aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support/BlockFrequency.cpp
blob: 00efe90a2607300c6fc69a29ecbad6351295dfb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Block Frequency class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>

using namespace llvm;

/// Multiply FREQ by N and store result in W array.
static void mult96bit(uint64_t freq, uint32_t N, uint32_t W[3]) {
  uint64_t u0 = freq & UINT32_MAX;
  uint64_t u1 = freq >> 32;

  // Represent 96-bit value as W[2]:W[1]:W[0];
  uint64_t t = u0 * N;
  uint64_t k = t >> 32;
  W[0] = t;
  t = u1 * N + k;
  W[1] = t;
  W[2] = t >> 32;
}

/// Divide 96-bit value stored in W[2]:W[1]:W[0] by D. Since our word size is a
/// 32 bit unsigned integer, we can use a short division algorithm.
static uint64_t divrem96bit(uint32_t W[3], uint32_t D, uint32_t *Rout) {
  // We assume that W[2] is non-zero since if W[2] is not then the user should
  // just use hardware division.
  assert(W[2] && "This routine assumes that W[2] is non-zero since if W[2] is "
         "zero, the caller should just use 64/32 hardware.");
  uint32_t Q[3] = { 0, 0, 0 };

  // The generalized short division algorithm sets i to m + n - 1, where n is
  // the number of words in the divisior and m is the number of words by which
  // the divident exceeds the divisor (i.e. m + n == the length of the dividend
  // in words). Due to our assumption that W[2] is non-zero, we know that the
  // dividend is of length 3 implying since n is 1 that m = 2. Thus we set i to
  // m + n - 1 = 2 + 1 - 1 = 2.
  uint32_t R = 0;
  for (int i = 2; i >= 0; --i) {
    uint64_t PartialD = uint64_t(R) << 32 | W[i];
    if (PartialD == 0) {
      Q[i] = 0;
      R = 0;
    } else if (PartialD < D) {
      Q[i] = 0;
      R = uint32_t(PartialD);
    } else if (PartialD == D) {
      Q[i] = 1;
      R = 0;
    } else {
      Q[i] = uint32_t(PartialD / D);
      R = uint32_t(PartialD - (Q[i] * D));
    }
  }

  // If Q[2] is non-zero, then we overflowed.
  uint64_t Result;
  if (Q[2]) {
    Result = UINT64_MAX;
    R = D;
  } else {
    // Form the final uint64_t result, avoiding endianness issues.
    Result = uint64_t(Q[0]) | (uint64_t(Q[1]) << 32);
  }

  if (Rout)
    *Rout = R;

  return Result;
}

uint32_t BlockFrequency::scale(uint32_t N, uint32_t D) {
  assert(D != 0 && "Division by zero");

  // Calculate Frequency * N.
  uint64_t MulLo = (Frequency & UINT32_MAX) * N;
  uint64_t MulHi = (Frequency >> 32) * N;
  uint64_t MulRes = (MulHi << 32) + MulLo;

  // If the product fits in 64 bits, just use built-in division.
  if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
    Frequency = MulRes / D;
    return MulRes % D;
  }

  // Product overflowed, use 96-bit operations.
  // 96-bit value represented as W[2]:W[1]:W[0].
  uint32_t W[3];
  uint32_t R;
  mult96bit(Frequency, N, W);
  Frequency = divrem96bit(W, D, &R);
  return R;
}

BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
  scale(Prob.getNumerator(), Prob.getDenominator());
  return *this;
}

const BlockFrequency
BlockFrequency::operator*(const BranchProbability &Prob) const {
  BlockFrequency Freq(Frequency);
  Freq *= Prob;
  return Freq;
}

BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
  scale(Prob.getDenominator(), Prob.getNumerator());
  return *this;
}

BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
  BlockFrequency Freq(Frequency);
  Freq /= Prob;
  return Freq;
}

BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
  uint64_t Before = Freq.Frequency;
  Frequency += Freq.Frequency;

  // If overflow, set frequency to the maximum value.
  if (Frequency < Before)
    Frequency = UINT64_MAX;

  return *this;
}

const BlockFrequency
BlockFrequency::operator+(const BlockFrequency &Prob) const {
  BlockFrequency Freq(Frequency);
  Freq += Prob;
  return Freq;
}

uint32_t BlockFrequency::scale(const BranchProbability &Prob) {
  return scale(Prob.getNumerator(), Prob.getDenominator());
}

void BlockFrequency::print(raw_ostream &OS) const {
  // Convert fixed-point number to decimal.
  OS << Frequency / getEntryFrequency() << ".";
  uint64_t Rem = Frequency % getEntryFrequency();
  uint64_t Eps = 1;
  do {
    Rem *= 10;
    Eps *= 10;
    OS << Rem / getEntryFrequency();
    Rem = Rem % getEntryFrequency();
  } while (Rem >= Eps/2);
}

namespace llvm {

raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) {
  Freq.print(OS);
  return OS;
}

}