1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
|
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integer
// constant values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "apint"
#include "llvm/ADT/APInt.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
#include <cstdlib>
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;
/// A utility function for allocating memory, checking for allocation failures,
/// and ensuring the contents are zeroed.
inline static uint64_t* getClearedMemory(uint32_t numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
memset(result, 0, numWords * sizeof(uint64_t));
return result;
}
/// A utility function for allocating memory and checking for allocation
/// failure. The content is not zeroed.
inline static uint64_t* getMemory(uint32_t numWords) {
uint64_t * result = new uint64_t[numWords];
assert(result && "APInt memory allocation fails!");
return result;
}
APInt::APInt(uint32_t numBits, uint64_t val) : BitWidth(numBits), VAL(0) {
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
if (isSingleWord())
VAL = val;
else {
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
}
clearUnusedBits();
}
APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
: BitWidth(numBits), VAL(0) {
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
assert(bigVal && "Null pointer detected!");
if (isSingleWord())
VAL = bigVal[0];
else {
// Get memory, cleared to 0
pVal = getClearedMemory(getNumWords());
// Calculate the number of words to copy
uint32_t words = std::min<uint32_t>(numWords, getNumWords());
// Copy the words from bigVal to pVal
memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
}
// Make sure unused high bits are cleared
clearUnusedBits();
}
APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
uint8_t radix)
: BitWidth(numbits), VAL(0) {
fromString(numbits, StrStart, slen, radix);
}
APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
: BitWidth(numbits), VAL(0) {
assert(!Val.empty() && "String empty?");
fromString(numbits, Val.c_str(), Val.size(), radix);
}
APInt::APInt(const APInt& that)
: BitWidth(that.BitWidth), VAL(0) {
if (isSingleWord())
VAL = that.VAL;
else {
pVal = getMemory(getNumWords());
memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
}
}
APInt::~APInt() {
if (!isSingleWord() && pVal)
delete [] pVal;
}
APInt& APInt::operator=(const APInt& RHS) {
// Don't do anything for X = X
if (this == &RHS)
return *this;
// If the bitwidths are the same, we can avoid mucking with memory
if (BitWidth == RHS.getBitWidth()) {
if (isSingleWord())
VAL = RHS.VAL;
else
memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
return *this;
}
if (isSingleWord())
if (RHS.isSingleWord())
VAL = RHS.VAL;
else {
VAL = 0;
pVal = getMemory(RHS.getNumWords());
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
}
else if (getNumWords() == RHS.getNumWords())
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
else if (RHS.isSingleWord()) {
delete [] pVal;
VAL = RHS.VAL;
} else {
delete [] pVal;
pVal = getMemory(RHS.getNumWords());
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
}
BitWidth = RHS.BitWidth;
return clearUnusedBits();
}
APInt& APInt::operator=(uint64_t RHS) {
if (isSingleWord())
VAL = RHS;
else {
pVal[0] = RHS;
memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
}
return clearUnusedBits();
}
/// add_1 - This function adds a single "digit" integer, y, to the multiple
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
for (uint32_t i = 0; i < len; ++i) {
dest[i] = y + x[i];
if (dest[i] < y)
y = 1; // Carry one to next digit.
else {
y = 0; // No need to carry so exit early
break;
}
}
return y;
}
/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
if (isSingleWord())
++VAL;
else
add_1(pVal, pVal, getNumWords(), 1);
return clearUnusedBits();
}
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
/// @returns the borrow out of the subtraction
static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
for (uint32_t i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
if (y > X)
y = 1; // We have to "borrow 1" from next "digit"
else {
y = 0; // No need to borrow
break; // Remaining digits are unchanged so exit early
}
}
return bool(y);
}
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
if (isSingleWord())
--VAL;
else
sub_1(pVal, getNumWords(), 1);
return clearUnusedBits();
}
/// add - This function adds the integer array x to the integer array Y and
/// places the result in dest.
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
uint32_t len) {
bool carry = false;
for (uint32_t i = 0; i< len; ++i) {
uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
dest[i] = x[i] + y[i] + carry;
carry = dest[i] < limit || (carry && dest[i] == limit);
}
return carry;
}
/// Adds the RHS APint to this APInt.
/// @returns this, after addition of RHS.
/// @brief Addition assignment operator.
APInt& APInt::operator+=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
VAL += RHS.VAL;
else {
add(pVal, pVal, RHS.pVal, getNumWords());
}
return clearUnusedBits();
}
/// Subtracts the integer array y from the integer array x
/// @returns returns the borrow out.
/// @brief Generalized subtraction of 64-bit integer arrays.
static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
uint32_t len) {
bool borrow = false;
for (uint32_t i = 0; i < len; ++i) {
uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
borrow = y[i] > x_tmp || (borrow && x[i] == 0);
dest[i] = x_tmp - y[i];
}
return borrow;
}
/// Subtracts the RHS APInt from this APInt
/// @returns this, after subtraction
/// @brief Subtraction assignment operator.
APInt& APInt::operator-=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
VAL -= RHS.VAL;
else
sub(pVal, pVal, RHS.pVal, getNumWords());
return clearUnusedBits();
}
/// Multiplies an integer array, x by a a uint64_t integer and places the result
/// into dest.
/// @returns the carry out of the multiplication.
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
// Split y into high 32-bit part (hy) and low 32-bit part (ly)
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
uint64_t carry = 0;
// For each digit of x.
for (uint32_t i = 0; i < len; ++i) {
// Split x into high and low words
uint64_t lx = x[i] & 0xffffffffULL;
uint64_t hx = x[i] >> 32;
// hasCarry - A flag to indicate if there is a carry to the next digit.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
uint8_t hasCarry = 0;
dest[i] = carry + lx * ly;
// Determine if the add above introduces carry.
hasCarry = (dest[i] < carry) ? 1 : 0;
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// (2^32 - 1) + 2^32 = 2^64.
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
/// Multiplies integer array x by integer array y and stores the result into
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
/// @brief Generalized multiplicate of integer arrays.
static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
uint32_t ylen) {
dest[xlen] = mul_1(dest, x, xlen, y[0]);
for (uint32_t i = 1; i < ylen; ++i) {
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
uint64_t carry = 0, lx = 0, hx = 0;
for (uint32_t j = 0; j < xlen; ++j) {
lx = x[j] & 0xffffffffULL;
hx = x[j] >> 32;
// hasCarry - A flag to indicate if has carry.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
uint8_t hasCarry = 0;
uint64_t resul = carry + lx * ly;
hasCarry = (resul < carry) ? 1 : 0;
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
resul = (carry << 32) | (resul & 0xffffffffULL);
dest[i+j] += resul;
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
((lx * hy) >> 32) + hx * hy;
}
dest[i+xlen] = carry;
}
}
APInt& APInt::operator*=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
VAL *= RHS.VAL;
clearUnusedBits();
return *this;
}
// Get some bit facts about LHS and check for zero
uint32_t lhsBits = getActiveBits();
uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
if (!lhsWords)
// 0 * X ===> 0
return *this;
// Get some bit facts about RHS and check for zero
uint32_t rhsBits = RHS.getActiveBits();
uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
if (!rhsWords) {
// X * 0 ===> 0
clear();
return *this;
}
// Allocate space for the result
uint32_t destWords = rhsWords + lhsWords;
uint64_t *dest = getMemory(destWords);
// Perform the long multiply
mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
// Copy result back into *this
clear();
uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
// delete dest array and return
delete[] dest;
return *this;
}
APInt& APInt::operator&=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
VAL &= RHS.VAL;
return *this;
}
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] &= RHS.pVal[i];
return *this;
}
APInt& APInt::operator|=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
VAL |= RHS.VAL;
return *this;
}
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] |= RHS.pVal[i];
return *this;
}
APInt& APInt::operator^=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
VAL ^= RHS.VAL;
this->clearUnusedBits();
return *this;
}
uint32_t numWords = getNumWords();
for (uint32_t i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
return clearUnusedBits();
}
APInt APInt::operator&(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL & RHS.VAL);
uint32_t numWords = getNumWords();
uint64_t* val = getMemory(numWords);
for (uint32_t i = 0; i < numWords; ++i)
val[i] = pVal[i] & RHS.pVal[i];
return APInt(val, getBitWidth());
}
APInt APInt::operator|(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL | RHS.VAL);
uint32_t numWords = getNumWords();
uint64_t *val = getMemory(numWords);
for (uint32_t i = 0; i < numWords; ++i)
val[i] = pVal[i] | RHS.pVal[i];
return APInt(val, getBitWidth());
}
APInt APInt::operator^(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(BitWidth, VAL ^ RHS.VAL);
uint32_t numWords = getNumWords();
uint64_t *val = getMemory(numWords);
for (uint32_t i = 0; i < numWords; ++i)
val[i] = pVal[i] ^ RHS.pVal[i];
// 0^0==1 so clear the high bits in case they got set.
return APInt(val, getBitWidth()).clearUnusedBits();
}
bool APInt::operator !() const {
if (isSingleWord())
return !VAL;
for (uint32_t i = 0; i < getNumWords(); ++i)
if (pVal[i])
return false;
return true;
}
APInt APInt::operator*(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(BitWidth, VAL * RHS.VAL);
APInt Result(*this);
Result *= RHS;
return Result.clearUnusedBits();
}
APInt APInt::operator+(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(BitWidth, VAL + RHS.VAL);
APInt Result(BitWidth, 0);
add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
return Result.clearUnusedBits();
}
APInt APInt::operator-(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(BitWidth, VAL - RHS.VAL);
APInt Result(BitWidth, 0);
sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
return Result.clearUnusedBits();
}
bool APInt::operator[](uint32_t bitPosition) const {
return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
}
bool APInt::operator==(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
if (isSingleWord())
return VAL == RHS.VAL;
// Get some facts about the number of bits used in the two operands.
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
// If the number of bits isn't the same, they aren't equal
if (n1 != n2)
return false;
// If the number of bits fits in a word, we only need to compare the low word.
if (n1 <= APINT_BITS_PER_WORD)
return pVal[0] == RHS.pVal[0];
// Otherwise, compare everything
for (int i = whichWord(n1 - 1); i >= 0; --i)
if (pVal[i] != RHS.pVal[i])
return false;
return true;
}
bool APInt::operator==(uint64_t Val) const {
if (isSingleWord())
return VAL == Val;
uint32_t n = getActiveBits();
if (n <= APINT_BITS_PER_WORD)
return pVal[0] == Val;
else
return false;
}
bool APInt::ult(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
if (isSingleWord())
return VAL < RHS.VAL;
// Get active bit length of both operands
uint32_t n1 = getActiveBits();
uint32_t n2 = RHS.getActiveBits();
// If magnitude of LHS is less than RHS, return true.
if (n1 < n2)
return true;
// If magnitude of RHS is greather than LHS, return false.
if (n2 < n1)
return false;
// If they bot fit in a word, just compare the low order word
if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
return pVal[0] < RHS.pVal[0];
// Otherwise, compare all words
uint32_t topWord = whichWord(std::max(n1,n2)-1);
for (int i = topWord; i >= 0; --i) {
if (pVal[i] > RHS.pVal[i])
return false;
if (pVal[i] < RHS.pVal[i])
return true;
}
return false;
}
bool APInt::slt(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
if (isSingleWord()) {
int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
return lhsSext < rhsSext;
}
APInt lhs(*this);
APInt rhs(RHS);
bool lhsNeg = isNegative();
bool rhsNeg = rhs.isNegative();
if (lhsNeg) {
// Sign bit is set so perform two's complement to make it positive
lhs.flip();
lhs++;
}
if (rhsNeg) {
// Sign bit is set so perform two's complement to make it positive
rhs.flip();
rhs++;
}
// Now we have unsigned values to compare so do the comparison if necessary
// based on the negativeness of the values.
if (lhsNeg)
if (rhsNeg)
return lhs.ugt(rhs);
else
return true;
else if (rhsNeg)
return false;
else
return lhs.ult(rhs);
}
APInt& APInt::set(uint32_t bitPosition) {
if (isSingleWord())
VAL |= maskBit(bitPosition);
else
pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
APInt& APInt::set() {
if (isSingleWord()) {
VAL = -1ULL;
return clearUnusedBits();
}
// Set all the bits in all the words.
for (uint32_t i = 0; i < getNumWords() - 1; ++i)
pVal[i] = -1ULL;
// Clear the unused ones
return clearUnusedBits();
}
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(uint32_t bitPosition) {
if (isSingleWord())
VAL &= ~maskBit(bitPosition);
else
pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 0.
APInt& APInt::clear() {
if (isSingleWord())
VAL = 0;
else
memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
return *this;
}
/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
/// this APInt.
APInt APInt::operator~() const {
APInt Result(*this);
Result.flip();
return Result;
}
/// @brief Toggle every bit to its opposite value.
APInt& APInt::flip() {
if (isSingleWord()) {
VAL ^= -1ULL;
return clearUnusedBits();
}
for (uint32_t i = 0; i < getNumWords(); ++i)
pVal[i] ^= -1ULL;
return clearUnusedBits();
}
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(uint32_t bitPosition) {
assert(bitPosition < BitWidth && "Out of the bit-width range!");
if ((*this)[bitPosition]) clear(bitPosition);
else set(bitPosition);
return *this;
}
uint64_t APInt::getHashValue() const {
// Put the bit width into the low order bits.
uint64_t hash = BitWidth;
// Add the sum of the words to the hash.
if (isSingleWord())
hash += VAL << 6; // clear separation of up to 64 bits
else
for (uint32_t i = 0; i < getNumWords(); ++i)
hash += pVal[i] << 6; // clear sepration of up to 64 bits
return hash;
}
/// HiBits - This function returns the high "numBits" bits of this APInt.
APInt APInt::getHiBits(uint32_t numBits) const {
return APIntOps::lshr(*this, BitWidth - numBits);
}
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(uint32_t numBits) const {
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
bool APInt::isPowerOf2() const {
return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
}
uint32_t APInt::countLeadingZeros() const {
uint32_t Count = 0;
if (isSingleWord())
Count = CountLeadingZeros_64(VAL);
else {
for (uint32_t i = getNumWords(); i > 0u; --i) {
if (pVal[i-1] == 0)
Count += APINT_BITS_PER_WORD;
else {
Count += CountLeadingZeros_64(pVal[i-1]);
break;
}
}
}
uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
if (remainder)
Count -= APINT_BITS_PER_WORD - remainder;
return Count;
}
static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
uint32_t Count = 0;
if (skip)
V <<= skip;
while (V && (V & (1ULL << 63))) {
Count++;
V <<= 1;
}
return Count;
}
uint32_t APInt::countLeadingOnes() const {
if (isSingleWord())
return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
int i = getNumWords() - 1;
uint32_t Count = countLeadingOnes_64(pVal[i], shift);
if (Count == highWordBits) {
for (i--; i >= 0; --i) {
if (pVal[i] == -1ULL)
Count += APINT_BITS_PER_WORD;
else {
Count += countLeadingOnes_64(pVal[i], 0);
break;
}
}
}
return Count;
}
uint32_t APInt::countTrailingZeros() const {
if (isSingleWord())
return CountTrailingZeros_64(VAL);
uint32_t Count = 0;
uint32_t i = 0;
for (; i < getNumWords() && pVal[i] == 0; ++i)
Count += APINT_BITS_PER_WORD;
if (i < getNumWords())
Count += CountTrailingZeros_64(pVal[i]);
return Count;
}
uint32_t APInt::countPopulation() const {
if (isSingleWord())
return CountPopulation_64(VAL);
uint32_t Count = 0;
for (uint32_t i = 0; i < getNumWords(); ++i)
Count += CountPopulation_64(pVal[i]);
return Count;
}
APInt APInt::byteSwap() const {
assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
if (BitWidth == 16)
return APInt(BitWidth, ByteSwap_16(VAL));
else if (BitWidth == 32)
return APInt(BitWidth, ByteSwap_32(VAL));
else if (BitWidth == 48) {
uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
Tmp1 = ByteSwap_32(Tmp1);
uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
Tmp2 = ByteSwap_16(Tmp2);
return
APInt(BitWidth,
(Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
} else if (BitWidth == 64)
return APInt(BitWidth, ByteSwap_64(VAL));
else {
APInt Result(BitWidth, 0);
char *pByte = (char*)Result.pVal;
for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
char Tmp = pByte[i];
pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
}
return Result;
}
}
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
const APInt& API2) {
APInt A = API1, B = API2;
while (!!B) {
APInt T = B;
B = APIntOps::urem(A, B);
A = T;
}
return A;
}
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
union {
double D;
uint64_t I;
} T;
T.D = Double;
// Get the sign bit from the highest order bit
bool isNeg = T.I >> 63;
// Get the 11-bit exponent and adjust for the 1023 bit bias
int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
// If the exponent is negative, the value is < 0 so just return 0.
if (exp < 0)
return APInt(width, 0u);
// Extract the mantissa by clearing the top 12 bits (sign + exponent).
uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
// If the exponent doesn't shift all bits out of the mantissa
if (exp < 52)
return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
APInt(width, mantissa >> (52 - exp));
// If the client didn't provide enough bits for us to shift the mantissa into
// then the result is undefined, just return 0
if (width <= exp - 52)
return APInt(width, 0);
// Otherwise, we have to shift the mantissa bits up to the right location
APInt Tmp(width, mantissa);
Tmp = Tmp.shl(exp - 52);
return isNeg ? -Tmp : Tmp;
}
/// RoundToDouble - This function convert this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
/// --------------------------------------
/// | Sign Exponent Fraction Bias |
/// |-------------------------------------- |
/// | 1[63] 11[62-52] 52[51-00] 1023 |
/// --------------------------------------
double APInt::roundToDouble(bool isSigned) const {
// Handle the simple case where the value is contained in one uint64_t.
if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
if (isSigned) {
int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
return double(sext);
} else
return double(VAL);
}
// Determine if the value is negative.
bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
// Construct the absolute value if we're negative.
APInt Tmp(isNeg ? -(*this) : (*this));
// Figure out how many bits we're using.
uint32_t n = Tmp.getActiveBits();
// The exponent (without bias normalization) is just the number of bits
// we are using. Note that the sign bit is gone since we constructed the
// absolute value.
uint64_t exp = n;
// Return infinity for exponent overflow
if (exp > 1023) {
if (!isSigned || !isNeg)
return double(1.0E300 * 1.0E300); // positive infinity
else
return double(-1.0E300 * 1.0E300); // negative infinity
}
exp += 1023; // Increment for 1023 bias
// Number of bits in mantissa is 52. To obtain the mantissa value, we must
// extract the high 52 bits from the correct words in pVal.
uint64_t mantissa;
unsigned hiWord = whichWord(n-1);
if (hiWord == 0) {
mantissa = Tmp.pVal[0];
if (n > 52)
mantissa >>= n - 52; // shift down, we want the top 52 bits.
} else {
assert(hiWord > 0 && "huh?");
uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
mantissa = hibits | lobits;
}
// The leading bit of mantissa is implicit, so get rid of it.
uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
union {
double D;
uint64_t I;
} T;
T.I = sign | (exp << 52) | mantissa;
return T.D;
}
// Truncate to new width.
void APInt::trunc(uint32_t width) {
assert(width < BitWidth && "Invalid APInt Truncate request");
assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
uint32_t wordsBefore = getNumWords();
BitWidth = width;
uint32_t wordsAfter = getNumWords();
if (wordsBefore != wordsAfter) {
if (wordsAfter == 1) {
uint64_t *tmp = pVal;
VAL = pVal[0];
delete [] tmp;
} else {
uint64_t *newVal = getClearedMemory(wordsAfter);
for (uint32_t i = 0; i < wordsAfter; ++i)
newVal[i] = pVal[i];
delete [] pVal;
pVal = newVal;
}
}
clearUnusedBits();
}
// Sign extend to a new width.
void APInt::sext(uint32_t width) {
assert(width > BitWidth && "Invalid APInt SignExtend request");
assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
// If the sign bit isn't set, this is the same as zext.
if (!isNegative()) {
zext(width);
return;
}
// The sign bit is set. First, get some facts
uint32_t wordsBefore = getNumWords();
uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
BitWidth = width;
uint32_t wordsAfter = getNumWords();
// Mask the high order word appropriately
if (wordsBefore == wordsAfter) {
uint32_t newWordBits = width % APINT_BITS_PER_WORD;
// The extension is contained to the wordsBefore-1th word.
uint64_t mask = (~0ULL >> (APINT_BITS_PER_WORD - newWordBits)) << wordBits;
if (wordsBefore == 1)
VAL |= mask;
else
pVal[wordsBefore-1] |= mask;
clearUnusedBits();
return;
}
uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
uint64_t *newVal = getMemory(wordsAfter);
if (wordsBefore == 1)
newVal[0] = VAL | mask;
else {
for (uint32_t i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
newVal[wordsBefore-1] |= mask;
}
for (uint32_t i = wordsBefore; i < wordsAfter; i++)
newVal[i] = -1ULL;
if (wordsBefore != 1)
delete [] pVal;
pVal = newVal;
clearUnusedBits();
}
// Zero extend to a new width.
void APInt::zext(uint32_t width) {
assert(width > BitWidth && "Invalid APInt ZeroExtend request");
assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
uint32_t wordsBefore = getNumWords();
BitWidth = width;
uint32_t wordsAfter = getNumWords();
if (wordsBefore != wordsAfter) {
uint64_t *newVal = getClearedMemory(wordsAfter);
if (wordsBefore == 1)
newVal[0] = VAL;
else
for (uint32_t i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
if (wordsBefore != 1)
delete [] pVal;
pVal = newVal;
}
}
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(uint32_t shiftAmt) const {
assert(shiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0); // undefined
else {
uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
return APInt(BitWidth,
(((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
}
}
// If all the bits were shifted out, the result is 0 or -1. This avoids issues
// with shifting by the size of the integer type, which produces undefined
// results.
if (shiftAmt == BitWidth)
if (isNegative())
return APInt(BitWidth, -1ULL);
else
return APInt(BitWidth, 0);
// Create some space for the result.
uint64_t * val = new uint64_t[getNumWords()];
// If we are shifting less than a word, compute the shift with a simple carry
if (shiftAmt < APINT_BITS_PER_WORD) {
uint64_t carry = 0;
for (int i = getNumWords()-1; i >= 0; --i) {
val[i] = pVal[i] >> shiftAmt | carry;
carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
}
return APInt(val, BitWidth).clearUnusedBits();
}
// Compute some values needed by the remaining shift algorithms
uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
// If we are shifting whole words, just move whole words
if (wordShift == 0) {
for (uint32_t i = 0; i < getNumWords() - offset; ++i)
val[i] = pVal[i+offset];
for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
val[i] = (isNegative() ? -1ULL : 0);
return APInt(val,BitWidth).clearUnusedBits();
}
// Shift the low order words
uint32_t breakWord = getNumWords() - offset -1;
for (uint32_t i = 0; i < breakWord; ++i)
val[i] = pVal[i+offset] >> wordShift |
pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift);
// Shift the break word.
uint32_t SignBit = APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD);
val[breakWord] = uint64_t(
(((int64_t(pVal[breakWord+offset]) << SignBit) >> SignBit) >> wordShift));
// Remaining words are 0 or -1
for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
val[i] = (isNegative() ? -1ULL : 0);
return APInt(val, BitWidth).clearUnusedBits();
}
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(uint32_t shiftAmt) const {
if (isSingleWord())
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
else
return APInt(BitWidth, this->VAL >> shiftAmt);
// If all the bits were shifted out, the result is 0. This avoids issues
// with shifting by the size of the integer type, which produces undefined
// results. We define these "undefined results" to always be 0.
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
// Create some space for the result.
uint64_t * val = new uint64_t[getNumWords()];
// If we are shifting less than a word, compute the shift with a simple carry
if (shiftAmt < APINT_BITS_PER_WORD) {
uint64_t carry = 0;
for (int i = getNumWords()-1; i >= 0; --i) {
val[i] = pVal[i] >> shiftAmt | carry;
carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
}
return APInt(val, BitWidth).clearUnusedBits();
}
// Compute some values needed by the remaining shift algorithms
uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
// If we are shifting whole words, just move whole words
if (wordShift == 0) {
for (uint32_t i = 0; i < getNumWords() - offset; ++i)
val[i] = pVal[i+offset];
for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
val[i] = 0;
return APInt(val,BitWidth).clearUnusedBits();
}
// Shift the low order words
uint32_t breakWord = getNumWords() - offset -1;
for (uint32_t i = 0; i < breakWord; ++i)
val[i] = pVal[i+offset] >> wordShift |
pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift);
// Shift the break word.
val[breakWord] = pVal[breakWord+offset] >> wordShift;
// Remaining words are 0
for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
val[i] = 0;
return APInt(val, BitWidth).clearUnusedBits();
}
/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt APInt::shl(uint32_t shiftAmt) const {
assert(shiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0); // avoid undefined shift results
return APInt(BitWidth, VAL << shiftAmt);
}
// If all the bits were shifted out, the result is 0. This avoids issues
// with shifting by the size of the integer type, which produces undefined
// results. We define these "undefined results" to always be 0.
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
// Create some space for the result.
uint64_t * val = new uint64_t[getNumWords()];
// If we are shifting less than a word, do it the easy way
if (shiftAmt < APINT_BITS_PER_WORD) {
uint64_t carry = 0;
for (uint32_t i = 0; i < getNumWords(); i++) {
val[i] = pVal[i] << shiftAmt | carry;
carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
}
return APInt(val, BitWidth).clearUnusedBits();
}
// Compute some values needed by the remaining shift algorithms
uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
// If we are shifting whole words, just move whole words
if (wordShift == 0) {
for (uint32_t i = 0; i < offset; i++)
val[i] = 0;
for (uint32_t i = offset; i < getNumWords(); i++)
val[i] = pVal[i-offset];
return APInt(val,BitWidth).clearUnusedBits();
}
// Copy whole words from this to Result.
uint32_t i = getNumWords() - 1;
for (; i > offset; --i)
val[i] = pVal[i-offset] << wordShift |
pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
val[offset] = pVal[0] << wordShift;
for (i = 0; i < offset; ++i)
val[i] = 0;
return APInt(val, BitWidth).clearUnusedBits();
}
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
/// variables here have the same names as in the algorithm. Comments explain
/// the algorithm and any deviation from it.
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
uint32_t m, uint32_t n) {
assert(u && "Must provide dividend");
assert(v && "Must provide divisor");
assert(q && "Must provide quotient");
assert(u != v && u != q && v != q && "Must us different memory");
assert(n>1 && "n must be > 1");
// Knuth uses the value b as the base of the number system. In our case b
// is 2^31 so we just set it to -1u.
uint64_t b = uint64_t(1) << 32;
DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
DEBUG(cerr << "KnuthDiv: original:");
DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
DEBUG(cerr << " by");
DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
DEBUG(cerr << '\n');
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
// u and v by d. Note that we have taken Knuth's advice here to use a power
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
// 2 allows us to shift instead of multiply and it is easy to determine the
// shift amount from the leading zeros. We are basically normalizing the u
// and v so that its high bits are shifted to the top of v's range without
// overflow. Note that this can require an extra word in u so that u must
// be of length m+n+1.
uint32_t shift = CountLeadingZeros_32(v[n-1]);
uint32_t v_carry = 0;
uint32_t u_carry = 0;
if (shift) {
for (uint32_t i = 0; i < m+n; ++i) {
uint32_t u_tmp = u[i] >> (32 - shift);
u[i] = (u[i] << shift) | u_carry;
u_carry = u_tmp;
}
for (uint32_t i = 0; i < n; ++i) {
uint32_t v_tmp = v[i] >> (32 - shift);
v[i] = (v[i] << shift) | v_carry;
v_carry = v_tmp;
}
}
u[m+n] = u_carry;
DEBUG(cerr << "KnuthDiv: normal:");
DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
DEBUG(cerr << " by");
DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
DEBUG(cerr << '\n');
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
int j = m;
do {
DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
// D3. [Calculate q'.].
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
// qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
// on v[n-2] determines at high speed most of the cases in which the trial
// value qp is one too large, and it eliminates all cases where qp is two
// too large.
uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
uint64_t qp = dividend / v[n-1];
uint64_t rp = dividend % v[n-1];
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
qp--;
rp += v[n-1];
if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
qp--;
}
DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
// consists of a simple multiplication by a one-place number, combined with
// a subtraction.
bool isNeg = false;
for (uint32_t i = 0; i < n; ++i) {
uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
bool borrow = subtrahend > u_tmp;
DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
<< ", subtrahend == " << subtrahend
<< ", borrow = " << borrow << '\n');
uint64_t result = u_tmp - subtrahend;
uint32_t k = j + i;
u[k++] = result & (b-1); // subtract low word
u[k++] = result >> 32; // subtract high word
while (borrow && k <= m+n) { // deal with borrow to the left
borrow = u[k] == 0;
u[k]--;
k++;
}
isNeg |= borrow;
DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
u[j+i+1] << '\n');
}
DEBUG(cerr << "KnuthDiv: after subtraction:");
DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
DEBUG(cerr << '\n');
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
// this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
// the true value, and a "borrow" to the left should be remembered.
//
if (isNeg) {
bool carry = true; // true because b's complement is "complement + 1"
for (uint32_t i = 0; i <= m+n; ++i) {
u[i] = ~u[i] + carry; // b's complement
carry = carry && u[i] == 0;
}
}
DEBUG(cerr << "KnuthDiv: after complement:");
DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
DEBUG(cerr << '\n');
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
q[j] = qp;
if (isNeg) {
// D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
// this possibility. Decrease q[j] by 1
q[j]--;
// and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
// A carry will occur to the left of u[j+n], and it should be ignored
// since it cancels with the borrow that occurred in D4.
bool carry = false;
for (uint32_t i = 0; i < n; i++) {
uint32_t limit = std::min(u[j+i],v[i]);
u[j+i] += v[i] + carry;
carry = u[j+i] < limit || (carry && u[j+i] == limit);
}
u[j+n] += carry;
}
DEBUG(cerr << "KnuthDiv: after correction:");
DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
} while (--j >= 0);
DEBUG(cerr << "KnuthDiv: quotient:");
DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
DEBUG(cerr << '\n');
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
// remainder may be obtained by dividing u[...] by d. If r is non-null we
// compute the remainder (urem uses this).
if (r) {
// The value d is expressed by the "shift" value above since we avoided
// multiplication by d by using a shift left. So, all we have to do is
// shift right here. In order to mak
if (shift) {
uint32_t carry = 0;
DEBUG(cerr << "KnuthDiv: remainder:");
for (int i = n-1; i >= 0; i--) {
r[i] = (u[i] >> shift) | carry;
carry = u[i] << (32 - shift);
DEBUG(cerr << " " << r[i]);
}
} else {
for (int i = n-1; i >= 0; i--) {
r[i] = u[i];
DEBUG(cerr << " " << r[i]);
}
}
DEBUG(cerr << '\n');
}
DEBUG(cerr << std::setbase(10) << '\n');
}
void APInt::divide(const APInt LHS, uint32_t lhsWords,
const APInt &RHS, uint32_t rhsWords,
APInt *Quotient, APInt *Remainder)
{
assert(lhsWords >= rhsWords && "Fractional result");
// First, compose the values into an array of 32-bit words instead of
// 64-bit words. This is a necessity of both the "short division" algorithm
// and the the Knuth "classical algorithm" which requires there to be native
// operations for +, -, and * on an m bit value with an m*2 bit result. We
// can't use 64-bit operands here because we don't have native results of
// 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
// work on large-endian machines.
uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
uint32_t n = rhsWords * 2;
uint32_t m = (lhsWords * 2) - n;
// Allocate space for the temporary values we need either on the stack, if
// it will fit, or on the heap if it won't.
uint32_t SPACE[128];
uint32_t *U = 0;
uint32_t *V = 0;
uint32_t *Q = 0;
uint32_t *R = 0;
if ((Remainder?4:3)*n+2*m+1 <= 128) {
U = &SPACE[0];
V = &SPACE[m+n+1];
Q = &SPACE[(m+n+1) + n];
if (Remainder)
R = &SPACE[(m+n+1) + n + (m+n)];
} else {
U = new uint32_t[m + n + 1];
V = new uint32_t[n];
Q = new uint32_t[m+n];
if (Remainder)
R = new uint32_t[n];
}
// Initialize the dividend
memset(U, 0, (m+n+1)*sizeof(uint32_t));
for (unsigned i = 0; i < lhsWords; ++i) {
uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
U[i * 2] = tmp & mask;
U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
}
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
// Initialize the divisor
memset(V, 0, (n)*sizeof(uint32_t));
for (unsigned i = 0; i < rhsWords; ++i) {
uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
V[i * 2] = tmp & mask;
V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
}
// initialize the quotient and remainder
memset(Q, 0, (m+n) * sizeof(uint32_t));
if (Remainder)
memset(R, 0, n * sizeof(uint32_t));
// Now, adjust m and n for the Knuth division. n is the number of words in
// the divisor. m is the number of words by which the dividend exceeds the
// divisor (i.e. m+n is the length of the dividend). These sizes must not
// contain any zero words or the Knuth algorithm fails.
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
n--;
m++;
}
for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
m--;
// If we're left with only a single word for the divisor, Knuth doesn't work
// so we implement the short division algorithm here. This is much simpler
// and faster because we are certain that we can divide a 64-bit quantity
// by a 32-bit quantity at hardware speed and short division is simply a
// series of such operations. This is just like doing short division but we
// are using base 2^32 instead of base 10.
assert(n != 0 && "Divide by zero?");
if (n == 1) {
uint32_t divisor = V[0];
uint32_t remainder = 0;
for (int i = m+n-1; i >= 0; i--) {
uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
if (partial_dividend == 0) {
Q[i] = 0;
remainder = 0;
} else if (partial_dividend < divisor) {
Q[i] = 0;
remainder = partial_dividend;
} else if (partial_dividend == divisor) {
Q[i] = 1;
remainder = 0;
} else {
Q[i] = partial_dividend / divisor;
remainder = partial_dividend - (Q[i] * divisor);
}
}
if (R)
R[0] = remainder;
} else {
// Now we're ready to invoke the Knuth classical divide algorithm. In this
// case n > 1.
KnuthDiv(U, V, Q, R, m, n);
}
// If the caller wants the quotient
if (Quotient) {
// Set up the Quotient value's memory.
if (Quotient->BitWidth != LHS.BitWidth) {
if (Quotient->isSingleWord())
Quotient->VAL = 0;
else
delete [] Quotient->pVal;
Quotient->BitWidth = LHS.BitWidth;
if (!Quotient->isSingleWord())
Quotient->pVal = getClearedMemory(Quotient->getNumWords());
} else
Quotient->clear();
// The quotient is in Q. Reconstitute the quotient into Quotient's low
// order words.
if (lhsWords == 1) {
uint64_t tmp =
uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
if (Quotient->isSingleWord())
Quotient->VAL = tmp;
else
Quotient->pVal[0] = tmp;
} else {
assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
for (unsigned i = 0; i < lhsWords; ++i)
Quotient->pVal[i] =
uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
// If the caller wants the remainder
if (Remainder) {
// Set up the Remainder value's memory.
if (Remainder->BitWidth != RHS.BitWidth) {
if (Remainder->isSingleWord())
Remainder->VAL = 0;
else
delete [] Remainder->pVal;
Remainder->BitWidth = RHS.BitWidth;
if (!Remainder->isSingleWord())
Remainder->pVal = getClearedMemory(Remainder->getNumWords());
} else
Remainder->clear();
// The remainder is in R. Reconstitute the remainder into Remainder's low
// order words.
if (rhsWords == 1) {
uint64_t tmp =
uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
if (Remainder->isSingleWord())
Remainder->VAL = tmp;
else
Remainder->pVal[0] = tmp;
} else {
assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
for (unsigned i = 0; i < rhsWords; ++i)
Remainder->pVal[i] =
uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
// Clean up the memory we allocated.
if (U != &SPACE[0]) {
delete [] U;
delete [] V;
delete [] Q;
delete [] R;
}
}
APInt APInt::udiv(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
// First, deal with the easy case
if (isSingleWord()) {
assert(RHS.VAL != 0 && "Divide by zero?");
return APInt(BitWidth, VAL / RHS.VAL);
}
// Get some facts about the LHS and RHS number of bits and words
uint32_t rhsBits = RHS.getActiveBits();
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
assert(rhsWords && "Divided by zero???");
uint32_t lhsBits = this->getActiveBits();
uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
// Deal with some degenerate cases
if (!lhsWords)
// 0 / X ===> 0
return APInt(BitWidth, 0);
else if (lhsWords < rhsWords || this->ult(RHS)) {
// X / Y ===> 0, iff X < Y
return APInt(BitWidth, 0);
} else if (*this == RHS) {
// X / X ===> 1
return APInt(BitWidth, 1);
} else if (lhsWords == 1 && rhsWords == 1) {
// All high words are zero, just use native divide
return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
}
// We have to compute it the hard way. Invoke the Knuth divide algorithm.
APInt Quotient(1,0); // to hold result.
divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
return Quotient;
}
APInt APInt::urem(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord()) {
assert(RHS.VAL != 0 && "Remainder by zero?");
return APInt(BitWidth, VAL % RHS.VAL);
}
// Get some facts about the LHS
uint32_t lhsBits = getActiveBits();
uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
// Get some facts about the RHS
uint32_t rhsBits = RHS.getActiveBits();
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
assert(rhsWords && "Performing remainder operation by zero ???");
// Check the degenerate cases
if (lhsWords == 0) {
// 0 % Y ===> 0
return APInt(BitWidth, 0);
} else if (lhsWords < rhsWords || this->ult(RHS)) {
// X % Y ===> X, iff X < Y
return *this;
} else if (*this == RHS) {
// X % X == 0;
return APInt(BitWidth, 0);
} else if (lhsWords == 1) {
// All high words are zero, just use native remainder
return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
}
// We have to compute it the hard way. Invoke the Knute divide algorithm.
APInt Remainder(1,0);
divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
return Remainder;
}
void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
uint8_t radix) {
// Check our assumptions here
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
assert(str && "String is null?");
bool isNeg = str[0] == '-';
if (isNeg)
str++, slen--;
assert(slen <= numbits || radix != 2 && "Insufficient bit width");
assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
// Allocate memory
if (!isSingleWord())
pVal = getClearedMemory(getNumWords());
// Figure out if we can shift instead of multiply
uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
// Set up an APInt for the digit to add outside the loop so we don't
// constantly construct/destruct it.
APInt apdigit(getBitWidth(), 0);
APInt apradix(getBitWidth(), radix);
// Enter digit traversal loop
for (unsigned i = 0; i < slen; i++) {
// Get a digit
uint32_t digit = 0;
char cdigit = str[i];
if (isdigit(cdigit))
digit = cdigit - '0';
else if (isxdigit(cdigit))
if (cdigit >= 'a')
digit = cdigit - 'a' + 10;
else if (cdigit >= 'A')
digit = cdigit - 'A' + 10;
else
assert(0 && "huh?");
else
assert(0 && "Invalid character in digit string");
// Shift or multiple the value by the radix
if (shift)
this->shl(shift);
else
*this *= apradix;
// Add in the digit we just interpreted
if (apdigit.isSingleWord())
apdigit.VAL = digit;
else
apdigit.pVal[0] = digit;
*this += apdigit;
}
// If its negative, put it in two's complement form
if (isNeg) {
(*this)--;
this->flip();
}
}
std::string APInt::toString(uint8_t radix, bool wantSigned) const {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
static const char *digits[] = {
"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
};
std::string result;
uint32_t bits_used = getActiveBits();
if (isSingleWord()) {
char buf[65];
const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
(radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
if (format) {
if (wantSigned) {
int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
(APINT_BITS_PER_WORD-BitWidth);
sprintf(buf, format, sextVal);
} else
sprintf(buf, format, VAL);
} else {
memset(buf, 0, 65);
uint64_t v = VAL;
while (bits_used) {
uint32_t bit = v & 1;
bits_used--;
buf[bits_used] = digits[bit][0];
v >>=1;
}
}
result = buf;
return result;
}
if (radix != 10) {
uint64_t mask = radix - 1;
uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1);
uint32_t nibbles = APINT_BITS_PER_WORD / shift;
for (uint32_t i = 0; i < getNumWords(); ++i) {
uint64_t value = pVal[i];
for (uint32_t j = 0; j < nibbles; ++j) {
result.insert(0, digits[ value & mask ]);
value >>= shift;
}
}
return result;
}
APInt tmp(*this);
APInt divisor(4, radix);
APInt zero(tmp.getBitWidth(), 0);
size_t insert_at = 0;
if (wantSigned && tmp[BitWidth-1]) {
// They want to print the signed version and it is a negative value
// Flip the bits and add one to turn it into the equivalent positive
// value and put a '-' in the result.
tmp.flip();
tmp++;
result = "-";
insert_at = 1;
}
if (tmp == APInt(tmp.getBitWidth(), 0))
result = "0";
else while (tmp.ne(zero)) {
APInt APdigit(1,0);
APInt tmp2(tmp.getBitWidth(), 0);
divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
uint32_t digit = APdigit.getZExtValue();
assert(digit < radix && "divide failed");
result.insert(insert_at,digits[digit]);
tmp = tmp2;
}
return result;
}
#ifndef NDEBUG
void APInt::dump() const
{
cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
if (isSingleWord())
cerr << VAL;
else for (unsigned i = getNumWords(); i > 0; i--) {
cerr << pVal[i-1] << " ";
}
cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
<< ")\n" << std::setbase(10);
}
#endif
|