1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
//===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SmallPtrSet class. See SmallPtrSet.h for an
// overview of the algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/MathExtras.h"
#include <cstdlib>
using namespace llvm;
void SmallPtrSetImpl::shrink_and_clear() {
assert(!isSmall() && "Can't shrink a small set!");
free(CurArray);
// Reduce the number of buckets.
CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
NumElements = NumTombstones = 0;
// Install the new array. Clear all the buckets to empty.
CurArray = (const void**)malloc(sizeof(void*) * (CurArraySize+1));
assert(CurArray && "Failed to allocate memory?");
memset(CurArray, -1, CurArraySize*sizeof(void*));
// The end pointer, always valid, is set to a valid element to help the
// iterator.
CurArray[CurArraySize] = 0;
}
bool SmallPtrSetImpl::insert_imp(const void * Ptr) {
if (isSmall()) {
// Check to see if it is already in the set.
for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
APtr != E; ++APtr)
if (*APtr == Ptr)
return false;
// Nope, there isn't. If we stay small, just 'pushback' now.
if (NumElements < CurArraySize-1) {
SmallArray[NumElements++] = Ptr;
return true;
}
// Otherwise, hit the big set case, which will call grow.
}
// If more than 3/4 of the array is full, grow.
if (NumElements*4 >= CurArraySize*3 ||
CurArraySize-(NumElements+NumTombstones) < CurArraySize/8)
Grow();
// Okay, we know we have space. Find a hash bucket.
const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
if (*Bucket == Ptr) return false; // Already inserted, good.
// Otherwise, insert it!
if (*Bucket == getTombstoneMarker())
--NumTombstones;
*Bucket = Ptr;
++NumElements; // Track density.
return true;
}
bool SmallPtrSetImpl::erase_imp(const void * Ptr) {
if (isSmall()) {
// Check to see if it is in the set.
for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
APtr != E; ++APtr)
if (*APtr == Ptr) {
// If it is in the set, replace this element.
*APtr = E[-1];
E[-1] = getEmptyMarker();
--NumElements;
return true;
}
return false;
}
// Okay, we know we have space. Find a hash bucket.
void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
if (*Bucket != Ptr) return false; // Not in the set?
// Set this as a tombstone.
*Bucket = getTombstoneMarker();
--NumElements;
++NumTombstones;
return true;
}
const void * const *SmallPtrSetImpl::FindBucketFor(const void *Ptr) const {
unsigned Bucket = Hash(Ptr);
unsigned ArraySize = CurArraySize;
unsigned ProbeAmt = 1;
const void *const *Array = CurArray;
const void *const *Tombstone = 0;
while (1) {
// Found Ptr's bucket?
if (Array[Bucket] == Ptr)
return Array+Bucket;
// If we found an empty bucket, the pointer doesn't exist in the set.
// Return a tombstone if we've seen one so far, or the empty bucket if
// not.
if (Array[Bucket] == getEmptyMarker())
return Tombstone ? Tombstone : Array+Bucket;
// If this is a tombstone, remember it. If Ptr ends up not in the set, we
// prefer to return it than something that would require more probing.
if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
Tombstone = Array+Bucket; // Remember the first tombstone found.
// It's a hash collision or a tombstone. Reprobe.
Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
}
}
/// Grow - Allocate a larger backing store for the buckets and move it over.
///
void SmallPtrSetImpl::Grow() {
// Allocate at twice as many buckets, but at least 128.
unsigned OldSize = CurArraySize;
unsigned NewSize = OldSize < 64 ? 128 : OldSize*2;
const void **OldBuckets = CurArray;
bool WasSmall = isSmall();
// Install the new array. Clear all the buckets to empty.
CurArray = (const void**)malloc(sizeof(void*) * (NewSize+1));
assert(CurArray && "Failed to allocate memory?");
CurArraySize = NewSize;
memset(CurArray, -1, NewSize*sizeof(void*));
// The end pointer, always valid, is set to a valid element to help the
// iterator.
CurArray[NewSize] = 0;
// Copy over all the elements.
if (WasSmall) {
// Small sets store their elements in order.
for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
BucketPtr != E; ++BucketPtr) {
const void *Elt = *BucketPtr;
*const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
}
} else {
// Copy over all valid entries.
for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
BucketPtr != E; ++BucketPtr) {
// Copy over the element if it is valid.
const void *Elt = *BucketPtr;
if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
*const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
}
free(OldBuckets);
NumTombstones = 0;
}
}
SmallPtrSetImpl::SmallPtrSetImpl(const SmallPtrSetImpl& that) {
// If we're becoming small, prepare to insert into our stack space
if (that.isSmall()) {
CurArray = &SmallArray[0];
// Otherwise, allocate new heap space (unless we were the same size)
} else {
CurArray = (const void**)malloc(sizeof(void*) * (that.CurArraySize+1));
assert(CurArray && "Failed to allocate memory?");
}
// Copy over the new array size
CurArraySize = that.CurArraySize;
// Copy over the contents from the other set
memcpy(CurArray, that.CurArray, sizeof(void*)*(CurArraySize+1));
NumElements = that.NumElements;
NumTombstones = that.NumTombstones;
}
/// CopyFrom - implement operator= from a smallptrset that has the same pointer
/// type, but may have a different small size.
void SmallPtrSetImpl::CopyFrom(const SmallPtrSetImpl &RHS) {
if (isSmall() && RHS.isSmall())
assert(CurArraySize == RHS.CurArraySize &&
"Cannot assign sets with different small sizes");
// If we're becoming small, prepare to insert into our stack space
if (RHS.isSmall()) {
if (!isSmall())
free(CurArray);
CurArray = &SmallArray[0];
// Otherwise, allocate new heap space (unless we were the same size)
} else if (CurArraySize != RHS.CurArraySize) {
if (isSmall())
CurArray = (const void**)malloc(sizeof(void*) * (RHS.CurArraySize+1));
else
CurArray = (const void**)realloc(CurArray, sizeof(void*)*(RHS.CurArraySize+1));
assert(CurArray && "Failed to allocate memory?");
}
// Copy over the new array size
CurArraySize = RHS.CurArraySize;
// Copy over the contents from the other set
memcpy(CurArray, RHS.CurArray, sizeof(void*)*(CurArraySize+1));
NumElements = RHS.NumElements;
NumTombstones = RHS.NumTombstones;
}
SmallPtrSetImpl::~SmallPtrSetImpl() {
if (!isSmall())
free(CurArray);
}
|