      u[j+i] = uint64_t(u[j+i]) - (qp * v[i]) - borrow;
      if (u[j+i] > save) {
        borrow = 1;
        u[j+i+1] += b;
      } else {
        borrow = 0;
      }
    }
    if (borrow)
      u[j+n] += 1;

    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 
    // negative, go to step D6; otherwise go on to step D7.
    q[j] = qp;
    if (borrow) {
      // D6. [Add back]. The probability that this step is necessary is very 
      // small, on the order of only 2/b. Make sure that test data accounts for
      // this possibility. Decreate qj by 1 and add v[...] to u[...]. A carry 
      // will occur to the left of u[j+n], and it should be ignored since it 
      // cancels with the borrow that occurred in D4.
      uint32_t carry = 0;
      for (uint32_t i = 0; i < n; i++) {
        uint32_t save = u[j+i];
        u[j+i] += v[i] + carry;
        carry = u[j+i] < save;
      }
    }

    // D7. [Loop on j.]  Decreate j by one. Now if j >= 0, go back to D3.
    j--;
  } while (j >= 0);

  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
  // remainder may be obtained by dividing u[...] by d. If r is non-null we
  // compute the remainder (urem uses this).
  if (r) {
    // The value d is expressed by the "shift" value above since we avoided
    // multiplication by d by using a shift left. So, all we have to do is
    // shift right here. In order to mak
    uint32_t mask = ~0u >> (32 - shift);
    uint32_t carry = 0;
    for (int i = n-1; i >= 0; i--) {
      uint32_t save = u[i] & mask;
      r[i] = (u[i] >> shift) | carry;
      carry = save;
    }
  }
}

// This function makes calling KnuthDiv a little more convenient. It uses
// APInt parameters instead of uint32_t* parameters. It can also divide APInt
// values of different widths.
void APInt::divide(const APInt LHS, uint32_t lhsWords, 
                   const APInt &RHS, uint32_t rhsWords,
                   APInt *Quotient, APInt *Remainder)
{
  assert(lhsWords >= rhsWords && "Fractional result");

  // First, compose the values into an array of 32-bit words instead of 
  // 64-bit words. This is a necessity of both the "short division" algorithm
  // and the the Knuth "classical algorithm" which requires there to be native 
  // operations for +, -, and * on an m bit value with an m*2 bit result. We 
  // can't use 64-bit operands here because we don't have native results of 
  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't 
  // work on large-endian machines.
  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
  uint32_t n = rhsWords * 2;
  uint32_t m = (lhsWords * 2) - n;
  // FIXME: allocate space on stack if m and n are sufficiently small.
  uint32_t *U = new uint32_t[m + n + 1];
  memset(U, 0, (m+n+1)*sizeof(uint32_t));
  for (unsigned i = 0; i < lhsWords; ++i) {
    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
    U[i * 2] = tmp & mask;
    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
  }
  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.

  uint32_t *V = new uint32_t[n];
  memset(V, 0, (n)*sizeof(uint32_t));
  for (unsigned i = 0; i < rhsWords; ++i) {
    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
    V[i * 2] = tmp & mask;
    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
  }

  // Set up the quotient and remainder
  uint32_t *Q = new uint32_t[m+n];
  memset(Q, 0, (m+n) * sizeof(uint32_t));
  uint32_t *R = 0;
  if (Remainder) {
    R = new uint32_t[n];
    memset(R, 0, n * sizeof(uint32_t));
  }

  // Now, adjust m and n for the Knuth division. n is the number of words in 
  // the divisor. m is the number of words by which the dividend exceeds the
  // divisor (i.e. m+n is the length of the dividend). These sizes must not 
  // contain any zero words or the Knuth algorithm fails.
  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
    n--;
    m++;
  }
  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
    m--;

  // If we're left with only a single word for the divisor, Knuth doesn't work
  // so we implement the short division algorithm here. This is much simpler
  // and faster because we are certain that we can divide a 64-bit quantity
  // by a 32-bit quantity at hardware speed and short division is simply a
  // series of such operations. This is just like doing short division but we
  // are using base 2^32 instead of base 10.
  assert(n != 0 && "Divide by zero?");
  if (n == 1) {
    uint32_t divisor = V[0];
    uint32_t remainder = 0;
    for (int i = m+n-1; i >= 0; i--) {
      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
      if (partial_dividend == 0) {
        Q[i] = 0;
        remainder = 0;
      } else if (partial_dividend < divisor) {
        Q[i] = 0;
        remainder = partial_dividend;
      } else if (partial_dividend == divisor) {
        Q[i] = 1;
        remainder = 0;
      } else {
        Q[i] = partial_dividend / divisor;
        remainder = partial_dividend - (Q[i] * divisor);
      }
    }
    if (R)
      R[0] = remainder;
  } else {
    // Now we're ready to invoke the Knuth classical divide algorithm. In this
    // case n > 1.
    KnuthDiv(U, V, Q, R, m, n);
  }

  // If the caller wants the quotient
  if (Quotient) {
    // Set up the Quotient value's memory.
    if (Quotient->BitWidth != LHS.BitWidth) {
      if (Quotient->isSingleWord())
        Quotient->VAL = 0;
      else
        delete Quotient->pVal;
      Quotient->BitWidth = LHS.BitWidth;
      if (!Quotient->isSingleWord())
        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
    } else
      Quotient->clear();

    // The quotient is in Q. Reconstitute the quotient into Quotient's low 
    // order words.
    if (lhsWords == 1) {
      uint64_t tmp = 
        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
      if (Quotient->isSingleWord())
        Quotient->VAL = tmp;
      else
        Quotient->pVal[0] = tmp;
    } else {
      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
      for (unsigned i = 0; i < lhsWords; ++i)
        Quotient->pVal[i] = 
          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
    }
  }

  // If the caller wants the remainder
  if (Remainder) {
    // Set up the Remainder value's memory.
    if (Remainder->BitWidth != RHS.BitWidth) {
      if (Remainder->isSingleWord())
        Remainder->VAL = 0;
      else
        delete Remainder->pVal;
      Remainder->BitWidth = RHS.BitWidth;
      if (!Remainder->isSingleWord())
        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
    } else
      Remainder->clear();

    // The remainder is in R. Reconstitute the remainder into Remainder's low
    // order words.
    if (rhsWords == 1) {
      uint64_t tmp = 
        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
      if (Remainder->isSingleWord())
        Remainder->VAL = tmp;
      else
        Remainder->pVal[0] = tmp;
    } else {
      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
      for (unsigned i = 0; i < rhsWords; ++i)
        Remainder->pVal[i] = 
          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
    }
  }

  // Clean up the memory we allocated.
  delete [] U;
  delete [] V;
  delete [] Q;
  delete [] R;
}

/// Unsigned divide this APInt by APInt RHS.
/// @brief Unsigned division function for APInt.
APInt APInt::udiv(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");

  // First, deal with the easy case
  if (isSingleWord()) {
    assert(RHS.VAL != 0 && "Divide by zero?");
    return APInt(BitWidth, VAL / RHS.VAL);
  }

  // Get some facts about the LHS and RHS number of bits and words
  uint32_t rhsBits = RHS.getActiveBits();
  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
  assert(rhsWords && "Divided by zero???");
  uint32_t lhsBits = this->getActiveBits();
  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);

  // Deal with some degenerate cases
  if (!lhsWords) 
    // 0 / X ===> 0
    return APInt(BitWidth, 0); 
  else if (lhsWords < rhsWords || this->ult(RHS)) {
    // X / Y ===> 0, iff X < Y
    return APInt(BitWidth, 0);
  } else if (*this == RHS) {
    // X / X ===> 1
    return APInt(BitWidth, 1);
  } else if (lhsWords == 1 && rhsWords == 1) {
    // All high words are zero, just use native divide
    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
  }

  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
  APInt Quotient(1,0); // to hold result.
  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
  return Quotient;
}

/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
APInt APInt::urem(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    assert(RHS.VAL != 0 && "Remainder by zero?");
    return APInt(BitWidth, VAL % RHS.VAL);
  }

  // Get some facts about the LHS
  uint32_t lhsBits = getActiveBits();
  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);

  // Get some facts about the RHS
  uint32_t rhsBits = RHS.getActiveBits();
  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
  assert(rhsWords && "Performing remainder operation by zero ???");

  // Check the degenerate cases
  if (lhsWords == 0) {
    // 0 % Y ===> 0
    return APInt(BitWidth, 0);
  } else if (lhsWords < rhsWords || this->ult(RHS)) {
    // X % Y ===> X, iff X < Y
    return *this;
  } else if (*this == RHS) {
    // X % X == 0;
    return APInt(BitWidth, 0);
  } else if (lhsWords == 1) {
    // All high words are zero, just use native remainder
    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
  }

  // We have to compute it the hard way. Invoke the Knute divide algorithm.
  APInt Remainder(1,0);
  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
  return Remainder;
}

/// @brief Converts a char array into an integer.
void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, 
                       uint8_t radix) {
  // Check our assumptions here
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
         "Radix should be 2, 8, 10, or 16!");
  assert(str && "String is null?");
  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");

  // Allocate memory
  if (!isSingleWord())
    pVal = getClearedMemory(getNumWords());

  // Figure out if we can shift instead of multiply
  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);

  // Set up an APInt for the digit to add outside the loop so we don't
  // constantly construct/destruct it.
  APInt apdigit(getBitWidth(), 0);
  APInt apradix(getBitWidth(), radix);

  // Enter digit traversal loop
  for (unsigned i = 0; i < slen; i++) {
    // Get a digit
    uint32_t digit = 0;
    char cdigit = str[i];
    if (isdigit(cdigit))
      digit = cdigit - '0';
    else if (isxdigit(cdigit))
      if (cdigit >= 'a')
        digit = cdigit - 'a' + 10;
      else if (cdigit >= 'A')
        digit = cdigit - 'A' + 10;
      else
        assert(0 && "huh?");
    else
      assert(0 && "Invalid character in digit string");

    // Shift or multiple the value by the radix
    if (shift)
      this->shl(shift);
    else
      *this *= apradix;

    // Add in the digit we just interpreted
    apdigit.pVal[0] = digit;
    *this += apdigit;
  }
}

/// to_string - This function translates the APInt into a string.
std::string APInt::toString(uint8_t radix, bool wantSigned) const {
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
         "Radix should be 2, 8, 10, or 16!");
  static const char *digits[] = { 
    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" 
  };
  std::string result;
  uint32_t bits_used = getActiveBits();
  if (isSingleWord()) {
    char buf[65];
    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
    if (format) {
      if (wantSigned) {
        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> 
                           (APINT_BITS_PER_WORD-BitWidth);
        sprintf(buf, format, sextVal);
      } else 
        sprintf(buf, format, VAL);
    } else {
      memset(buf, 0, 65);
      uint64_t v = VAL;
      while (bits_used) {
        uint32_t bit = v & 1;
        bits_used--;
        buf[bits_used] = digits[bit][0];
        v >>=1;
      }
    }
    result = buf;
    return result;
  }

  if (radix != 10) {
    uint64_t mask = radix - 1;
    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
    for (uint32_t i = 0; i < getNumWords(); ++i) {
      uint64_t value = pVal[i];
      for (uint32_t j = 0; j < nibbles; ++j) {
        result.insert(0, digits[ value & mask ]);
        value >>= shift;
      }
    }
    return result;
  }

  APInt tmp(*this);
  APInt divisor(4, radix);
  APInt zero(tmp.getBitWidth(), 0);
  size_t insert_at = 0;
  if (wantSigned && tmp[BitWidth-1]) {
    // They want to print the signed version and it is a negative value
    // Flip the bits and add one to turn it into the equivalent positive
    // value and put a '-' in the result.
    tmp.flip();
    tmp++;
    result = "-";
    insert_at = 1;
  }
  if (tmp == APInt(tmp.getBitWidth(), 0))
    result = "0";
  else while (tmp.ne(zero)) {
    APInt APdigit(1,0);
    APInt tmp2(tmp.getBitWidth(), 0);
    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 
           &APdigit);
    uint32_t digit = APdigit.getValue();
    assert(digit < radix && "divide failed");
    result.insert(insert_at,digits[digit]);
    tmp = tmp2;
  }

  return result;
}

#ifndef NDEBUG
void APInt::dump() const
{
  std::cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
  if (isSingleWord())
    std::cerr << VAL;
  else for (unsigned i = getNumWords(); i > 0; i--) {
    std::cerr << pVal[i-1] << " ";
  }
  std::cerr << " (" << this->toString(10, false) << ")\n" << std::setbase(10);
}
#endif