1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
|
//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Instructions.h"
using namespace llvm;
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
if (Full)
Lower = Upper = APInt::getMaxValue(BitWidth);
else
Lower = Upper = APInt::getMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) {}
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
Lower(L), Upper(U) {
assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
"Lower == Upper, but they aren't min or max value!");
}
ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
const ConstantRange &CR) {
uint32_t W = CR.getBitWidth();
switch (Pred) {
default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
case ICmpInst::ICMP_EQ:
return ConstantRange(CR.getLower(), CR.getUpper());
case ICmpInst::ICMP_NE:
if (CR.isSingleElement())
return ConstantRange(CR.getUpper(), CR.getLower());
return ConstantRange(W);
case ICmpInst::ICMP_ULT:
return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
case ICmpInst::ICMP_SLT:
return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
case ICmpInst::ICMP_ULE: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMaxValue())
return ConstantRange(W);
return ConstantRange(APInt::getMinValue(W), UMax + 1);
}
case ICmpInst::ICMP_SLE: {
APInt SMax(CR.getSignedMax());
if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
return ConstantRange(W);
return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
}
case ICmpInst::ICMP_UGT:
return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
case ICmpInst::ICMP_SGT:
return ConstantRange(CR.getSignedMin() + 1,
APInt::getSignedMinValue(W));
case ICmpInst::ICMP_UGE: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMinValue())
return ConstantRange(W);
return ConstantRange(UMin, APInt::getNullValue(W));
}
case ICmpInst::ICMP_SGE: {
APInt SMin(CR.getSignedMin());
if (SMin.isMinSignedValue())
return ConstantRange(W);
return ConstantRange(SMin, APInt::getSignedMinValue(W));
}
}
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower.isMaxValue();
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower.isMinValue();
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet() const {
return Lower.ugt(Upper);
}
/// getSetSize - Return the number of elements in this set.
///
APInt ConstantRange::getSetSize() const {
if (isEmptySet())
return APInt(getBitWidth(), 0);
if (getBitWidth() == 1) {
if (Lower != Upper) // One of T or F in the set...
return APInt(2, 1);
return APInt(2, 2); // Must be full set...
}
// Simply subtract the bounds...
return Upper - Lower;
}
/// getUnsignedMax - Return the largest unsigned value contained in the
/// ConstantRange.
///
APInt ConstantRange::getUnsignedMax() const {
if (isFullSet() || isWrappedSet())
return APInt::getMaxValue(getBitWidth());
else
return getUpper() - 1;
}
/// getUnsignedMin - Return the smallest unsigned value contained in the
/// ConstantRange.
///
APInt ConstantRange::getUnsignedMin() const {
if (isFullSet() || (isWrappedSet() && getUpper() != 0))
return APInt::getMinValue(getBitWidth());
else
return getLower();
}
/// getSignedMax - Return the largest signed value contained in the
/// ConstantRange.
///
APInt ConstantRange::getSignedMax() const {
APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
if (!isWrappedSet()) {
if (getLower().sle(getUpper() - 1))
return getUpper() - 1;
else
return SignedMax;
} else {
if ((getUpper() - 1).slt(getLower())) {
if (getLower() != SignedMax)
return SignedMax;
else
return getUpper() - 1;
} else {
return getUpper() - 1;
}
}
}
/// getSignedMin - Return the smallest signed value contained in the
/// ConstantRange.
///
APInt ConstantRange::getSignedMin() const {
APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
if (!isWrappedSet()) {
if (getLower().sle(getUpper() - 1))
return getLower();
else
return SignedMin;
} else {
if ((getUpper() - 1).slt(getLower())) {
if (getUpper() != SignedMin)
return SignedMin;
else
return getLower();
} else {
return getLower();
}
}
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(const APInt &V) const {
if (Lower == Upper)
return isFullSet();
if (!isWrappedSet())
return Lower.ule(V) && V.ult(Upper);
else
return Lower.ule(V) || V.ult(Upper);
}
/// contains - Return true if the argument is a subset of this range.
/// Two equal set contain each other. The empty set is considered to be
/// contained by all other sets.
///
bool ConstantRange::contains(const ConstantRange &Other) const {
if (isFullSet()) return true;
if (Other.isFullSet()) return false;
if (Other.isEmptySet()) return true;
if (isEmptySet()) return false;
if (!isWrappedSet()) {
if (Other.isWrappedSet())
return false;
return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
}
if (!Other.isWrappedSet())
return Other.getUpper().ule(Upper) ||
Lower.ule(Other.getLower());
return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(const APInt &Val) const {
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
return ConstantRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
ConstantRange
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS) {
assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
// Check to see if we overlap on the Left side of RHS...
//
if (RHS.Lower.ult(LHS.Upper)) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (RHS.Upper.ugt(LHS.Lower)) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
} else {
// No overlap on the right, just on the left.
return ConstantRange(RHS.Lower, LHS.Upper);
}
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (RHS.Upper.ugt(LHS.Lower)) {
// Simple overlap...
return ConstantRange(LHS.Lower, RHS.Upper);
} else {
// No overlap...
return ConstantRange(LHS.getBitWidth(), false);
}
}
}
/// intersectWith - Return the range that results from the intersection of this
/// range with another range.
///
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet()) {
if (!CR.isWrappedSet()) {
APInt L = APIntOps::umax(Lower, CR.Lower);
APInt U = APIntOps::umin(Upper, CR.Upper);
if (L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getBitWidth(), false);// Otherwise, empty set
} else
return intersect1Wrapped(CR, *this);
} else { // We know "this" is wrapped...
if (!CR.isWrappedSet())
return intersect1Wrapped(*this, CR);
else {
// Both ranges are wrapped...
APInt L = APIntOps::umax(Lower, CR.Lower);
APInt U = APIntOps::umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
return *this;
}
/// maximalIntersectWith - Return the range that results from the intersection
/// of this range with another range. The resultant range is guaranteed to
/// include all elements contained in both input ranges, and to have the
/// smallest possible set size that does so. Because there may be two
/// intersections with the same set size, A.maximalIntersectWith(B) might not
/// be equal to B.maximalIntersect(A).
ConstantRange
ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common cases.
if ( isEmptySet() || CR.isFullSet()) return *this;
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet())
return CR.maximalIntersectWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (Lower.ult(CR.Lower)) {
if (Upper.ule(CR.Lower))
return ConstantRange(getBitWidth(), false);
if (Upper.ult(CR.Upper))
return ConstantRange(CR.Lower, Upper);
return CR;
} else {
if (Upper.ult(CR.Upper))
return *this;
if (Lower.ult(CR.Upper))
return ConstantRange(Lower, CR.Upper);
return ConstantRange(getBitWidth(), false);
}
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.ult(Upper)) {
if (CR.Upper.ult(Upper))
return CR;
if (CR.Upper.ult(Lower))
return ConstantRange(CR.Lower, Upper);
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
} else if (CR.Lower.ult(Lower)) {
if (CR.Upper.ule(Lower))
return ConstantRange(getBitWidth(), false);
return ConstantRange(Lower, CR.Upper);
}
return CR;
}
if (CR.Upper.ult(Upper)) {
if (CR.Lower.ult(Upper)) {
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
}
if (CR.Lower.ult(Lower))
return ConstantRange(Lower, CR.Upper);
return CR;
} else if (CR.Upper.ult(Lower)) {
if (CR.Lower.ult(Lower))
return *this;
return ConstantRange(CR.Lower, Upper);
}
if (getSetSize().ult(CR.getSetSize()))
return *this;
else
return CR;
}
/// unionWith - Return the range that results from the union of this range with
/// another range. The resultant range is guaranteed to include the elements of
/// both sets, but may contain more. For example, [3, 9) union [12,15) is
/// [3, 15), which includes 9, 10, and 11, which were not included in either
/// set before.
///
ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
if ( isFullSet() || CR.isEmptySet()) return *this;
if (CR.isFullSet() || isEmptySet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
APInt L = Lower, U = Upper;
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.ult(L))
L = CR.Lower;
if (CR.Upper.ugt(U))
U = CR.Upper;
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if ((CR.Lower.ult(Upper) && CR.Upper.ult(Upper)) ||
(CR.Lower.ugt(Lower) && CR.Upper.ugt(Lower))) {
return *this;
}
if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) {
return ConstantRange(getBitWidth());
}
if (CR.Lower.ule(Upper) && CR.Upper.ule(Lower)) {
APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper;
if (d1.ult(d2)) {
U = CR.Upper;
} else {
L = CR.Upper;
}
}
if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
if (d1.ult(d2)) {
U = CR.Lower + 1;
} else {
L = CR.Upper - 1;
}
}
if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower;
if (d1.ult(d2)) {
U = CR.Lower + 1;
} else {
L = CR.Lower;
}
}
}
if (isWrappedSet() && CR.isWrappedSet()) {
if (Lower.ult(CR.Upper) || CR.Lower.ult(Upper))
return ConstantRange(getBitWidth());
if (CR.Upper.ugt(U)) {
U = CR.Upper;
}
if (CR.Lower.ult(L)) {
L = CR.Lower;
}
if (L == U) return ConstantRange(getBitWidth());
}
return ConstantRange(L, U);
}
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet())
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
/// signExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// sign extended.
ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet()) {
return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
APInt::getLowBitsSet(DstTySize, SrcTySize-1));
}
APInt L = Lower; L.sext(DstTySize);
APInt U = Upper; U.sext(DstTySize);
return ConstantRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize > DstTySize && "Not a value truncation");
APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
if (isFullSet() || getSetSize().ugt(Size))
return ConstantRange(DstTySize);
APInt L = Lower; L.trunc(DstTySize);
APInt U = Upper; U.trunc(DstTySize);
return ConstantRange(L, U);
}
ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
APInt NewLower = getLower() + Other.getLower();
APInt NewUpper = getUpper() + Other.getUpper() - 1;
if (NewLower == NewUpper)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
ConstantRange X = ConstantRange(NewLower, NewUpper);
if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
// We've wrapped, therefore, full set.
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return X;
}
ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
// TODO: Implement multiply.
return ConstantRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
// X smax Y is: range(smax(X_smin, Y_smin),
// smax(X_smax, Y_smax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (isFullSet() || Other.isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(NewL, NewU);
}
ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
// X umax Y is: range(umax(X_umin, Y_umin),
// umax(X_umax, Y_umax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (isFullSet() || Other.isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(NewL, NewU);
}
ConstantRange
ConstantRange::udiv(const ConstantRange &Other) const {
// TODO: Implement udiv.
return ConstantRange(getBitWidth(),
!(isEmptySet() || Other.isEmptySet()));
}
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(raw_ostream &OS) const {
OS << "[" << Lower << "," << Upper << ")";
}
/// dump - Allow printing from a debugger easily...
///
void ConstantRange::dump() const {
print(errs());
}
std::ostream &llvm::operator<<(std::ostream &o,
const ConstantRange &CR) {
raw_os_ostream OS(o);
OS << CR;
return o;
}
|