aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support/Unix/Program.inc
blob: 0605d531ca5b94b28abb547789561b2de899d7a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
//===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Unix specific portion of the Program class.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only generic UNIX code that
//===          is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//

#include "Unix.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FileSystem.h"
#include <llvm/Config/config.h>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_POSIX_SPAWN
#include <spawn.h>
#if !defined(__APPLE__)
  extern char **environ;
#else
#include <crt_externs.h> // _NSGetEnviron
#endif
#endif

namespace llvm {
using namespace sys;

// This function just uses the PATH environment variable to find the program.
std::string
sys::FindProgramByName(const std::string& progName) {

  // Check some degenerate cases
  if (progName.length() == 0) // no program
    return "";
  std::string temp = progName;
  // Use the given path verbatim if it contains any slashes; this matches
  // the behavior of sh(1) and friends.
  if (progName.find('/') != std::string::npos)
    return temp;

  // At this point, the file name is valid and does not contain slashes. Search
  // for it through the directories specified in the PATH environment variable.

  // Get the path. If its empty, we can't do anything to find it.
  const char *PathStr = getenv("PATH");
  if (PathStr == 0)
    return "";

  // Now we have a colon separated list of directories to search; try them.
  size_t PathLen = strlen(PathStr);
  while (PathLen) {
    // Find the first colon...
    const char *Colon = std::find(PathStr, PathStr+PathLen, ':');

    // Check to see if this first directory contains the executable...
    SmallString<128> FilePath(PathStr,Colon);
    sys::path::append(FilePath, progName);
    if (sys::fs::can_execute(Twine(FilePath)))
      return FilePath.str();                    // Found the executable!

    // Nope it wasn't in this directory, check the next path in the list!
    PathLen -= Colon-PathStr;
    PathStr = Colon;

    // Advance past duplicate colons
    while (*PathStr == ':') {
      PathStr++;
      PathLen--;
    }
  }
  return "";
}

static bool RedirectIO(const StringRef *Path, int FD, std::string* ErrMsg) {
  if (Path == 0) // Noop
    return false;
  std::string File;
  if (Path->empty())
    // Redirect empty paths to /dev/null
    File = "/dev/null";
  else
    File = *Path;

  // Open the file
  int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666);
  if (InFD == -1) {
    MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for "
              + (FD == 0 ? "input" : "output"));
    return true;
  }

  // Install it as the requested FD
  if (dup2(InFD, FD) == -1) {
    MakeErrMsg(ErrMsg, "Cannot dup2");
    close(InFD);
    return true;
  }
  close(InFD);      // Close the original FD
  return false;
}

#ifdef HAVE_POSIX_SPAWN
static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg,
                          posix_spawn_file_actions_t *FileActions) {
  if (Path == 0) // Noop
    return false;
  const char *File;
  if (Path->empty())
    // Redirect empty paths to /dev/null
    File = "/dev/null";
  else
    File = Path->c_str();

  if (int Err = posix_spawn_file_actions_addopen(
          FileActions, FD, File,
          FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666))
    return MakeErrMsg(ErrMsg, "Cannot dup2", Err);
  return false;
}
#endif

static void TimeOutHandler(int Sig) {
}

static void SetMemoryLimits (unsigned size)
{
#if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT
  struct rlimit r;
  __typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576;

  // Heap size
  getrlimit (RLIMIT_DATA, &r);
  r.rlim_cur = limit;
  setrlimit (RLIMIT_DATA, &r);
#ifdef RLIMIT_RSS
  // Resident set size.
  getrlimit (RLIMIT_RSS, &r);
  r.rlim_cur = limit;
  setrlimit (RLIMIT_RSS, &r);
#endif
#ifdef RLIMIT_AS  // e.g. NetBSD doesn't have it.
  // Don't set virtual memory limit if built with any Sanitizer. They need 80Tb
  // of virtual memory for shadow memory mapping.
#if !LLVM_MEMORY_SANITIZER_BUILD && !LLVM_ADDRESS_SANITIZER_BUILD
  // Virtual memory.
  getrlimit (RLIMIT_AS, &r);
  r.rlim_cur = limit;
  setrlimit (RLIMIT_AS, &r);
#endif
#endif
#endif
}

}

static bool Execute(void **Data, StringRef Program, const char **args,
                    const char **envp, const StringRef **redirects,
                    unsigned memoryLimit, std::string *ErrMsg) {
  // If this OS has posix_spawn and there is no memory limit being implied, use
  // posix_spawn.  It is more efficient than fork/exec.
#ifdef HAVE_POSIX_SPAWN
  if (memoryLimit == 0) {
    posix_spawn_file_actions_t FileActionsStore;
    posix_spawn_file_actions_t *FileActions = 0;

    // If we call posix_spawn_file_actions_addopen we have to make sure the
    // c strings we pass to it stay alive until the call to posix_spaw,
    // so we copy any StringRefs into this variable.
    std::string RedirectsStorage[3];

    if (redirects) {
      std::string *RedirectsStr[3] = {0, 0, 0};
      for (int I = 0; I < 3; ++I) {
        if (redirects[I]) {
          RedirectsStorage[I] = *redirects[I];
          RedirectsStr[I] = &RedirectsStorage[I];
        }
      }

      FileActions = &FileActionsStore;
      posix_spawn_file_actions_init(FileActions);

      // Redirect stdin/stdout.
      if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) ||
          RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions))
        return false;
      if (redirects[1] == 0 || redirects[2] == 0 ||
          *redirects[1] != *redirects[2]) {
        // Just redirect stderr
        if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions))
          return false;
      } else {
        // If stdout and stderr should go to the same place, redirect stderr
        // to the FD already open for stdout.
        if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2))
          return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err);
      }
    }

    if (!envp)
#if !defined(__APPLE__)
      envp = const_cast<const char **>(environ);
#else
      // environ is missing in dylibs.
      envp = const_cast<const char **>(*_NSGetEnviron());
#endif

    // Explicitly initialized to prevent what appears to be a valgrind false
    // positive.
    pid_t PID = 0;
    int Err = posix_spawn(&PID, Program.str().c_str(), FileActions, /*attrp*/0,
                          const_cast<char **>(args), const_cast<char **>(envp));

    if (FileActions)
      posix_spawn_file_actions_destroy(FileActions);

    if (Err)
     return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err);

    if (Data)
      *Data = reinterpret_cast<void*>(PID);
    return true;
  }
#endif

  // Create a child process.
  int child = fork();
  switch (child) {
    // An error occurred:  Return to the caller.
    case -1:
      MakeErrMsg(ErrMsg, "Couldn't fork");
      return false;

    // Child process: Execute the program.
    case 0: {
      // Redirect file descriptors...
      if (redirects) {
        // Redirect stdin
        if (RedirectIO(redirects[0], 0, ErrMsg)) { return false; }
        // Redirect stdout
        if (RedirectIO(redirects[1], 1, ErrMsg)) { return false; }
        if (redirects[1] && redirects[2] &&
            *(redirects[1]) == *(redirects[2])) {
          // If stdout and stderr should go to the same place, redirect stderr
          // to the FD already open for stdout.
          if (-1 == dup2(1,2)) {
            MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout");
            return false;
          }
        } else {
          // Just redirect stderr
          if (RedirectIO(redirects[2], 2, ErrMsg)) { return false; }
        }
      }

      // Set memory limits
      if (memoryLimit!=0) {
        SetMemoryLimits(memoryLimit);
      }

      // Execute!
      std::string PathStr = Program;
      if (envp != 0)
        execve(PathStr.c_str(),
               const_cast<char **>(args),
               const_cast<char **>(envp));
      else
        execv(PathStr.c_str(),
              const_cast<char **>(args));
      // If the execve() failed, we should exit. Follow Unix protocol and
      // return 127 if the executable was not found, and 126 otherwise.
      // Use _exit rather than exit so that atexit functions and static
      // object destructors cloned from the parent process aren't
      // redundantly run, and so that any data buffered in stdio buffers
      // cloned from the parent aren't redundantly written out.
      _exit(errno == ENOENT ? 127 : 126);
    }

    // Parent process: Break out of the switch to do our processing.
    default:
      break;
  }

  if (Data)
    *Data = reinterpret_cast<void*>(child);

  return true;
}

static int Wait(void *&Data, StringRef Program, unsigned secondsToWait,
                std::string *ErrMsg) {
#ifdef HAVE_SYS_WAIT_H
  struct sigaction Act, Old;
  assert(Data && "invalid pid to wait on, process not started?");

  // Install a timeout handler.  The handler itself does nothing, but the simple
  // fact of having a handler at all causes the wait below to return with EINTR,
  // unlike if we used SIG_IGN.
  if (secondsToWait) {
    memset(&Act, 0, sizeof(Act));
    Act.sa_handler = TimeOutHandler;
    sigemptyset(&Act.sa_mask);
    sigaction(SIGALRM, &Act, &Old);
    alarm(secondsToWait);
  }

  // Parent process: Wait for the child process to terminate.
  int status;
  uint64_t pid = reinterpret_cast<uint64_t>(Data);
  pid_t child = static_cast<pid_t>(pid);
  while (waitpid(pid, &status, 0) != child)
    if (secondsToWait && errno == EINTR) {
      // Kill the child.
      kill(child, SIGKILL);

      // Turn off the alarm and restore the signal handler
      alarm(0);
      sigaction(SIGALRM, &Old, 0);

      // Wait for child to die
      if (wait(&status) != child)
        MakeErrMsg(ErrMsg, "Child timed out but wouldn't die");
      else
        MakeErrMsg(ErrMsg, "Child timed out", 0);

      return -2;   // Timeout detected
    } else if (errno != EINTR) {
      MakeErrMsg(ErrMsg, "Error waiting for child process");
      return -1;
    }

  // We exited normally without timeout, so turn off the timer.
  if (secondsToWait) {
    alarm(0);
    sigaction(SIGALRM, &Old, 0);
  }

  // Return the proper exit status. Detect error conditions
  // so we can return -1 for them and set ErrMsg informatively.
  int result = 0;
  if (WIFEXITED(status)) {
    result = WEXITSTATUS(status);
#ifdef HAVE_POSIX_SPAWN
    // The posix_spawn child process returns 127 on any kind of error.
    // Following the POSIX convention for command-line tools (which posix_spawn
    // itself apparently does not), check to see if the failure was due to some
    // reason other than the file not existing, and return 126 in this case.
    bool Exists;
    if (result == 127 && !llvm::sys::fs::exists(Program, Exists) && Exists)
      result = 126;
#endif
    if (result == 127) {
      if (ErrMsg)
        *ErrMsg = llvm::sys::StrError(ENOENT);
      return -1;
    }
    if (result == 126) {
      if (ErrMsg)
        *ErrMsg = "Program could not be executed";
      return -1;
    }
  } else if (WIFSIGNALED(status)) {
    if (ErrMsg) {
      *ErrMsg = strsignal(WTERMSIG(status));
#ifdef WCOREDUMP
      if (WCOREDUMP(status))
        *ErrMsg += " (core dumped)";
#endif
    }
    // Return a special value to indicate that the process received an unhandled
    // signal during execution as opposed to failing to execute.
    return -2;
  }
  return result;
#else
  if (ErrMsg)
    *ErrMsg = "Program::Wait is not implemented on this platform yet!";
  return -1;
#endif
}

namespace llvm {

error_code sys::ChangeStdinToBinary(){
  // Do nothing, as Unix doesn't differentiate between text and binary.
  return make_error_code(errc::success);
}

error_code sys::ChangeStdoutToBinary(){
  // Do nothing, as Unix doesn't differentiate between text and binary.
  return make_error_code(errc::success);
}

error_code sys::ChangeStderrToBinary(){
  // Do nothing, as Unix doesn't differentiate between text and binary.
  return make_error_code(errc::success);
}

bool llvm::sys::argumentsFitWithinSystemLimits(ArrayRef<const char*> Args) {
  static long ArgMax = sysconf(_SC_ARG_MAX);

  // System says no practical limit.
  if (ArgMax == -1)
    return true;

  // Conservatively account for space required by environment variables.
  ArgMax /= 2;

  size_t ArgLength = 0;
  for (ArrayRef<const char*>::iterator I = Args.begin(), E = Args.end();
       I != E; ++I) {
    ArgLength += strlen(*I) + 1;
    if (ArgLength > size_t(ArgMax)) {
      return false;
    }
  }
  return true;
}

}