1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of some scaled number algorithms.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ScaledNumber.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace llvm::ScaledNumbers;
std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
uint64_t RHS) {
// Separate into two 32-bit digits (U.L).
auto getU = [](uint64_t N) { return N >> 32; };
auto getL = [](uint64_t N) { return N & UINT32_MAX; };
uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
// Compute cross products.
uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
// Sum into two 64-bit digits.
uint64_t Upper = P1, Lower = P4;
auto addWithCarry = [&](uint64_t N) {
uint64_t NewLower = Lower + (getL(N) << 32);
Upper += getU(N) + (NewLower < Lower);
Lower = NewLower;
};
addWithCarry(P2);
addWithCarry(P3);
// Check whether the upper digit is empty.
if (!Upper)
return std::make_pair(Lower, 0);
// Shift as little as possible to maximize precision.
unsigned LeadingZeros = countLeadingZeros(Upper);
int Shift = 64 - LeadingZeros;
if (LeadingZeros)
Upper = Upper << LeadingZeros | Lower >> Shift;
return getRounded(Upper, Shift,
Shift && (Lower & UINT64_C(1) << (Shift - 1)));
}
static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
uint32_t Divisor) {
assert(Dividend && "expected non-zero dividend");
assert(Divisor && "expected non-zero divisor");
// Use 64-bit math and canonicalize the dividend to gain precision.
uint64_t Dividend64 = Dividend;
int Shift = 0;
if (int Zeros = countLeadingZeros(Dividend64)) {
Shift -= Zeros;
Dividend64 <<= Zeros;
}
uint64_t Quotient = Dividend64 / Divisor;
uint64_t Remainder = Dividend64 % Divisor;
// If Quotient needs to be shifted, leave the rounding to getAdjusted().
if (Quotient > UINT32_MAX)
return getAdjusted<uint32_t>(Quotient, Shift);
// Round based on the value of the next bit.
return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
}
std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
uint64_t Divisor) {
assert(Dividend && "expected non-zero dividend");
assert(Divisor && "expected non-zero divisor");
// Minimize size of divisor.
int Shift = 0;
if (int Zeros = countTrailingZeros(Divisor)) {
Shift -= Zeros;
Divisor >>= Zeros;
}
// Check for powers of two.
if (Divisor == 1)
return std::make_pair(Dividend, Shift);
// Maximize size of dividend.
if (int Zeros = countLeadingZeros(Dividend)) {
Shift -= Zeros;
Dividend <<= Zeros;
}
// Start with the result of a divide.
uint64_t Quotient = Dividend / Divisor;
Dividend %= Divisor;
// Continue building the quotient with long division.
while (!(Quotient >> 63) && Dividend) {
// Shift Dividend and check for overflow.
bool IsOverflow = Dividend >> 63;
Dividend <<= 1;
--Shift;
// Get the next bit of Quotient.
Quotient <<= 1;
if (IsOverflow || Divisor <= Dividend) {
Quotient |= 1;
Dividend -= Divisor;
}
}
return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
}
int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
assert(ScaleDiff >= 0 && "wrong argument order");
assert(ScaleDiff < 64 && "numbers too far apart");
uint64_t L_adjusted = L >> ScaleDiff;
if (L_adjusted < R)
return -1;
if (L_adjusted > R)
return 1;
return L > L_adjusted << ScaleDiff ? 1 : 0;
}
static void appendDigit(std::string &Str, unsigned D) {
assert(D < 10);
Str += '0' + D % 10;
}
static void appendNumber(std::string &Str, uint64_t N) {
while (N) {
appendDigit(Str, N % 10);
N /= 10;
}
}
static bool doesRoundUp(char Digit) {
switch (Digit) {
case '5':
case '6':
case '7':
case '8':
case '9':
return true;
default:
return false;
}
}
static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
assert(E >= ScaledNumbers::MinScale);
assert(E <= ScaledNumbers::MaxScale);
// Find a new E, but don't let it increase past MaxScale.
int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
int Shift = 63 - (NewE - E);
assert(Shift <= LeadingZeros);
assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
D <<= Shift;
E = NewE;
// Check for a denormal.
unsigned AdjustedE = E + 16383;
if (!(D >> 63)) {
assert(E == ScaledNumbers::MaxScale);
AdjustedE = 0;
}
// Build the float and print it.
uint64_t RawBits[2] = {D, AdjustedE};
APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
SmallVector<char, 24> Chars;
Float.toString(Chars, Precision, 0);
return std::string(Chars.begin(), Chars.end());
}
static std::string stripTrailingZeros(const std::string &Float) {
size_t NonZero = Float.find_last_not_of('0');
assert(NonZero != std::string::npos && "no . in floating point string");
if (Float[NonZero] == '.')
++NonZero;
return Float.substr(0, NonZero + 1);
}
std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
unsigned Precision) {
if (!D)
return "0.0";
// Canonicalize exponent and digits.
uint64_t Above0 = 0;
uint64_t Below0 = 0;
uint64_t Extra = 0;
int ExtraShift = 0;
if (E == 0) {
Above0 = D;
} else if (E > 0) {
if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
D <<= Shift;
E -= Shift;
if (!E)
Above0 = D;
}
} else if (E > -64) {
Above0 = D >> -E;
Below0 = D << (64 + E);
} else if (E == -64) {
// Special case: shift by 64 bits is undefined behavior.
Below0 = D;
} else if (E > -120) {
Below0 = D >> (-E - 64);
Extra = D << (128 + E);
ExtraShift = -64 - E;
}
// Fall back on APFloat for very small and very large numbers.
if (!Above0 && !Below0)
return toStringAPFloat(D, E, Precision);
// Append the digits before the decimal.
std::string Str;
size_t DigitsOut = 0;
if (Above0) {
appendNumber(Str, Above0);
DigitsOut = Str.size();
} else
appendDigit(Str, 0);
std::reverse(Str.begin(), Str.end());
// Return early if there's nothing after the decimal.
if (!Below0)
return Str + ".0";
// Append the decimal and beyond.
Str += '.';
uint64_t Error = UINT64_C(1) << (64 - Width);
// We need to shift Below0 to the right to make space for calculating
// digits. Save the precision we're losing in Extra.
Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
Below0 >>= 4;
size_t SinceDot = 0;
size_t AfterDot = Str.size();
do {
if (ExtraShift) {
--ExtraShift;
Error *= 5;
} else
Error *= 10;
Below0 *= 10;
Extra *= 10;
Below0 += (Extra >> 60);
Extra = Extra & (UINT64_MAX >> 4);
appendDigit(Str, Below0 >> 60);
Below0 = Below0 & (UINT64_MAX >> 4);
if (DigitsOut || Str.back() != '0')
++DigitsOut;
++SinceDot;
} while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
(!Precision || DigitsOut <= Precision || SinceDot < 2));
// Return early for maximum precision.
if (!Precision || DigitsOut <= Precision)
return stripTrailingZeros(Str);
// Find where to truncate.
size_t Truncate =
std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
// Check if there's anything to truncate.
if (Truncate >= Str.size())
return stripTrailingZeros(Str);
bool Carry = doesRoundUp(Str[Truncate]);
if (!Carry)
return stripTrailingZeros(Str.substr(0, Truncate));
// Round with the first truncated digit.
for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
I != E; ++I) {
if (*I == '.')
continue;
if (*I == '9') {
*I = '0';
continue;
}
++*I;
Carry = false;
break;
}
// Add "1" in front if we still need to carry.
return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
}
raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
int Width, unsigned Precision) {
return OS << toString(D, E, Width, Precision);
}
void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
<< "]";
}
|