aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
blob: 3f77979f90361f1357cfc2606f2b47085d881639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AArch64 target.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "aarch64-isel"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

//===--------------------------------------------------------------------===//
/// AArch64 specific code to select AArch64 machine instructions for
/// SelectionDAG operations.
///
namespace {

class AArch64DAGToDAGISel : public SelectionDAGISel {
  AArch64TargetMachine &TM;
  const AArch64InstrInfo *TII;

  /// Keep a pointer to the AArch64Subtarget around so that we can
  /// make the right decision when generating code for different targets.
  const AArch64Subtarget *Subtarget;

public:
  explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
                               CodeGenOpt::Level OptLevel)
    : SelectionDAGISel(tm, OptLevel), TM(tm),
      TII(static_cast<const AArch64InstrInfo*>(TM.getInstrInfo())),
      Subtarget(&TM.getSubtarget<AArch64Subtarget>()) {
  }

  virtual const char *getPassName() const {
    return "AArch64 Instruction Selection";
  }

  // Include the pieces autogenerated from the target description.
#include "AArch64GenDAGISel.inc"

  template<unsigned MemSize>
  bool SelectOffsetUImm12(SDValue N, SDValue &UImm12) {
    const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
    if (!CN || CN->getZExtValue() % MemSize != 0
        || CN->getZExtValue() / MemSize > 0xfff)
      return false;

    UImm12 =  CurDAG->getTargetConstant(CN->getZExtValue() / MemSize, MVT::i64);
    return true;
  }

  template<unsigned RegWidth>
  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
    return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
  }

  /// Used for pre-lowered address-reference nodes, so we already know
  /// the fields match. This operand's job is simply to add an
  /// appropriate shift operand (i.e. 0) to the MOVZ/MOVK instruction.
  bool SelectMOVWAddressRef(SDValue N, SDValue &Imm, SDValue &Shift) {
    Imm = N;
    Shift = CurDAG->getTargetConstant(0, MVT::i32);
    return true;
  }

  bool SelectFPZeroOperand(SDValue N, SDValue &Dummy);

  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
                                unsigned RegWidth);

  bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                    char ConstraintCode,
                                    std::vector<SDValue> &OutOps);

  bool SelectLogicalImm(SDValue N, SDValue &Imm);

  template<unsigned RegWidth>
  bool SelectTSTBOperand(SDValue N, SDValue &FixedPos) {
    return SelectTSTBOperand(N, FixedPos, RegWidth);
  }

  bool SelectTSTBOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth);

  SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32,
                       unsigned Op64);

  /// Put the given constant into a pool and return a DAG which will give its
  /// address.
  SDValue getConstantPoolItemAddress(SDLoc DL, const Constant *CV);

  SDNode *TrySelectToMoveImm(SDNode *N);
  SDNode *LowerToFPLitPool(SDNode *Node);
  SDNode *SelectToLitPool(SDNode *N);

  SDNode* Select(SDNode*);
private:
};
}

bool
AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
                                              unsigned RegWidth) {
  const ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
  if (!CN) return false;

  // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
  // is between 1 and 32 for a destination w-register, or 1 and 64 for an
  // x-register.
  //
  // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
  // want THIS_NODE to be 2^fbits. This is much easier to deal with using
  // integers.
  bool IsExact;

  // fbits is between 1 and 64 in the worst-case, which means the fmul
  // could have 2^64 as an actual operand. Need 65 bits of precision.
  APSInt IntVal(65, true);
  CN->getValueAPF().convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);

  // N.b. isPowerOf2 also checks for > 0.
  if (!IsExact || !IntVal.isPowerOf2()) return false;
  unsigned FBits = IntVal.logBase2();

  // Checks above should have guaranteed that we haven't lost information in
  // finding FBits, but it must still be in range.
  if (FBits == 0 || FBits > RegWidth) return false;

  FixedPos = CurDAG->getTargetConstant(64 - FBits, MVT::i32);
  return true;
}

bool
AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
                                                 char ConstraintCode,
                                                 std::vector<SDValue> &OutOps) {
  switch (ConstraintCode) {
  default: llvm_unreachable("Unrecognised AArch64 memory constraint");
  case 'm':
    // FIXME: more freedom is actually permitted for 'm'. We can go
    // hunting for a base and an offset if we want. Of course, since
    // we don't really know how the operand is going to be used we're
    // probably restricted to the load/store pair's simm7 as an offset
    // range anyway.
  case 'Q':
    OutOps.push_back(Op);
  }

  return false;
}

bool
AArch64DAGToDAGISel::SelectFPZeroOperand(SDValue N, SDValue &Dummy) {
  ConstantFPSDNode *Imm = dyn_cast<ConstantFPSDNode>(N);
  if (!Imm || !Imm->getValueAPF().isPosZero())
    return false;

  // Doesn't actually carry any information, but keeps TableGen quiet.
  Dummy = CurDAG->getTargetConstant(0, MVT::i32);
  return true;
}

bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) {
  uint32_t Bits;
  uint32_t RegWidth = N.getValueType().getSizeInBits();

  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
  if (!CN) return false;

  if (!A64Imms::isLogicalImm(RegWidth, CN->getZExtValue(), Bits))
    return false;

  Imm = CurDAG->getTargetConstant(Bits, MVT::i32);
  return true;
}

SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) {
  SDNode *ResNode;
  SDLoc dl(Node);
  EVT DestType = Node->getValueType(0);
  unsigned DestWidth = DestType.getSizeInBits();

  unsigned MOVOpcode;
  EVT MOVType;
  int UImm16, Shift;
  uint32_t LogicalBits;

  uint64_t BitPat = cast<ConstantSDNode>(Node)->getZExtValue();
  if (A64Imms::isMOVZImm(DestWidth, BitPat, UImm16, Shift)) {
    MOVType = DestType;
    MOVOpcode = DestWidth == 64 ? AArch64::MOVZxii : AArch64::MOVZwii;
  } else if (A64Imms::isMOVNImm(DestWidth, BitPat, UImm16, Shift)) {
    MOVType = DestType;
    MOVOpcode = DestWidth == 64 ? AArch64::MOVNxii : AArch64::MOVNwii;
  } else if (DestWidth == 64 && A64Imms::isMOVNImm(32, BitPat, UImm16, Shift)) {
    // To get something like 0x0000_0000_ffff_1234 into a 64-bit register we can
    // use a 32-bit instruction: "movn w0, 0xedbc".
    MOVType = MVT::i32;
    MOVOpcode = AArch64::MOVNwii;
  } else if (A64Imms::isLogicalImm(DestWidth, BitPat, LogicalBits))  {
    MOVOpcode = DestWidth == 64 ? AArch64::ORRxxi : AArch64::ORRwwi;
    uint16_t ZR = DestWidth == 64 ? AArch64::XZR : AArch64::WZR;

    return CurDAG->getMachineNode(MOVOpcode, dl, DestType,
                              CurDAG->getRegister(ZR, DestType),
                              CurDAG->getTargetConstant(LogicalBits, MVT::i32));
  } else {
    // Can't handle it in one instruction. There's scope for permitting two (or
    // more) instructions, but that'll need more thought.
    return NULL;
  }

  ResNode = CurDAG->getMachineNode(MOVOpcode, dl, MOVType,
                                   CurDAG->getTargetConstant(UImm16, MVT::i32),
                                   CurDAG->getTargetConstant(Shift, MVT::i32));

  if (MOVType != DestType) {
    ResNode = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
                          MVT::i64, MVT::i32, MVT::Other,
                          CurDAG->getTargetConstant(0, MVT::i64),
                          SDValue(ResNode, 0),
                          CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32));
  }

  return ResNode;
}

SDValue
AArch64DAGToDAGISel::getConstantPoolItemAddress(SDLoc DL,
                                                const Constant *CV) {
  EVT PtrVT = TLI.getPointerTy();

  switch (TLI.getTargetMachine().getCodeModel()) {
  case CodeModel::Small: {
    unsigned Alignment =
        TLI.getDataLayout()->getABITypeAlignment(CV->getType());
    return CurDAG->getNode(
        AArch64ISD::WrapperSmall, DL, PtrVT,
        CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG),
        CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_LO12),
        CurDAG->getConstant(Alignment, MVT::i32));
  }
  case CodeModel::Large: {
    SDNode *LitAddr;
    LitAddr = CurDAG->getMachineNode(
        AArch64::MOVZxii, DL, PtrVT,
        CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
        CurDAG->getTargetConstant(0, MVT::i32));
    LitAddr = CurDAG->getMachineNode(
        AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
        CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
        CurDAG->getTargetConstant(0, MVT::i32));
    LitAddr = CurDAG->getMachineNode(
        AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
        CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
        CurDAG->getTargetConstant(0, MVT::i32));
    LitAddr = CurDAG->getMachineNode(
        AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
        CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC),
        CurDAG->getTargetConstant(0, MVT::i32));
    return SDValue(LitAddr, 0);
  }
  default:
    llvm_unreachable("Only small and large code models supported now");
  }
}

SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
  SDLoc DL(Node);
  uint64_t UnsignedVal = cast<ConstantSDNode>(Node)->getZExtValue();
  int64_t SignedVal = cast<ConstantSDNode>(Node)->getSExtValue();
  EVT DestType = Node->getValueType(0);

  // Since we may end up loading a 64-bit constant from a 32-bit entry the
  // constant in the pool may have a different type to the eventual node.
  ISD::LoadExtType Extension;
  EVT MemType;

  assert((DestType == MVT::i64 || DestType == MVT::i32)
         && "Only expect integer constants at the moment");

  if (DestType == MVT::i32) {
    Extension = ISD::NON_EXTLOAD;
    MemType = MVT::i32;
  } else if (UnsignedVal <= UINT32_MAX) {
    Extension = ISD::ZEXTLOAD;
    MemType = MVT::i32;
  } else if (SignedVal >= INT32_MIN && SignedVal <= INT32_MAX) {
    Extension = ISD::SEXTLOAD;
    MemType = MVT::i32;
  } else {
    Extension = ISD::NON_EXTLOAD;
    MemType = MVT::i64;
  }

  Constant *CV = ConstantInt::get(Type::getIntNTy(*CurDAG->getContext(),
                                                  MemType.getSizeInBits()),
                                  UnsignedVal);
  SDValue PoolAddr = getConstantPoolItemAddress(DL, CV);
  unsigned Alignment = TLI.getDataLayout()->getABITypeAlignment(CV->getType());

  return CurDAG->getExtLoad(Extension, DL, DestType, CurDAG->getEntryNode(),
                            PoolAddr,
                            MachinePointerInfo::getConstantPool(), MemType,
                            /* isVolatile = */ false,
                            /* isNonTemporal = */ false,
                            Alignment).getNode();
}

SDNode *AArch64DAGToDAGISel::LowerToFPLitPool(SDNode *Node) {
  SDLoc DL(Node);
  const ConstantFP *FV = cast<ConstantFPSDNode>(Node)->getConstantFPValue();
  EVT DestType = Node->getValueType(0);

  unsigned Alignment = TLI.getDataLayout()->getABITypeAlignment(FV->getType());
  SDValue PoolAddr = getConstantPoolItemAddress(DL, FV);

  return CurDAG->getLoad(DestType, DL, CurDAG->getEntryNode(), PoolAddr,
                         MachinePointerInfo::getConstantPool(),
                         /* isVolatile = */ false,
                         /* isNonTemporal = */ false,
                         /* isInvariant = */ true,
                         Alignment).getNode();
}

bool
AArch64DAGToDAGISel::SelectTSTBOperand(SDValue N, SDValue &FixedPos,
                                       unsigned RegWidth) {
  const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
  if (!CN) return false;

  uint64_t Val = CN->getZExtValue();

  if (!isPowerOf2_64(Val)) return false;

  unsigned TestedBit = Log2_64(Val);
  // Checks above should have guaranteed that we haven't lost information in
  // finding TestedBit, but it must still be in range.
  if (TestedBit >= RegWidth) return false;

  FixedPos = CurDAG->getTargetConstant(TestedBit, MVT::i64);
  return true;
}

SDNode *AArch64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
                                          unsigned Op16,unsigned Op32,
                                          unsigned Op64) {
  // Mostly direct translation to the given operations, except that we preserve
  // the AtomicOrdering for use later on.
  AtomicSDNode *AN = cast<AtomicSDNode>(Node);
  EVT VT = AN->getMemoryVT();

  unsigned Op;
  if (VT == MVT::i8)
    Op = Op8;
  else if (VT == MVT::i16)
    Op = Op16;
  else if (VT == MVT::i32)
    Op = Op32;
  else if (VT == MVT::i64)
    Op = Op64;
  else
    llvm_unreachable("Unexpected atomic operation");

  SmallVector<SDValue, 4> Ops;
  for (unsigned i = 1; i < AN->getNumOperands(); ++i)
      Ops.push_back(AN->getOperand(i));

  Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
  Ops.push_back(AN->getOperand(0)); // Chain moves to the end

  return CurDAG->SelectNodeTo(Node, Op,
                              AN->getValueType(0), MVT::Other,
                              &Ops[0], Ops.size());
}

SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
  // Dump information about the Node being selected
  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << "\n");

  if (Node->isMachineOpcode()) {
    DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
    return NULL;
  }

  switch (Node->getOpcode()) {
  case ISD::ATOMIC_LOAD_ADD:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_ADD_I8,
                        AArch64::ATOMIC_LOAD_ADD_I16,
                        AArch64::ATOMIC_LOAD_ADD_I32,
                        AArch64::ATOMIC_LOAD_ADD_I64);
  case ISD::ATOMIC_LOAD_SUB:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_SUB_I8,
                        AArch64::ATOMIC_LOAD_SUB_I16,
                        AArch64::ATOMIC_LOAD_SUB_I32,
                        AArch64::ATOMIC_LOAD_SUB_I64);
  case ISD::ATOMIC_LOAD_AND:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_AND_I8,
                        AArch64::ATOMIC_LOAD_AND_I16,
                        AArch64::ATOMIC_LOAD_AND_I32,
                        AArch64::ATOMIC_LOAD_AND_I64);
  case ISD::ATOMIC_LOAD_OR:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_OR_I8,
                        AArch64::ATOMIC_LOAD_OR_I16,
                        AArch64::ATOMIC_LOAD_OR_I32,
                        AArch64::ATOMIC_LOAD_OR_I64);
  case ISD::ATOMIC_LOAD_XOR:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_XOR_I8,
                        AArch64::ATOMIC_LOAD_XOR_I16,
                        AArch64::ATOMIC_LOAD_XOR_I32,
                        AArch64::ATOMIC_LOAD_XOR_I64);
  case ISD::ATOMIC_LOAD_NAND:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_NAND_I8,
                        AArch64::ATOMIC_LOAD_NAND_I16,
                        AArch64::ATOMIC_LOAD_NAND_I32,
                        AArch64::ATOMIC_LOAD_NAND_I64);
  case ISD::ATOMIC_LOAD_MIN:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_MIN_I8,
                        AArch64::ATOMIC_LOAD_MIN_I16,
                        AArch64::ATOMIC_LOAD_MIN_I32,
                        AArch64::ATOMIC_LOAD_MIN_I64);
  case ISD::ATOMIC_LOAD_MAX:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_MAX_I8,
                        AArch64::ATOMIC_LOAD_MAX_I16,
                        AArch64::ATOMIC_LOAD_MAX_I32,
                        AArch64::ATOMIC_LOAD_MAX_I64);
  case ISD::ATOMIC_LOAD_UMIN:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_UMIN_I8,
                        AArch64::ATOMIC_LOAD_UMIN_I16,
                        AArch64::ATOMIC_LOAD_UMIN_I32,
                        AArch64::ATOMIC_LOAD_UMIN_I64);
  case ISD::ATOMIC_LOAD_UMAX:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_LOAD_UMAX_I8,
                        AArch64::ATOMIC_LOAD_UMAX_I16,
                        AArch64::ATOMIC_LOAD_UMAX_I32,
                        AArch64::ATOMIC_LOAD_UMAX_I64);
  case ISD::ATOMIC_SWAP:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_SWAP_I8,
                        AArch64::ATOMIC_SWAP_I16,
                        AArch64::ATOMIC_SWAP_I32,
                        AArch64::ATOMIC_SWAP_I64);
  case ISD::ATOMIC_CMP_SWAP:
    return SelectAtomic(Node,
                        AArch64::ATOMIC_CMP_SWAP_I8,
                        AArch64::ATOMIC_CMP_SWAP_I16,
                        AArch64::ATOMIC_CMP_SWAP_I32,
                        AArch64::ATOMIC_CMP_SWAP_I64);
  case ISD::FrameIndex: {
    int FI = cast<FrameIndexSDNode>(Node)->getIndex();
    EVT PtrTy = TLI.getPointerTy();
    SDValue TFI = CurDAG->getTargetFrameIndex(FI, PtrTy);
    return CurDAG->SelectNodeTo(Node, AArch64::ADDxxi_lsl0_s, PtrTy,
                                TFI, CurDAG->getTargetConstant(0, PtrTy));
  }
  case ISD::ConstantPool: {
    // Constant pools are fine, just create a Target entry.
    ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Node);
    const Constant *C = CN->getConstVal();
    SDValue CP = CurDAG->getTargetConstantPool(C, CN->getValueType(0));

    ReplaceUses(SDValue(Node, 0), CP);
    return NULL;
  }
  case ISD::Constant: {
    SDNode *ResNode = 0;
    if (cast<ConstantSDNode>(Node)->getZExtValue() == 0) {
      // XZR and WZR are probably even better than an actual move: most of the
      // time they can be folded into another instruction with *no* cost.

      EVT Ty = Node->getValueType(0);
      assert((Ty == MVT::i32 || Ty == MVT::i64) && "unexpected type");
      uint16_t Register = Ty == MVT::i32 ? AArch64::WZR : AArch64::XZR;
      ResNode = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
                                       SDLoc(Node),
                                       Register, Ty).getNode();
    }

    // Next best option is a move-immediate, see if we can do that.
    if (!ResNode) {
      ResNode = TrySelectToMoveImm(Node);
    }

    if (ResNode)
      return ResNode;

    // If even that fails we fall back to a lit-pool entry at the moment. Future
    // tuning may change this to a sequence of MOVZ/MOVN/MOVK instructions.
    ResNode = SelectToLitPool(Node);
    assert(ResNode && "We need *some* way to materialise a constant");

    // We want to continue selection at this point since the litpool access
    // generated used generic nodes for simplicity.
    ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
    Node = ResNode;
    break;
  }
  case ISD::ConstantFP: {
    if (A64Imms::isFPImm(cast<ConstantFPSDNode>(Node)->getValueAPF())) {
      // FMOV will take care of it from TableGen
      break;
    }

    SDNode *ResNode = LowerToFPLitPool(Node);
    ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));

    // We want to continue selection at this point since the litpool access
    // generated used generic nodes for simplicity.
    Node = ResNode;
    break;
  }
  default:
    break; // Let generic code handle it
  }

  SDNode *ResNode = SelectCode(Node);

  DEBUG(dbgs() << "=> ";
        if (ResNode == NULL || ResNode == Node)
          Node->dump(CurDAG);
        else
          ResNode->dump(CurDAG);
        dbgs() << "\n");

  return ResNode;
}

/// This pass converts a legalized DAG into a AArch64-specific DAG, ready for
/// instruction scheduling.
FunctionPass *llvm::createAArch64ISelDAG(AArch64TargetMachine &TM,
                                         CodeGenOpt::Level OptLevel) {
  return new AArch64DAGToDAGISel(TM, OptLevel);
}