aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support/ConstantRange.cpp
blob: bb38cd15e634144b987ba461e94e7c6338445fea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value.  This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range.  To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators.  When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
//  [F, F) = {}     = Empty set
//  [T, F) = {T}
//  [F, T) = {F}
//  [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
  if (Full)
    Lower = Upper = APInt::getMaxValue(BitWidth);
  else
    Lower = Upper = APInt::getMinValue(BitWidth);
}

/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(APIntMoveTy V)
    : Lower(llvm_move(V)), Upper(Lower + 1) {}

ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
    : Lower(llvm_move(L)), Upper(llvm_move(U)) {
  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
         "ConstantRange with unequal bit widths");
  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
         "Lower == Upper, but they aren't min or max value!");
}

ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
                                            const ConstantRange &CR) {
  if (CR.isEmptySet())
    return CR;

  uint32_t W = CR.getBitWidth();
  switch (Pred) {
    default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()");
    case CmpInst::ICMP_EQ:
      return CR;
    case CmpInst::ICMP_NE:
      if (CR.isSingleElement())
        return ConstantRange(CR.getUpper(), CR.getLower());
      return ConstantRange(W);
    case CmpInst::ICMP_ULT: {
      APInt UMax(CR.getUnsignedMax());
      if (UMax.isMinValue())
        return ConstantRange(W, /* empty */ false);
      return ConstantRange(APInt::getMinValue(W), UMax);
    }
    case CmpInst::ICMP_SLT: {
      APInt SMax(CR.getSignedMax());
      if (SMax.isMinSignedValue())
        return ConstantRange(W, /* empty */ false);
      return ConstantRange(APInt::getSignedMinValue(W), SMax);
    }
    case CmpInst::ICMP_ULE: {
      APInt UMax(CR.getUnsignedMax());
      if (UMax.isMaxValue())
        return ConstantRange(W);
      return ConstantRange(APInt::getMinValue(W), UMax + 1);
    }
    case CmpInst::ICMP_SLE: {
      APInt SMax(CR.getSignedMax());
      if (SMax.isMaxSignedValue())
        return ConstantRange(W);
      return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
    }
    case CmpInst::ICMP_UGT: {
      APInt UMin(CR.getUnsignedMin());
      if (UMin.isMaxValue())
        return ConstantRange(W, /* empty */ false);
      return ConstantRange(UMin + 1, APInt::getNullValue(W));
    }
    case CmpInst::ICMP_SGT: {
      APInt SMin(CR.getSignedMin());
      if (SMin.isMaxSignedValue())
        return ConstantRange(W, /* empty */ false);
      return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
    }
    case CmpInst::ICMP_UGE: {
      APInt UMin(CR.getUnsignedMin());
      if (UMin.isMinValue())
        return ConstantRange(W);
      return ConstantRange(UMin, APInt::getNullValue(W));
    }
    case CmpInst::ICMP_SGE: {
      APInt SMin(CR.getSignedMin());
      if (SMin.isMinSignedValue())
        return ConstantRange(W);
      return ConstantRange(SMin, APInt::getSignedMinValue(W));
    }
  }
}

/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
  return Lower == Upper && Lower.isMaxValue();
}

/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
  return Lower == Upper && Lower.isMinValue();
}

/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet() const {
  return Lower.ugt(Upper);
}

/// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
/// its bitwidth, for example: i8 [120, 140).
///
bool ConstantRange::isSignWrappedSet() const {
  return contains(APInt::getSignedMaxValue(getBitWidth())) &&
         contains(APInt::getSignedMinValue(getBitWidth()));
}

/// getSetSize - Return the number of elements in this set.
///
APInt ConstantRange::getSetSize() const {
  if (isEmptySet())
    return APInt(getBitWidth()+1, 0);

  if (isFullSet()) {
    APInt Size(getBitWidth()+1, 0);
    Size.setBit(getBitWidth());
    return Size;
  }

  // This is also correct for wrapped sets.
  return (Upper - Lower).zext(getBitWidth()+1);
}

/// getUnsignedMax - Return the largest unsigned value contained in the
/// ConstantRange.
///
APInt ConstantRange::getUnsignedMax() const {
  if (isFullSet() || isWrappedSet())
    return APInt::getMaxValue(getBitWidth());
  return getUpper() - 1;
}

/// getUnsignedMin - Return the smallest unsigned value contained in the
/// ConstantRange.
///
APInt ConstantRange::getUnsignedMin() const {
  if (isFullSet() || (isWrappedSet() && getUpper() != 0))
    return APInt::getMinValue(getBitWidth());
  return getLower();
}

/// getSignedMax - Return the largest signed value contained in the
/// ConstantRange.
///
APInt ConstantRange::getSignedMax() const {
  APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
  if (!isWrappedSet()) {
    if (getLower().sle(getUpper() - 1))
      return getUpper() - 1;
    return SignedMax;
  }
  if (getLower().isNegative() == getUpper().isNegative())
    return SignedMax;
  return getUpper() - 1;
}

/// getSignedMin - Return the smallest signed value contained in the
/// ConstantRange.
///
APInt ConstantRange::getSignedMin() const {
  APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
  if (!isWrappedSet()) {
    if (getLower().sle(getUpper() - 1))
      return getLower();
    return SignedMin;
  }
  if ((getUpper() - 1).slt(getLower())) {
    if (getUpper() != SignedMin)
      return SignedMin;
  }
  return getLower();
}

/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(const APInt &V) const {
  if (Lower == Upper)
    return isFullSet();

  if (!isWrappedSet())
    return Lower.ule(V) && V.ult(Upper);
  return Lower.ule(V) || V.ult(Upper);
}

/// contains - Return true if the argument is a subset of this range.
/// Two equal sets contain each other. The empty set contained by all other
/// sets.
///
bool ConstantRange::contains(const ConstantRange &Other) const {
  if (isFullSet() || Other.isEmptySet()) return true;
  if (isEmptySet() || Other.isFullSet()) return false;

  if (!isWrappedSet()) {
    if (Other.isWrappedSet())
      return false;

    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
  }

  if (!Other.isWrappedSet())
    return Other.getUpper().ule(Upper) ||
           Lower.ule(Other.getLower());

  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}

/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(const APInt &Val) const {
  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
  // If the set is empty or full, don't modify the endpoints.
  if (Lower == Upper) 
    return *this;
  return ConstantRange(Lower - Val, Upper - Val);
}

/// \brief Subtract the specified range from this range (aka relative complement
/// of the sets).
ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
  return intersectWith(CR.inverse());
}

/// intersectWith - Return the range that results from the intersection of this
/// range with another range.  The resultant range is guaranteed to include all
/// elements contained in both input ranges, and to have the smallest possible
/// set size that does so.  Because there may be two intersections with the
/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
  assert(getBitWidth() == CR.getBitWidth() && 
         "ConstantRange types don't agree!");

  // Handle common cases.
  if (   isEmptySet() || CR.isFullSet()) return *this;
  if (CR.isEmptySet() ||    isFullSet()) return CR;

  if (!isWrappedSet() && CR.isWrappedSet())
    return CR.intersectWith(*this);

  if (!isWrappedSet() && !CR.isWrappedSet()) {
    if (Lower.ult(CR.Lower)) {
      if (Upper.ule(CR.Lower))
        return ConstantRange(getBitWidth(), false);

      if (Upper.ult(CR.Upper))
        return ConstantRange(CR.Lower, Upper);

      return CR;
    }
    if (Upper.ult(CR.Upper))
      return *this;

    if (Lower.ult(CR.Upper))
      return ConstantRange(Lower, CR.Upper);

    return ConstantRange(getBitWidth(), false);
  }

  if (isWrappedSet() && !CR.isWrappedSet()) {
    if (CR.Lower.ult(Upper)) {
      if (CR.Upper.ult(Upper))
        return CR;

      if (CR.Upper.ule(Lower))
        return ConstantRange(CR.Lower, Upper);

      if (getSetSize().ult(CR.getSetSize()))
        return *this;
      return CR;
    }
    if (CR.Lower.ult(Lower)) {
      if (CR.Upper.ule(Lower))
        return ConstantRange(getBitWidth(), false);

      return ConstantRange(Lower, CR.Upper);
    }
    return CR;
  }

  if (CR.Upper.ult(Upper)) {
    if (CR.Lower.ult(Upper)) {
      if (getSetSize().ult(CR.getSetSize()))
        return *this;
      return CR;
    }

    if (CR.Lower.ult(Lower))
      return ConstantRange(Lower, CR.Upper);

    return CR;
  }
  if (CR.Upper.ule(Lower)) {
    if (CR.Lower.ult(Lower))
      return *this;

    return ConstantRange(CR.Lower, Upper);
  }
  if (getSetSize().ult(CR.getSetSize()))
    return *this;
  return CR;
}


/// unionWith - Return the range that results from the union of this range with
/// another range.  The resultant range is guaranteed to include the elements of
/// both sets, but may contain more.  For example, [3, 9) union [12,15) is
/// [3, 15), which includes 9, 10, and 11, which were not included in either
/// set before.
///
ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
  assert(getBitWidth() == CR.getBitWidth() && 
         "ConstantRange types don't agree!");

  if (   isFullSet() || CR.isEmptySet()) return *this;
  if (CR.isFullSet() ||    isEmptySet()) return CR;

  if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);

  if (!isWrappedSet() && !CR.isWrappedSet()) {
    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
      // If the two ranges are disjoint, find the smaller gap and bridge it.
      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
      if (d1.ult(d2))
        return ConstantRange(Lower, CR.Upper);
      return ConstantRange(CR.Lower, Upper);
    }

    APInt L = Lower, U = Upper;
    if (CR.Lower.ult(L))
      L = CR.Lower;
    if ((CR.Upper - 1).ugt(U - 1))
      U = CR.Upper;

    if (L == 0 && U == 0)
      return ConstantRange(getBitWidth());

    return ConstantRange(L, U);
  }

  if (!CR.isWrappedSet()) {
    // ------U   L-----  and  ------U   L----- : this
    //   L--U                            L--U  : CR
    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
      return *this;

    // ------U   L----- : this
    //    L---------U   : CR
    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
      return ConstantRange(getBitWidth());

    // ----U       L---- : this
    //       L---U       : CR
    //    <d1>  <d2>
    if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
      if (d1.ult(d2))
        return ConstantRange(Lower, CR.Upper);
      return ConstantRange(CR.Lower, Upper);
    }

    // ----U     L----- : this
    //        L----U    : CR
    if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
      return ConstantRange(CR.Lower, Upper);

    // ------U    L---- : this
    //    L-----U       : CR
    assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
           "ConstantRange::unionWith missed a case with one range wrapped");
    return ConstantRange(Lower, CR.Upper);
  }

  // ------U    L----  and  ------U    L---- : this
  // -U  L-----------  and  ------------U  L : CR
  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
    return ConstantRange(getBitWidth());

  APInt L = Lower, U = Upper;
  if (CR.Upper.ugt(U))
    U = CR.Upper;
  if (CR.Lower.ult(L))
    L = CR.Lower;

  return ConstantRange(L, U);
}

/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type.  The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");
  if (isFullSet() || isWrappedSet()) {
    // Change into [0, 1 << src bit width)
    APInt LowerExt(DstTySize, 0);
    if (!Upper) // special case: [X, 0) -- not really wrapping around
      LowerExt = Lower.zext(DstTySize);
    return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
  }

  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
}

/// signExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type.  The returned range will
/// correspond to the possible range of values as if the source range had been
/// sign extended.
ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");
  if (isFullSet() || isSignWrappedSet()) {
    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
  }

  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
}

/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type.  The returned range will
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
  assert(getBitWidth() > DstTySize && "Not a value truncation");
  if (isEmptySet())
    return ConstantRange(DstTySize, /*isFullSet=*/false);
  if (isFullSet())
    return ConstantRange(DstTySize, /*isFullSet=*/true);

  APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
  APInt MaxBitValue(getBitWidth(), 0);
  MaxBitValue.setBit(DstTySize);

  APInt LowerDiv(Lower), UpperDiv(Upper);
  ConstantRange Union(DstTySize, /*isFullSet=*/false);

  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
  // then we do the union with [MaxValue, Upper)
  if (isWrappedSet()) {
    // if Upper is greater than Max Value, it covers the whole truncated range.
    if (Upper.uge(MaxValue))
      return ConstantRange(DstTySize, /*isFullSet=*/true);

    Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
    UpperDiv = APInt::getMaxValue(getBitWidth());

    // Union covers the MaxValue case, so return if the remaining range is just
    // MaxValue.
    if (LowerDiv == UpperDiv)
      return Union;
  }

  // Chop off the most significant bits that are past the destination bitwidth.
  if (LowerDiv.uge(MaxValue)) {
    APInt Div(getBitWidth(), 0);
    APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
    UpperDiv = UpperDiv - MaxBitValue * Div;
  }

  if (UpperDiv.ule(MaxValue))
    return ConstantRange(LowerDiv.trunc(DstTySize),
                         UpperDiv.trunc(DstTySize)).unionWith(Union);

  // The truncated value wrapps around. Check if we can do better than fullset.
  APInt UpperModulo = UpperDiv - MaxBitValue;
  if (UpperModulo.ult(LowerDiv))
    return ConstantRange(LowerDiv.trunc(DstTySize),
                         UpperModulo.trunc(DstTySize)).unionWith(Union);

  return ConstantRange(DstTySize, /*isFullSet=*/true);
}

/// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
/// value is zero extended, truncated, or left alone to make it that width.
ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return zeroExtend(DstTySize);
  return *this;
}

/// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
/// value is sign extended, truncated, or left alone to make it that width.
ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return signExtend(DstTySize);
  return *this;
}

ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  if (isFullSet() || Other.isFullSet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
  APInt NewLower = getLower() + Other.getLower();
  APInt NewUpper = getUpper() + Other.getUpper() - 1;
  if (NewLower == NewUpper)
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  ConstantRange X = ConstantRange(NewLower, NewUpper);
  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
    // We've wrapped, therefore, full set.
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  return X;
}

ConstantRange
ConstantRange::sub(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  if (isFullSet() || Other.isFullSet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
  APInt NewLower = getLower() - Other.getUpper() + 1;
  APInt NewUpper = getUpper() - Other.getLower();
  if (NewLower == NewUpper)
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  ConstantRange X = ConstantRange(NewLower, NewUpper);
  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
    // We've wrapped, therefore, full set.
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  return X;
}

ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
  // TODO: If either operand is a single element and the multiply is known to
  // be non-wrapping, round the result min and max value to the appropriate
  // multiple of that element. If wrapping is possible, at least adjust the
  // range according to the greatest power-of-two factor of the single element.

  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);

  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);

  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
                                            this_max * Other_max + 1);
  return Result_zext.truncate(getBitWidth());
}

ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
  // X smax Y is: range(smax(X_smin, Y_smin),
  //                    smax(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
  if (NewU == NewL)
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
  return ConstantRange(NewL, NewU);
}

ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
  // X umax Y is: range(umax(X_umin, Y_umin),
  //                    umax(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  if (NewU == NewL)
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
  return ConstantRange(NewL, NewU);
}

ConstantRange
ConstantRange::udiv(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  if (RHS.isFullSet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());

  APInt RHS_umin = RHS.getUnsignedMin();
  if (RHS_umin == 0) {
    // We want the lowest value in RHS excluding zero. Usually that would be 1
    // except for a range in the form of [X, 1) in which case it would be X.
    if (RHS.getUpper() == 1)
      RHS_umin = RHS.getLower();
    else
      RHS_umin = APInt(getBitWidth(), 1);
  }

  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;

  // If the LHS is Full and the RHS is a wrapped interval containing 1 then
  // this could occur.
  if (Lower == Upper)
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  return ConstantRange(Lower, Upper);
}

ConstantRange
ConstantRange::binaryAnd(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);

  // TODO: replace this with something less conservative

  APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
  if (umin.isAllOnesValue())
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
  return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
}

ConstantRange
ConstantRange::binaryOr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);

  // TODO: replace this with something less conservative

  APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  if (umax.isMinValue())
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
  return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
}

ConstantRange
ConstantRange::shl(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);

  APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
  APInt max = getUnsignedMax().shl(Other.getUnsignedMax());

  // there's no overflow!
  APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
  if (Zeros.ugt(Other.getUnsignedMax()))
    return ConstantRange(min, max + 1);

  // FIXME: implement the other tricky cases
  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
}

ConstantRange
ConstantRange::lshr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  
  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
  if (min == max + 1)
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);

  return ConstantRange(min, max + 1);
}

ConstantRange ConstantRange::inverse() const {
  if (isFullSet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
  if (isEmptySet())
    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
  return ConstantRange(Upper, Lower);
}

/// print - Print out the bounds to a stream...
///
void ConstantRange::print(raw_ostream &OS) const {
  if (isFullSet())
    OS << "full-set";
  else if (isEmptySet())
    OS << "empty-set";
  else
    OS << "[" << Lower << "," << Upper << ")";
}

/// dump - Allow printing from a debugger easily...
///
void ConstantRange::dump() const {
  print(dbgs());
}