aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
blob: 0a47dcb725ff62403ff3307f278d6394650136ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AArch64 target.
//
//===----------------------------------------------------------------------===//

#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Function.h" // To access function attributes.
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-isel"

//===--------------------------------------------------------------------===//
/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
/// instructions for SelectionDAG operations.
///
namespace {

class AArch64DAGToDAGISel : public SelectionDAGISel {
  AArch64TargetMachine &TM;

  /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
  /// make the right decision when generating code for different targets.
  const AArch64Subtarget *Subtarget;

  bool ForCodeSize;

public:
  explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
                               CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(nullptr),
        ForCodeSize(false) {}

  const char *getPassName() const override {
    return "AArch64 Instruction Selection";
  }

  bool runOnMachineFunction(MachineFunction &MF) override {
    ForCodeSize =
        MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) ||
        MF.getFunction()->hasFnAttribute(Attribute::MinSize);
    Subtarget = &MF.getSubtarget<AArch64Subtarget>();
    return SelectionDAGISel::runOnMachineFunction(MF);
  }

  SDNode *Select(SDNode *Node) override;

  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
  /// inline asm expressions.
  bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                    unsigned ConstraintID,
                                    std::vector<SDValue> &OutOps) override;

  SDNode *SelectMLAV64LaneV128(SDNode *N);
  SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
  bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
  bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
  bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
  bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
    return SelectShiftedRegister(N, false, Reg, Shift);
  }
  bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
    return SelectShiftedRegister(N, true, Reg, Shift);
  }
  bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeIndexed(N, 1, Base, OffImm);
  }
  bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeIndexed(N, 2, Base, OffImm);
  }
  bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeIndexed(N, 4, Base, OffImm);
  }
  bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeIndexed(N, 8, Base, OffImm);
  }
  bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeIndexed(N, 16, Base, OffImm);
  }
  bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeUnscaled(N, 1, Base, OffImm);
  }
  bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeUnscaled(N, 2, Base, OffImm);
  }
  bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeUnscaled(N, 4, Base, OffImm);
  }
  bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeUnscaled(N, 8, Base, OffImm);
  }
  bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
    return SelectAddrModeUnscaled(N, 16, Base, OffImm);
  }

  template<int Width>
  bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
                         SDValue &SignExtend, SDValue &DoShift) {
    return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
  }

  template<int Width>
  bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
                         SDValue &SignExtend, SDValue &DoShift) {
    return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
  }


  /// Form sequences of consecutive 64/128-bit registers for use in NEON
  /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
  /// between 1 and 4 elements. If it contains a single element that is returned
  /// unchanged; otherwise a REG_SEQUENCE value is returned.
  SDValue createDTuple(ArrayRef<SDValue> Vecs);
  SDValue createQTuple(ArrayRef<SDValue> Vecs);

  /// Generic helper for the createDTuple/createQTuple
  /// functions. Those should almost always be called instead.
  SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
                      const unsigned SubRegs[]);

  SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);

  SDNode *SelectIndexedLoad(SDNode *N, bool &Done);

  SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
                     unsigned SubRegIdx);
  SDNode *SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
                         unsigned SubRegIdx);
  SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
  SDNode *SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);

  SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
  SDNode *SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
  SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
  SDNode *SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);

  SDNode *SelectBitfieldExtractOp(SDNode *N);
  SDNode *SelectBitfieldInsertOp(SDNode *N);

  SDNode *SelectLIBM(SDNode *N);

// Include the pieces autogenerated from the target description.
#include "AArch64GenDAGISel.inc"

private:
  bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
                             SDValue &Shift);
  bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
                             SDValue &OffImm);
  bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
                              SDValue &OffImm);
  bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
                         SDValue &Offset, SDValue &SignExtend,
                         SDValue &DoShift);
  bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
                         SDValue &Offset, SDValue &SignExtend,
                         SDValue &DoShift);
  bool isWorthFolding(SDValue V) const;
  bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
                         SDValue &Offset, SDValue &SignExtend);

  template<unsigned RegWidth>
  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
    return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
  }

  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
};
} // end anonymous namespace

/// isIntImmediate - This method tests to see if the node is a constant
/// operand. If so Imm will receive the 32-bit value.
static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
  if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
    Imm = C->getZExtValue();
    return true;
  }
  return false;
}

// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the value.
static bool isIntImmediate(SDValue N, uint64_t &Imm) {
  return isIntImmediate(N.getNode(), Imm);
}

// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
                                  uint64_t &Imm) {
  return N->getOpcode() == Opc &&
         isIntImmediate(N->getOperand(1).getNode(), Imm);
}

bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
    const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
  switch(ConstraintID) {
  default:
    llvm_unreachable("Unexpected asm memory constraint");
  case InlineAsm::Constraint_i:
  case InlineAsm::Constraint_m:
  case InlineAsm::Constraint_Q:
    // Require the address to be in a register.  That is safe for all AArch64
    // variants and it is hard to do anything much smarter without knowing
    // how the operand is used.
    OutOps.push_back(Op);
    return false;
  }
  return true;
}

/// SelectArithImmed - Select an immediate value that can be represented as
/// a 12-bit value shifted left by either 0 or 12.  If so, return true with
/// Val set to the 12-bit value and Shift set to the shifter operand.
bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
                                           SDValue &Shift) {
  // This function is called from the addsub_shifted_imm ComplexPattern,
  // which lists [imm] as the list of opcode it's interested in, however
  // we still need to check whether the operand is actually an immediate
  // here because the ComplexPattern opcode list is only used in
  // root-level opcode matching.
  if (!isa<ConstantSDNode>(N.getNode()))
    return false;

  uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
  unsigned ShiftAmt;

  if (Immed >> 12 == 0) {
    ShiftAmt = 0;
  } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
    ShiftAmt = 12;
    Immed = Immed >> 12;
  } else
    return false;

  unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
  Val = CurDAG->getTargetConstant(Immed, MVT::i32);
  Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
  return true;
}

/// SelectNegArithImmed - As above, but negates the value before trying to
/// select it.
bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
                                              SDValue &Shift) {
  // This function is called from the addsub_shifted_imm ComplexPattern,
  // which lists [imm] as the list of opcode it's interested in, however
  // we still need to check whether the operand is actually an immediate
  // here because the ComplexPattern opcode list is only used in
  // root-level opcode matching.
  if (!isa<ConstantSDNode>(N.getNode()))
    return false;

  // The immediate operand must be a 24-bit zero-extended immediate.
  uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();

  // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
  // have the opposite effect on the C flag, so this pattern mustn't match under
  // those circumstances.
  if (Immed == 0)
    return false;

  if (N.getValueType() == MVT::i32)
    Immed = ~((uint32_t)Immed) + 1;
  else
    Immed = ~Immed + 1ULL;
  if (Immed & 0xFFFFFFFFFF000000ULL)
    return false;

  Immed &= 0xFFFFFFULL;
  return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
}

/// getShiftTypeForNode - Translate a shift node to the corresponding
/// ShiftType value.
static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
  switch (N.getOpcode()) {
  default:
    return AArch64_AM::InvalidShiftExtend;
  case ISD::SHL:
    return AArch64_AM::LSL;
  case ISD::SRL:
    return AArch64_AM::LSR;
  case ISD::SRA:
    return AArch64_AM::ASR;
  case ISD::ROTR:
    return AArch64_AM::ROR;
  }
}

/// \brief Determine whether it is worth to fold V into an extended register.
bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
  // it hurts if the value is used at least twice, unless we are optimizing
  // for code size.
  if (ForCodeSize || V.hasOneUse())
    return true;
  return false;
}

/// SelectShiftedRegister - Select a "shifted register" operand.  If the value
/// is not shifted, set the Shift operand to default of "LSL 0".  The logical
/// instructions allow the shifted register to be rotated, but the arithmetic
/// instructions do not.  The AllowROR parameter specifies whether ROR is
/// supported.
bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
                                                SDValue &Reg, SDValue &Shift) {
  AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
  if (ShType == AArch64_AM::InvalidShiftExtend)
    return false;
  if (!AllowROR && ShType == AArch64_AM::ROR)
    return false;

  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    unsigned BitSize = N.getValueType().getSizeInBits();
    unsigned Val = RHS->getZExtValue() & (BitSize - 1);
    unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);

    Reg = N.getOperand(0);
    Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
    return isWorthFolding(N);
  }

  return false;
}

/// getExtendTypeForNode - Translate an extend node to the corresponding
/// ExtendType value.
static AArch64_AM::ShiftExtendType
getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
  if (N.getOpcode() == ISD::SIGN_EXTEND ||
      N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
    EVT SrcVT;
    if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
      SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
    else
      SrcVT = N.getOperand(0).getValueType();

    if (!IsLoadStore && SrcVT == MVT::i8)
      return AArch64_AM::SXTB;
    else if (!IsLoadStore && SrcVT == MVT::i16)
      return AArch64_AM::SXTH;
    else if (SrcVT == MVT::i32)
      return AArch64_AM::SXTW;
    assert(SrcVT != MVT::i64 && "extend from 64-bits?");

    return AArch64_AM::InvalidShiftExtend;
  } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
             N.getOpcode() == ISD::ANY_EXTEND) {
    EVT SrcVT = N.getOperand(0).getValueType();
    if (!IsLoadStore && SrcVT == MVT::i8)
      return AArch64_AM::UXTB;
    else if (!IsLoadStore && SrcVT == MVT::i16)
      return AArch64_AM::UXTH;
    else if (SrcVT == MVT::i32)
      return AArch64_AM::UXTW;
    assert(SrcVT != MVT::i64 && "extend from 64-bits?");

    return AArch64_AM::InvalidShiftExtend;
  } else if (N.getOpcode() == ISD::AND) {
    ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
    if (!CSD)
      return AArch64_AM::InvalidShiftExtend;
    uint64_t AndMask = CSD->getZExtValue();

    switch (AndMask) {
    default:
      return AArch64_AM::InvalidShiftExtend;
    case 0xFF:
      return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
    case 0xFFFF:
      return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
    case 0xFFFFFFFF:
      return AArch64_AM::UXTW;
    }
  }

  return AArch64_AM::InvalidShiftExtend;
}

// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
  if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
      DL->getOpcode() != AArch64ISD::DUPLANE32)
    return false;

  SDValue SV = DL->getOperand(0);
  if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
    return false;

  SDValue EV = SV.getOperand(1);
  if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
    return false;

  ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
  ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
  LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
  LaneOp = EV.getOperand(0);

  return true;
}

// Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
// high lane extract.
static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
                             SDValue &LaneOp, int &LaneIdx) {

  if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
    std::swap(Op0, Op1);
    if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
      return false;
  }
  StdOp = Op1;
  return true;
}

/// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
/// is a lane in the upper half of a 128-bit vector.  Recognize and select this
/// so that we don't emit unnecessary lane extracts.
SDNode *AArch64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);
  SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA.
  SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA.
  int LaneIdx = -1; // Will hold the lane index.

  if (Op1.getOpcode() != ISD::MUL ||
      !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
                        LaneIdx)) {
    std::swap(Op0, Op1);
    if (Op1.getOpcode() != ISD::MUL ||
        !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
                          LaneIdx))
      return nullptr;
  }

  SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);

  SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };

  unsigned MLAOpc = ~0U;

  switch (N->getSimpleValueType(0).SimpleTy) {
  default:
    llvm_unreachable("Unrecognized MLA.");
  case MVT::v4i16:
    MLAOpc = AArch64::MLAv4i16_indexed;
    break;
  case MVT::v8i16:
    MLAOpc = AArch64::MLAv8i16_indexed;
    break;
  case MVT::v2i32:
    MLAOpc = AArch64::MLAv2i32_indexed;
    break;
  case MVT::v4i32:
    MLAOpc = AArch64::MLAv4i32_indexed;
    break;
  }

  return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
}

SDNode *AArch64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
  SDValue SMULLOp0;
  SDValue SMULLOp1;
  int LaneIdx;

  if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
                        LaneIdx))
    return nullptr;

  SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);

  SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };

  unsigned SMULLOpc = ~0U;

  if (IntNo == Intrinsic::aarch64_neon_smull) {
    switch (N->getSimpleValueType(0).SimpleTy) {
    default:
      llvm_unreachable("Unrecognized SMULL.");
    case MVT::v4i32:
      SMULLOpc = AArch64::SMULLv4i16_indexed;
      break;
    case MVT::v2i64:
      SMULLOpc = AArch64::SMULLv2i32_indexed;
      break;
    }
  } else if (IntNo == Intrinsic::aarch64_neon_umull) {
    switch (N->getSimpleValueType(0).SimpleTy) {
    default:
      llvm_unreachable("Unrecognized SMULL.");
    case MVT::v4i32:
      SMULLOpc = AArch64::UMULLv4i16_indexed;
      break;
    case MVT::v2i64:
      SMULLOpc = AArch64::UMULLv2i32_indexed;
      break;
    }
  } else
    llvm_unreachable("Unrecognized intrinsic.");

  return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
}

/// Instructions that accept extend modifiers like UXTW expect the register
/// being extended to be a GPR32, but the incoming DAG might be acting on a
/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
/// this is the case.
static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
  if (N.getValueType() == MVT::i32)
    return N;

  SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
  MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                               SDLoc(N), MVT::i32, N, SubReg);
  return SDValue(Node, 0);
}


/// SelectArithExtendedRegister - Select a "extended register" operand.  This
/// operand folds in an extend followed by an optional left shift.
bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
                                                      SDValue &Shift) {
  unsigned ShiftVal = 0;
  AArch64_AM::ShiftExtendType Ext;

  if (N.getOpcode() == ISD::SHL) {
    ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
    if (!CSD)
      return false;
    ShiftVal = CSD->getZExtValue();
    if (ShiftVal > 4)
      return false;

    Ext = getExtendTypeForNode(N.getOperand(0));
    if (Ext == AArch64_AM::InvalidShiftExtend)
      return false;

    Reg = N.getOperand(0).getOperand(0);
  } else {
    Ext = getExtendTypeForNode(N);
    if (Ext == AArch64_AM::InvalidShiftExtend)
      return false;

    Reg = N.getOperand(0);
  }

  // AArch64 mandates that the RHS of the operation must use the smallest
  // register classs that could contain the size being extended from.  Thus,
  // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
  // there might not be an actual 32-bit value in the program.  We can
  // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
  assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
  Reg = narrowIfNeeded(CurDAG, Reg);
  Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
  return isWorthFolding(N);
}

/// If there's a use of this ADDlow that's not itself a load/store then we'll
/// need to create a real ADD instruction from it anyway and there's no point in
/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
/// leads to duplaicated ADRP instructions.
static bool isWorthFoldingADDlow(SDValue N) {
  for (auto Use : N->uses()) {
    if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
        Use->getOpcode() != ISD::ATOMIC_LOAD &&
        Use->getOpcode() != ISD::ATOMIC_STORE)
      return false;

    // ldar and stlr have much more restrictive addressing modes (just a
    // register).
    if (cast<MemSDNode>(Use)->getOrdering() > Monotonic)
      return false;
  }

  return true;
}

/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
/// immediate" address.  The "Size" argument is the size in bytes of the memory
/// reference, which determines the scale.
bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
                                              SDValue &Base, SDValue &OffImm) {
  const TargetLowering *TLI = getTargetLowering();
  if (N.getOpcode() == ISD::FrameIndex) {
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
    Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
    OffImm = CurDAG->getTargetConstant(0, MVT::i64);
    return true;
  }

  if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
    GlobalAddressSDNode *GAN =
        dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
    Base = N.getOperand(0);
    OffImm = N.getOperand(1);
    if (!GAN)
      return true;

    const GlobalValue *GV = GAN->getGlobal();
    unsigned Alignment = GV->getAlignment();
    const DataLayout *DL = TLI->getDataLayout();
    Type *Ty = GV->getType()->getElementType();
    if (Alignment == 0 && Ty->isSized())
      Alignment = DL->getABITypeAlignment(Ty);

    if (Alignment >= Size)
      return true;
  }

  if (CurDAG->isBaseWithConstantOffset(N)) {
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
      int64_t RHSC = (int64_t)RHS->getZExtValue();
      unsigned Scale = Log2_32(Size);
      if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
        Base = N.getOperand(0);
        if (Base.getOpcode() == ISD::FrameIndex) {
          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
          Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
        }
        OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
        return true;
      }
    }
  }

  // Before falling back to our general case, check if the unscaled
  // instructions can handle this. If so, that's preferable.
  if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
    return false;

  // Base only. The address will be materialized into a register before
  // the memory is accessed.
  //    add x0, Xbase, #offset
  //    ldr x0, [x0]
  Base = N;
  OffImm = CurDAG->getTargetConstant(0, MVT::i64);
  return true;
}

/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
/// immediate" address.  This should only match when there is an offset that
/// is not valid for a scaled immediate addressing mode.  The "Size" argument
/// is the size in bytes of the memory reference, which is needed here to know
/// what is valid for a scaled immediate.
bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
                                                 SDValue &Base,
                                                 SDValue &OffImm) {
  if (!CurDAG->isBaseWithConstantOffset(N))
    return false;
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    int64_t RHSC = RHS->getSExtValue();
    // If the offset is valid as a scaled immediate, don't match here.
    if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
        RHSC < (0x1000 << Log2_32(Size)))
      return false;
    if (RHSC >= -256 && RHSC < 256) {
      Base = N.getOperand(0);
      if (Base.getOpcode() == ISD::FrameIndex) {
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
        const TargetLowering *TLI = getTargetLowering();
        Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
      }
      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
      return true;
    }
  }
  return false;
}

static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
  SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
  SDValue ImpDef = SDValue(
      CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
      0);
  MachineSDNode *Node = CurDAG->getMachineNode(
      TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
  return SDValue(Node, 0);
}

/// \brief Check if the given SHL node (\p N), can be used to form an
/// extended register for an addressing mode.
bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
                                            bool WantExtend, SDValue &Offset,
                                            SDValue &SignExtend) {
  assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
  ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
  if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
    return false;

  if (WantExtend) {
    AArch64_AM::ShiftExtendType Ext =
        getExtendTypeForNode(N.getOperand(0), true);
    if (Ext == AArch64_AM::InvalidShiftExtend)
      return false;

    Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
  } else {
    Offset = N.getOperand(0);
    SignExtend = CurDAG->getTargetConstant(0, MVT::i32);
  }

  unsigned LegalShiftVal = Log2_32(Size);
  unsigned ShiftVal = CSD->getZExtValue();

  if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
    return false;

  if (isWorthFolding(N))
    return true;

  return false;
}

bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
                                            SDValue &Base, SDValue &Offset,
                                            SDValue &SignExtend,
                                            SDValue &DoShift) {
  if (N.getOpcode() != ISD::ADD)
    return false;
  SDValue LHS = N.getOperand(0);
  SDValue RHS = N.getOperand(1);

  // We don't want to match immediate adds here, because they are better lowered
  // to the register-immediate addressing modes.
  if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
    return false;

  // Check if this particular node is reused in any non-memory related
  // operation.  If yes, do not try to fold this node into the address
  // computation, since the computation will be kept.
  const SDNode *Node = N.getNode();
  for (SDNode *UI : Node->uses()) {
    if (!isa<MemSDNode>(*UI))
      return false;
  }

  // Remember if it is worth folding N when it produces extended register.
  bool IsExtendedRegisterWorthFolding = isWorthFolding(N);

  // Try to match a shifted extend on the RHS.
  if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
      SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
    Base = LHS;
    DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    return true;
  }

  // Try to match a shifted extend on the LHS.
  if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
      SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
    Base = RHS;
    DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    return true;
  }

  // There was no shift, whatever else we find.
  DoShift = CurDAG->getTargetConstant(false, MVT::i32);

  AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
  // Try to match an unshifted extend on the LHS.
  if (IsExtendedRegisterWorthFolding &&
      (Ext = getExtendTypeForNode(LHS, true)) !=
          AArch64_AM::InvalidShiftExtend) {
    Base = RHS;
    Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
    if (isWorthFolding(LHS))
      return true;
  }

  // Try to match an unshifted extend on the RHS.
  if (IsExtendedRegisterWorthFolding &&
      (Ext = getExtendTypeForNode(RHS, true)) !=
          AArch64_AM::InvalidShiftExtend) {
    Base = LHS;
    Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, MVT::i32);
    if (isWorthFolding(RHS))
      return true;
  }

  return false;
}

// Check if the given immediate is preferred by ADD. If an immediate can be
// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
// encoded by one MOVZ, return true.
static bool isPreferredADD(int64_t ImmOff) {
  // Constant in [0x0, 0xfff] can be encoded in ADD.
  if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
    return true;
  // Check if it can be encoded in an "ADD LSL #12".
  if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
    // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
    return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
           (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
  return false;
}

bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
                                            SDValue &Base, SDValue &Offset,
                                            SDValue &SignExtend,
                                            SDValue &DoShift) {
  if (N.getOpcode() != ISD::ADD)
    return false;
  SDValue LHS = N.getOperand(0);
  SDValue RHS = N.getOperand(1);

  // Check if this particular node is reused in any non-memory related
  // operation.  If yes, do not try to fold this node into the address
  // computation, since the computation will be kept.
  const SDNode *Node = N.getNode();
  for (SDNode *UI : Node->uses()) {
    if (!isa<MemSDNode>(*UI))
      return false;
  }

  // Watch out if RHS is a wide immediate, it can not be selected into
  // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
  // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
  // instructions like:
  //     MOV  X0, WideImmediate
  //     ADD  X1, BaseReg, X0
  //     LDR  X2, [X1, 0]
  // For such situation, using [BaseReg, XReg] addressing mode can save one
  // ADD/SUB:
  //     MOV  X0, WideImmediate
  //     LDR  X2, [BaseReg, X0]
  if (isa<ConstantSDNode>(RHS)) {
    int64_t ImmOff = (int64_t)dyn_cast<ConstantSDNode>(RHS)->getZExtValue();
    unsigned Scale = Log2_32(Size);
    // Skip the immediate can be seleced by load/store addressing mode.
    // Also skip the immediate can be encoded by a single ADD (SUB is also
    // checked by using -ImmOff).
    if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
        isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
      return false;

    SDLoc DL(N.getNode());
    SDValue Ops[] = { RHS };
    SDNode *MOVI =
        CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
    SDValue MOVIV = SDValue(MOVI, 0);
    // This ADD of two X register will be selected into [Reg+Reg] mode.
    N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
  }

  // Remember if it is worth folding N when it produces extended register.
  bool IsExtendedRegisterWorthFolding = isWorthFolding(N);

  // Try to match a shifted extend on the RHS.
  if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
      SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
    Base = LHS;
    DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    return true;
  }

  // Try to match a shifted extend on the LHS.
  if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
      SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
    Base = RHS;
    DoShift = CurDAG->getTargetConstant(true, MVT::i32);
    return true;
  }

  // Match any non-shifted, non-extend, non-immediate add expression.
  Base = LHS;
  Offset = RHS;
  SignExtend = CurDAG->getTargetConstant(false, MVT::i32);
  DoShift = CurDAG->getTargetConstant(false, MVT::i32);
  // Reg1 + Reg2 is free: no check needed.
  return true;
}

SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
  static const unsigned RegClassIDs[] = {
      AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
  static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
                                     AArch64::dsub2, AArch64::dsub3};

  return createTuple(Regs, RegClassIDs, SubRegs);
}

SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
  static const unsigned RegClassIDs[] = {
      AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
  static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
                                     AArch64::qsub2, AArch64::qsub3};

  return createTuple(Regs, RegClassIDs, SubRegs);
}

SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
                                         const unsigned RegClassIDs[],
                                         const unsigned SubRegs[]) {
  // There's no special register-class for a vector-list of 1 element: it's just
  // a vector.
  if (Regs.size() == 1)
    return Regs[0];

  assert(Regs.size() >= 2 && Regs.size() <= 4);

  SDLoc DL(Regs[0].getNode());

  SmallVector<SDValue, 4> Ops;

  // First operand of REG_SEQUENCE is the desired RegClass.
  Ops.push_back(
      CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));

  // Then we get pairs of source & subregister-position for the components.
  for (unsigned i = 0; i < Regs.size(); ++i) {
    Ops.push_back(Regs[i]);
    Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
  }

  SDNode *N =
      CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
  return SDValue(N, 0);
}

SDNode *AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
                                         unsigned Opc, bool isExt) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);

  unsigned ExtOff = isExt;

  // Form a REG_SEQUENCE to force register allocation.
  unsigned Vec0Off = ExtOff + 1;
  SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
                               N->op_begin() + Vec0Off + NumVecs);
  SDValue RegSeq = createQTuple(Regs);

  SmallVector<SDValue, 6> Ops;
  if (isExt)
    Ops.push_back(N->getOperand(1));
  Ops.push_back(RegSeq);
  Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
  return CurDAG->getMachineNode(Opc, dl, VT, Ops);
}

SDNode *AArch64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
  LoadSDNode *LD = cast<LoadSDNode>(N);
  if (LD->isUnindexed())
    return nullptr;
  EVT VT = LD->getMemoryVT();
  EVT DstVT = N->getValueType(0);
  ISD::MemIndexedMode AM = LD->getAddressingMode();
  bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;

  // We're not doing validity checking here. That was done when checking
  // if we should mark the load as indexed or not. We're just selecting
  // the right instruction.
  unsigned Opcode = 0;

  ISD::LoadExtType ExtType = LD->getExtensionType();
  bool InsertTo64 = false;
  if (VT == MVT::i64)
    Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
  else if (VT == MVT::i32) {
    if (ExtType == ISD::NON_EXTLOAD)
      Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
    else if (ExtType == ISD::SEXTLOAD)
      Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
    else {
      Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
      InsertTo64 = true;
      // The result of the load is only i32. It's the subreg_to_reg that makes
      // it into an i64.
      DstVT = MVT::i32;
    }
  } else if (VT == MVT::i16) {
    if (ExtType == ISD::SEXTLOAD) {
      if (DstVT == MVT::i64)
        Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
      else
        Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
    } else {
      Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
      InsertTo64 = DstVT == MVT::i64;
      // The result of the load is only i32. It's the subreg_to_reg that makes
      // it into an i64.
      DstVT = MVT::i32;
    }
  } else if (VT == MVT::i8) {
    if (ExtType == ISD::SEXTLOAD) {
      if (DstVT == MVT::i64)
        Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
      else
        Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
    } else {
      Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
      InsertTo64 = DstVT == MVT::i64;
      // The result of the load is only i32. It's the subreg_to_reg that makes
      // it into an i64.
      DstVT = MVT::i32;
    }
  } else if (VT == MVT::f32) {
    Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
  } else if (VT == MVT::f64 || VT.is64BitVector()) {
    Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
  } else if (VT.is128BitVector()) {
    Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
  } else
    return nullptr;
  SDValue Chain = LD->getChain();
  SDValue Base = LD->getBasePtr();
  ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
  int OffsetVal = (int)OffsetOp->getZExtValue();
  SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
  SDValue Ops[] = { Base, Offset, Chain };
  SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, DstVT,
                                       MVT::Other, Ops);
  // Either way, we're replacing the node, so tell the caller that.
  Done = true;
  SDValue LoadedVal = SDValue(Res, 1);
  if (InsertTo64) {
    SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
    LoadedVal =
        SDValue(CurDAG->getMachineNode(
                    AArch64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
                    CurDAG->getTargetConstant(0, MVT::i64), LoadedVal, SubReg),
                0);
  }

  ReplaceUses(SDValue(N, 0), LoadedVal);
  ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
  ReplaceUses(SDValue(N, 2), SDValue(Res, 2));

  return nullptr;
}

SDNode *AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs,
                                        unsigned Opc, unsigned SubRegIdx) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SDValue Chain = N->getOperand(0);

  SDValue Ops[] = {N->getOperand(2), // Mem operand;
                   Chain};

  const EVT ResTys[] = {MVT::Untyped, MVT::Other};

  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
  SDValue SuperReg = SDValue(Ld, 0);
  for (unsigned i = 0; i < NumVecs; ++i)
    ReplaceUses(SDValue(N, i),
        CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));

  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
  return nullptr;
}

SDNode *AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
                                            unsigned Opc, unsigned SubRegIdx) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SDValue Chain = N->getOperand(0);

  SDValue Ops[] = {N->getOperand(1), // Mem operand
                   N->getOperand(2), // Incremental
                   Chain};

  const EVT ResTys[] = {MVT::i64, // Type of the write back register
                        MVT::Untyped, MVT::Other};

  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);

  // Update uses of write back register
  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));

  // Update uses of vector list
  SDValue SuperReg = SDValue(Ld, 1);
  if (NumVecs == 1)
    ReplaceUses(SDValue(N, 0), SuperReg);
  else
    for (unsigned i = 0; i < NumVecs; ++i)
      ReplaceUses(SDValue(N, i),
          CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));

  // Update the chain
  ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
  return nullptr;
}

SDNode *AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
                                         unsigned Opc) {
  SDLoc dl(N);
  EVT VT = N->getOperand(2)->getValueType(0);

  // Form a REG_SEQUENCE to force register allocation.
  bool Is128Bit = VT.getSizeInBits() == 128;
  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
  SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);

  SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
  SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);

  return St;
}

SDNode *AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
                                             unsigned Opc) {
  SDLoc dl(N);
  EVT VT = N->getOperand(2)->getValueType(0);
  const EVT ResTys[] = {MVT::i64,    // Type of the write back register
                        MVT::Other}; // Type for the Chain

  // Form a REG_SEQUENCE to force register allocation.
  bool Is128Bit = VT.getSizeInBits() == 128;
  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
  SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);

  SDValue Ops[] = {RegSeq,
                   N->getOperand(NumVecs + 1), // base register
                   N->getOperand(NumVecs + 2), // Incremental
                   N->getOperand(0)};          // Chain
  SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);

  return St;
}

namespace {
/// WidenVector - Given a value in the V64 register class, produce the
/// equivalent value in the V128 register class.
class WidenVector {
  SelectionDAG &DAG;

public:
  WidenVector(SelectionDAG &DAG) : DAG(DAG) {}

  SDValue operator()(SDValue V64Reg) {
    EVT VT = V64Reg.getValueType();
    unsigned NarrowSize = VT.getVectorNumElements();
    MVT EltTy = VT.getVectorElementType().getSimpleVT();
    MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
    SDLoc DL(V64Reg);

    SDValue Undef =
        SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
    return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
  }
};
} // namespace

/// NarrowVector - Given a value in the V128 register class, produce the
/// equivalent value in the V64 register class.
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
  EVT VT = V128Reg.getValueType();
  unsigned WideSize = VT.getVectorNumElements();
  MVT EltTy = VT.getVectorElementType().getSimpleVT();
  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);

  return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
                                    V128Reg);
}

SDNode *AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
                                            unsigned Opc) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  bool Narrow = VT.getSizeInBits() == 64;

  // Form a REG_SEQUENCE to force register allocation.
  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);

  if (Narrow)
    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
                   WidenVector(*CurDAG));

  SDValue RegSeq = createQTuple(Regs);

  const EVT ResTys[] = {MVT::Untyped, MVT::Other};

  unsigned LaneNo =
      cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();

  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, MVT::i64),
                   N->getOperand(NumVecs + 3), N->getOperand(0)};
  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
  SDValue SuperReg = SDValue(Ld, 0);

  EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
  static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
                              AArch64::qsub3 };
  for (unsigned i = 0; i < NumVecs; ++i) {
    SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
    if (Narrow)
      NV = NarrowVector(NV, *CurDAG);
    ReplaceUses(SDValue(N, i), NV);
  }

  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));

  return Ld;
}

SDNode *AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
                                                unsigned Opc) {
  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  bool Narrow = VT.getSizeInBits() == 64;

  // Form a REG_SEQUENCE to force register allocation.
  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);

  if (Narrow)
    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
                   WidenVector(*CurDAG));

  SDValue RegSeq = createQTuple(Regs);

  const EVT ResTys[] = {MVT::i64, // Type of the write back register
                        MVT::Untyped, MVT::Other};

  unsigned LaneNo =
      cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();

  SDValue Ops[] = {RegSeq,
                   CurDAG->getTargetConstant(LaneNo, MVT::i64), // Lane Number
                   N->getOperand(NumVecs + 2),                  // Base register
                   N->getOperand(NumVecs + 3),                  // Incremental
                   N->getOperand(0)};
  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);

  // Update uses of the write back register
  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));

  // Update uses of the vector list
  SDValue SuperReg = SDValue(Ld, 1);
  if (NumVecs == 1) {
    ReplaceUses(SDValue(N, 0),
                Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
  } else {
    EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
    static unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, AArch64::qsub2,
                                AArch64::qsub3 };
    for (unsigned i = 0; i < NumVecs; ++i) {
      SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
                                                  SuperReg);
      if (Narrow)
        NV = NarrowVector(NV, *CurDAG);
      ReplaceUses(SDValue(N, i), NV);
    }
  }

  // Update the Chain
  ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));

  return Ld;
}

SDNode *AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
                                             unsigned Opc) {
  SDLoc dl(N);
  EVT VT = N->getOperand(2)->getValueType(0);
  bool Narrow = VT.getSizeInBits() == 64;

  // Form a REG_SEQUENCE to force register allocation.
  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);

  if (Narrow)
    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
                   WidenVector(*CurDAG));

  SDValue RegSeq = createQTuple(Regs);

  unsigned LaneNo =
      cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();

  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, MVT::i64),
                   N->getOperand(NumVecs + 3), N->getOperand(0)};
  SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);

  // Transfer memoperands.
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
  cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);

  return St;
}

SDNode *AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
                                                 unsigned Opc) {
  SDLoc dl(N);
  EVT VT = N->getOperand(2)->getValueType(0);
  bool Narrow = VT.getSizeInBits() == 64;

  // Form a REG_SEQUENCE to force register allocation.
  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);

  if (Narrow)
    std::transform(Regs.begin(), Regs.end(), Regs.begin(),
                   WidenVector(*CurDAG));

  SDValue RegSeq = createQTuple(Regs);

  const EVT ResTys[] = {MVT::i64, // Type of the write back register
                        MVT::Other};

  unsigned LaneNo =
      cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();

  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, MVT::i64),
                   N->getOperand(NumVecs + 2), // Base Register
                   N->getOperand(NumVecs + 3), // Incremental
                   N->getOperand(0)};
  SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);

  // Transfer memoperands.
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
  cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);

  return St;
}

static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
                                       unsigned &Opc, SDValue &Opd0,
                                       unsigned &LSB, unsigned &MSB,
                                       unsigned NumberOfIgnoredLowBits,
                                       bool BiggerPattern) {
  assert(N->getOpcode() == ISD::AND &&
         "N must be a AND operation to call this function");

  EVT VT = N->getValueType(0);

  // Here we can test the type of VT and return false when the type does not
  // match, but since it is done prior to that call in the current context
  // we turned that into an assert to avoid redundant code.
  assert((VT == MVT::i32 || VT == MVT::i64) &&
         "Type checking must have been done before calling this function");

  // FIXME: simplify-demanded-bits in DAGCombine will probably have
  // changed the AND node to a 32-bit mask operation. We'll have to
  // undo that as part of the transform here if we want to catch all
  // the opportunities.
  // Currently the NumberOfIgnoredLowBits argument helps to recover
  // form these situations when matching bigger pattern (bitfield insert).

  // For unsigned extracts, check for a shift right and mask
  uint64_t And_imm = 0;
  if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
    return false;

  const SDNode *Op0 = N->getOperand(0).getNode();

  // Because of simplify-demanded-bits in DAGCombine, the mask may have been
  // simplified. Try to undo that
  And_imm |= (1 << NumberOfIgnoredLowBits) - 1;

  // The immediate is a mask of the low bits iff imm & (imm+1) == 0
  if (And_imm & (And_imm + 1))
    return false;

  bool ClampMSB = false;
  uint64_t Srl_imm = 0;
  // Handle the SRL + ANY_EXTEND case.
  if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
      isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
    // Extend the incoming operand of the SRL to 64-bit.
    Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
    // Make sure to clamp the MSB so that we preserve the semantics of the
    // original operations.
    ClampMSB = true;
  } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
             isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
                                   Srl_imm)) {
    // If the shift result was truncated, we can still combine them.
    Opd0 = Op0->getOperand(0).getOperand(0);

    // Use the type of SRL node.
    VT = Opd0->getValueType(0);
  } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
    Opd0 = Op0->getOperand(0);
  } else if (BiggerPattern) {
    // Let's pretend a 0 shift right has been performed.
    // The resulting code will be at least as good as the original one
    // plus it may expose more opportunities for bitfield insert pattern.
    // FIXME: Currently we limit this to the bigger pattern, because
    // some optimizations expect AND and not UBFM
    Opd0 = N->getOperand(0);
  } else
    return false;

  // Bail out on large immediates. This happens when no proper
  // combining/constant folding was performed.
  if (!BiggerPattern && (Srl_imm <= 0 || Srl_imm >= VT.getSizeInBits())) {
    DEBUG((dbgs() << N
           << ": Found large shift immediate, this should not happen\n"));
    return false;
  }

  LSB = Srl_imm;
  MSB = Srl_imm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(And_imm)
                                  : countTrailingOnes<uint64_t>(And_imm)) -
        1;
  if (ClampMSB)
    // Since we're moving the extend before the right shift operation, we need
    // to clamp the MSB to make sure we don't shift in undefined bits instead of
    // the zeros which would get shifted in with the original right shift
    // operation.
    MSB = MSB > 31 ? 31 : MSB;

  Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
  return true;
}

static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
                                          SDValue &Opd0, unsigned &LSB,
                                          unsigned &MSB) {
  // We are looking for the following pattern which basically extracts several
  // continuous bits from the source value and places it from the LSB of the
  // destination value, all other bits of the destination value or set to zero:
  //
  // Value2 = AND Value, MaskImm
  // SRL Value2, ShiftImm
  //
  // with MaskImm >> ShiftImm to search for the bit width.
  //
  // This gets selected into a single UBFM:
  //
  // UBFM Value, ShiftImm, BitWide + Srl_imm -1
  //

  if (N->getOpcode() != ISD::SRL)
    return false;

  uint64_t And_mask = 0;
  if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
    return false;

  Opd0 = N->getOperand(0).getOperand(0);

  uint64_t Srl_imm = 0;
  if (!isIntImmediate(N->getOperand(1), Srl_imm))
    return false;

  // Check whether we really have several bits extract here.
  unsigned BitWide = 64 - countLeadingOnes(~(And_mask >> Srl_imm));
  if (BitWide && isMask_64(And_mask >> Srl_imm)) {
    if (N->getValueType(0) == MVT::i32)
      Opc = AArch64::UBFMWri;
    else
      Opc = AArch64::UBFMXri;

    LSB = Srl_imm;
    MSB = BitWide + Srl_imm - 1;
    return true;
  }

  return false;
}

static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
                                       unsigned &LSB, unsigned &MSB,
                                       bool BiggerPattern) {
  assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
         "N must be a SHR/SRA operation to call this function");

  EVT VT = N->getValueType(0);

  // Here we can test the type of VT and return false when the type does not
  // match, but since it is done prior to that call in the current context
  // we turned that into an assert to avoid redundant code.
  assert((VT == MVT::i32 || VT == MVT::i64) &&
         "Type checking must have been done before calling this function");

  // Check for AND + SRL doing several bits extract.
  if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
    return true;

  // we're looking for a shift of a shift
  uint64_t Shl_imm = 0;
  uint64_t Trunc_bits = 0;
  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
    Opd0 = N->getOperand(0).getOperand(0);
  } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
             N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
    // We are looking for a shift of truncate. Truncate from i64 to i32 could
    // be considered as setting high 32 bits as zero. Our strategy here is to
    // always generate 64bit UBFM. This consistency will help the CSE pass
    // later find more redundancy.
    Opd0 = N->getOperand(0).getOperand(0);
    Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
    VT = Opd0->getValueType(0);
    assert(VT == MVT::i64 && "the promoted type should be i64");
  } else if (BiggerPattern) {
    // Let's pretend a 0 shift left has been performed.
    // FIXME: Currently we limit this to the bigger pattern case,
    // because some optimizations expect AND and not UBFM
    Opd0 = N->getOperand(0);
  } else
    return false;

  // Missing combines/constant folding may have left us with strange
  // constants.
  if (Shl_imm >= VT.getSizeInBits()) {
    DEBUG((dbgs() << N
           << ": Found large shift immediate, this should not happen\n"));
    return false;
  }

  uint64_t Srl_imm = 0;
  if (!isIntImmediate(N->getOperand(1), Srl_imm))
    return false;

  assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
         "bad amount in shift node!");
  // Note: The width operand is encoded as width-1.
  unsigned Width = VT.getSizeInBits() - Trunc_bits - Srl_imm - 1;
  int sLSB = Srl_imm - Shl_imm;
  if (sLSB < 0)
    return false;
  LSB = sLSB;
  MSB = LSB + Width;
  // SRA requires a signed extraction
  if (VT == MVT::i32)
    Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
  else
    Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
  return true;
}

static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
                                SDValue &Opd0, unsigned &LSB, unsigned &MSB,
                                unsigned NumberOfIgnoredLowBits = 0,
                                bool BiggerPattern = false) {
  if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
    return false;

  switch (N->getOpcode()) {
  default:
    if (!N->isMachineOpcode())
      return false;
    break;
  case ISD::AND:
    return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
                                      NumberOfIgnoredLowBits, BiggerPattern);
  case ISD::SRL:
  case ISD::SRA:
    return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
  }

  unsigned NOpc = N->getMachineOpcode();
  switch (NOpc) {
  default:
    return false;
  case AArch64::SBFMWri:
  case AArch64::UBFMWri:
  case AArch64::SBFMXri:
  case AArch64::UBFMXri:
    Opc = NOpc;
    Opd0 = N->getOperand(0);
    LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
    MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
    return true;
  }
  // Unreachable
  return false;
}

SDNode *AArch64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
  unsigned Opc, LSB, MSB;
  SDValue Opd0;
  if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
    return nullptr;

  EVT VT = N->getValueType(0);

  // If the bit extract operation is 64bit but the original type is 32bit, we
  // need to add one EXTRACT_SUBREG.
  if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
    SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(LSB, MVT::i64),
                       CurDAG->getTargetConstant(MSB, MVT::i64)};

    SDNode *BFM = CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i64, Ops64);
    SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32);
    MachineSDNode *Node =
        CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32,
                               SDValue(BFM, 0), SubReg);
    return Node;
  }

  SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(LSB, VT),
                   CurDAG->getTargetConstant(MSB, VT)};
  return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
}

/// Does DstMask form a complementary pair with the mask provided by
/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
/// this asks whether DstMask zeroes precisely those bits that will be set by
/// the other half.
static bool isBitfieldDstMask(uint64_t DstMask, APInt BitsToBeInserted,
                              unsigned NumberOfIgnoredHighBits, EVT VT) {
  assert((VT == MVT::i32 || VT == MVT::i64) &&
         "i32 or i64 mask type expected!");
  unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;

  APInt SignificantDstMask = APInt(BitWidth, DstMask);
  APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);

  return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
         (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
}

// Look for bits that will be useful for later uses.
// A bit is consider useless as soon as it is dropped and never used
// before it as been dropped.
// E.g., looking for useful bit of x
// 1. y = x & 0x7
// 2. z = y >> 2
// After #1, x useful bits are 0x7, then the useful bits of x, live through
// y.
// After #2, the useful bits of x are 0x4.
// However, if x is used on an unpredicatable instruction, then all its bits
// are useful.
// E.g.
// 1. y = x & 0x7
// 2. z = y >> 2
// 3. str x, [@x]
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);

static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
                                              unsigned Depth) {
  uint64_t Imm =
      cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
  Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
  UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
  getUsefulBits(Op, UsefulBits, Depth + 1);
}

static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
                                             uint64_t Imm, uint64_t MSB,
                                             unsigned Depth) {
  // inherit the bitwidth value
  APInt OpUsefulBits(UsefulBits);
  OpUsefulBits = 1;

  if (MSB >= Imm) {
    OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
    --OpUsefulBits;
    // The interesting part will be in the lower part of the result
    getUsefulBits(Op, OpUsefulBits, Depth + 1);
    // The interesting part was starting at Imm in the argument
    OpUsefulBits = OpUsefulBits.shl(Imm);
  } else {
    OpUsefulBits = OpUsefulBits.shl(MSB + 1);
    --OpUsefulBits;
    // The interesting part will be shifted in the result
    OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
    getUsefulBits(Op, OpUsefulBits, Depth + 1);
    // The interesting part was at zero in the argument
    OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
  }

  UsefulBits &= OpUsefulBits;
}

static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
                                  unsigned Depth) {
  uint64_t Imm =
      cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
  uint64_t MSB =
      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();

  getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
}

static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
                                              unsigned Depth) {
  uint64_t ShiftTypeAndValue =
      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
  APInt Mask(UsefulBits);
  Mask.clearAllBits();
  Mask.flipAllBits();

  if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
    // Shift Left
    uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
    Mask = Mask.shl(ShiftAmt);
    getUsefulBits(Op, Mask, Depth + 1);
    Mask = Mask.lshr(ShiftAmt);
  } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
    // Shift Right
    // We do not handle AArch64_AM::ASR, because the sign will change the
    // number of useful bits
    uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
    Mask = Mask.lshr(ShiftAmt);
    getUsefulBits(Op, Mask, Depth + 1);
    Mask = Mask.shl(ShiftAmt);
  } else
    return;

  UsefulBits &= Mask;
}

static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
                                 unsigned Depth) {
  uint64_t Imm =
      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
  uint64_t MSB =
      cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();

  if (Op.getOperand(1) == Orig)
    return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);

  APInt OpUsefulBits(UsefulBits);
  OpUsefulBits = 1;

  if (MSB >= Imm) {
    OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
    --OpUsefulBits;
    UsefulBits &= ~OpUsefulBits;
    getUsefulBits(Op, UsefulBits, Depth + 1);
  } else {
    OpUsefulBits = OpUsefulBits.shl(MSB + 1);
    --OpUsefulBits;
    UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
    getUsefulBits(Op, UsefulBits, Depth + 1);
  }
}

static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
                                SDValue Orig, unsigned Depth) {

  // Users of this node should have already been instruction selected
  // FIXME: Can we turn that into an assert?
  if (!UserNode->isMachineOpcode())
    return;

  switch (UserNode->getMachineOpcode()) {
  default:
    return;
  case AArch64::ANDSWri:
  case AArch64::ANDSXri:
  case AArch64::ANDWri:
  case AArch64::ANDXri:
    // We increment Depth only when we call the getUsefulBits
    return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
                                             Depth);
  case AArch64::UBFMWri:
  case AArch64::UBFMXri:
    return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);

  case AArch64::ORRWrs:
  case AArch64::ORRXrs:
    if (UserNode->getOperand(1) != Orig)
      return;
    return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
                                             Depth);
  case AArch64::BFMWri:
  case AArch64::BFMXri:
    return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
  }
}

static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
  if (Depth >= 6)
    return;
  // Initialize UsefulBits
  if (!Depth) {
    unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
    // At the beginning, assume every produced bits is useful
    UsefulBits = APInt(Bitwidth, 0);
    UsefulBits.flipAllBits();
  }
  APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);

  for (SDNode *Node : Op.getNode()->uses()) {
    // A use cannot produce useful bits
    APInt UsefulBitsForUse = APInt(UsefulBits);
    getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
    UsersUsefulBits |= UsefulBitsForUse;
  }
  // UsefulBits contains the produced bits that are meaningful for the
  // current definition, thus a user cannot make a bit meaningful at
  // this point
  UsefulBits &= UsersUsefulBits;
}

/// Create a machine node performing a notional SHL of Op by ShlAmount. If
/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
/// 0, return Op unchanged.
static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
  if (ShlAmount == 0)
    return Op;

  EVT VT = Op.getValueType();
  unsigned BitWidth = VT.getSizeInBits();
  unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;

  SDNode *ShiftNode;
  if (ShlAmount > 0) {
    // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
    ShiftNode = CurDAG->getMachineNode(
        UBFMOpc, SDLoc(Op), VT, Op,
        CurDAG->getTargetConstant(BitWidth - ShlAmount, VT),
        CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, VT));
  } else {
    // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
    assert(ShlAmount < 0 && "expected right shift");
    int ShrAmount = -ShlAmount;
    ShiftNode = CurDAG->getMachineNode(
        UBFMOpc, SDLoc(Op), VT, Op, CurDAG->getTargetConstant(ShrAmount, VT),
        CurDAG->getTargetConstant(BitWidth - 1, VT));
  }

  return SDValue(ShiftNode, 0);
}

/// Does this tree qualify as an attempt to move a bitfield into position,
/// essentially "(and (shl VAL, N), Mask)".
static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
                                    SDValue &Src, int &ShiftAmount,
                                    int &MaskWidth) {
  EVT VT = Op.getValueType();
  unsigned BitWidth = VT.getSizeInBits();
  (void)BitWidth;
  assert(BitWidth == 32 || BitWidth == 64);

  APInt KnownZero, KnownOne;
  CurDAG->computeKnownBits(Op, KnownZero, KnownOne);

  // Non-zero in the sense that they're not provably zero, which is the key
  // point if we want to use this value
  uint64_t NonZeroBits = (~KnownZero).getZExtValue();

  // Discard a constant AND mask if present. It's safe because the node will
  // already have been factored into the computeKnownBits calculation above.
  uint64_t AndImm;
  if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
    assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
    Op = Op.getOperand(0);
  }

  uint64_t ShlImm;
  if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
    return false;
  Op = Op.getOperand(0);

  if (!isShiftedMask_64(NonZeroBits))
    return false;

  ShiftAmount = countTrailingZeros(NonZeroBits);
  MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);

  // BFI encompasses sufficiently many nodes that it's worth inserting an extra
  // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
  // amount.
  Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);

  return true;
}

// Given a OR operation, check if we have the following pattern
// ubfm c, b, imm, imm2 (or something that does the same jobs, see
//                       isBitfieldExtractOp)
// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
//                 countTrailingZeros(mask2) == imm2 - imm + 1
// f = d | c
// if yes, given reference arguments will be update so that one can replace
// the OR instruction with:
// f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Dst,
                                     SDValue &Src, unsigned &ImmR,
                                     unsigned &ImmS, SelectionDAG *CurDAG) {
  assert(N->getOpcode() == ISD::OR && "Expect a OR operation");

  // Set Opc
  EVT VT = N->getValueType(0);
  if (VT == MVT::i32)
    Opc = AArch64::BFMWri;
  else if (VT == MVT::i64)
    Opc = AArch64::BFMXri;
  else
    return false;

  // Because of simplify-demanded-bits in DAGCombine, involved masks may not
  // have the expected shape. Try to undo that.
  APInt UsefulBits;
  getUsefulBits(SDValue(N, 0), UsefulBits);

  unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
  unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();

  // OR is commutative, check both possibilities (does llvm provide a
  // way to do that directely, e.g., via code matcher?)
  SDValue OrOpd1Val = N->getOperand(1);
  SDNode *OrOpd0 = N->getOperand(0).getNode();
  SDNode *OrOpd1 = N->getOperand(1).getNode();
  for (int i = 0; i < 2;
       ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
    unsigned BFXOpc;
    int DstLSB, Width;
    if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
                            NumberOfIgnoredLowBits, true)) {
      // Check that the returned opcode is compatible with the pattern,
      // i.e., same type and zero extended (U and not S)
      if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
          (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
        continue;

      // Compute the width of the bitfield insertion
      DstLSB = 0;
      Width = ImmS - ImmR + 1;
      // FIXME: This constraint is to catch bitfield insertion we may
      // want to widen the pattern if we want to grab general bitfied
      // move case
      if (Width <= 0)
        continue;

      // If the mask on the insertee is correct, we have a BFXIL operation. We
      // can share the ImmR and ImmS values from the already-computed UBFM.
    } else if (isBitfieldPositioningOp(CurDAG, SDValue(OrOpd0, 0), Src,
                                       DstLSB, Width)) {
      ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
      ImmS = Width - 1;
    } else
      continue;

    // Check the second part of the pattern
    EVT VT = OrOpd1->getValueType(0);
    assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");

    // Compute the Known Zero for the candidate of the first operand.
    // This allows to catch more general case than just looking for
    // AND with imm. Indeed, simplify-demanded-bits may have removed
    // the AND instruction because it proves it was useless.
    APInt KnownZero, KnownOne;
    CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);

    // Check if there is enough room for the second operand to appear
    // in the first one
    APInt BitsToBeInserted =
        APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);

    if ((BitsToBeInserted & ~KnownZero) != 0)
      continue;

    // Set the first operand
    uint64_t Imm;
    if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
        isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
      // In that case, we can eliminate the AND
      Dst = OrOpd1->getOperand(0);
    else
      // Maybe the AND has been removed by simplify-demanded-bits
      // or is useful because it discards more bits
      Dst = OrOpd1Val;

    // both parts match
    return true;
  }

  return false;
}

SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
  if (N->getOpcode() != ISD::OR)
    return nullptr;

  unsigned Opc;
  unsigned LSB, MSB;
  SDValue Opd0, Opd1;

  if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
    return nullptr;

  EVT VT = N->getValueType(0);
  SDValue Ops[] = { Opd0,
                    Opd1,
                    CurDAG->getTargetConstant(LSB, VT),
                    CurDAG->getTargetConstant(MSB, VT) };
  return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
}

SDNode *AArch64DAGToDAGISel::SelectLIBM(SDNode *N) {
  EVT VT = N->getValueType(0);
  unsigned Variant;
  unsigned Opc;
  unsigned FRINTXOpcs[] = { AArch64::FRINTXSr, AArch64::FRINTXDr };

  if (VT == MVT::f32) {
    Variant = 0;
  } else if (VT == MVT::f64) {
    Variant = 1;
  } else
    return nullptr; // Unrecognized argument type. Fall back on default codegen.

  // Pick the FRINTX variant needed to set the flags.
  unsigned FRINTXOpc = FRINTXOpcs[Variant];

  switch (N->getOpcode()) {
  default:
    return nullptr; // Unrecognized libm ISD node. Fall back on default codegen.
  case ISD::FCEIL: {
    unsigned FRINTPOpcs[] = { AArch64::FRINTPSr, AArch64::FRINTPDr };
    Opc = FRINTPOpcs[Variant];
    break;
  }
  case ISD::FFLOOR: {
    unsigned FRINTMOpcs[] = { AArch64::FRINTMSr, AArch64::FRINTMDr };
    Opc = FRINTMOpcs[Variant];
    break;
  }
  case ISD::FTRUNC: {
    unsigned FRINTZOpcs[] = { AArch64::FRINTZSr, AArch64::FRINTZDr };
    Opc = FRINTZOpcs[Variant];
    break;
  }
  case ISD::FROUND: {
    unsigned FRINTAOpcs[] = { AArch64::FRINTASr, AArch64::FRINTADr };
    Opc = FRINTAOpcs[Variant];
    break;
  }
  }

  SDLoc dl(N);
  SDValue In = N->getOperand(0);
  SmallVector<SDValue, 2> Ops;
  Ops.push_back(In);

  if (!TM.Options.UnsafeFPMath) {
    SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
    Ops.push_back(SDValue(FRINTX, 1));
  }

  return CurDAG->getMachineNode(Opc, dl, VT, Ops);
}

bool
AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
                                              unsigned RegWidth) {
  APFloat FVal(0.0);
  if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
    FVal = CN->getValueAPF();
  else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
    // Some otherwise illegal constants are allowed in this case.
    if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
        !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
      return false;

    ConstantPoolSDNode *CN =
        dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
    FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
  } else
    return false;

  // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
  // is between 1 and 32 for a destination w-register, or 1 and 64 for an
  // x-register.
  //
  // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
  // want THIS_NODE to be 2^fbits. This is much easier to deal with using
  // integers.
  bool IsExact;

  // fbits is between 1 and 64 in the worst-case, which means the fmul
  // could have 2^64 as an actual operand. Need 65 bits of precision.
  APSInt IntVal(65, true);
  FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);

  // N.b. isPowerOf2 also checks for > 0.
  if (!IsExact || !IntVal.isPowerOf2()) return false;
  unsigned FBits = IntVal.logBase2();

  // Checks above should have guaranteed that we haven't lost information in
  // finding FBits, but it must still be in range.
  if (FBits == 0 || FBits > RegWidth) return false;

  FixedPos = CurDAG->getTargetConstant(FBits, MVT::i32);
  return true;
}

SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
  // Dump information about the Node being selected
  DEBUG(errs() << "Selecting: ");
  DEBUG(Node->dump(CurDAG));
  DEBUG(errs() << "\n");

  // If we have a custom node, we already have selected!
  if (Node->isMachineOpcode()) {
    DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
    Node->setNodeId(-1);
    return nullptr;
  }

  // Few custom selection stuff.
  SDNode *ResNode = nullptr;
  EVT VT = Node->getValueType(0);

  switch (Node->getOpcode()) {
  default:
    break;

  case ISD::ADD:
    if (SDNode *I = SelectMLAV64LaneV128(Node))
      return I;
    break;

  case ISD::LOAD: {
    // Try to select as an indexed load. Fall through to normal processing
    // if we can't.
    bool Done = false;
    SDNode *I = SelectIndexedLoad(Node, Done);
    if (Done)
      return I;
    break;
  }

  case ISD::SRL:
  case ISD::AND:
  case ISD::SRA:
    if (SDNode *I = SelectBitfieldExtractOp(Node))
      return I;
    break;

  case ISD::OR:
    if (SDNode *I = SelectBitfieldInsertOp(Node))
      return I;
    break;

  case ISD::EXTRACT_VECTOR_ELT: {
    // Extracting lane zero is a special case where we can just use a plain
    // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
    // the rest of the compiler, especially the register allocator and copyi
    // propagation, to reason about, so is preferred when it's possible to
    // use it.
    ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
    // Bail and use the default Select() for non-zero lanes.
    if (LaneNode->getZExtValue() != 0)
      break;
    // If the element type is not the same as the result type, likewise
    // bail and use the default Select(), as there's more to do than just
    // a cross-class COPY. This catches extracts of i8 and i16 elements
    // since they will need an explicit zext.
    if (VT != Node->getOperand(0).getValueType().getVectorElementType())
      break;
    unsigned SubReg;
    switch (Node->getOperand(0)
                .getValueType()
                .getVectorElementType()
                .getSizeInBits()) {
    default:
      llvm_unreachable("Unexpected vector element type!");
    case 64:
      SubReg = AArch64::dsub;
      break;
    case 32:
      SubReg = AArch64::ssub;
      break;
    case 16:
      SubReg = AArch64::hsub;
      break;
    case 8:
      llvm_unreachable("unexpected zext-requiring extract element!");
    }
    SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
                                                     Node->getOperand(0));
    DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
    DEBUG(Extract->dumpr(CurDAG));
    DEBUG(dbgs() << "\n");
    return Extract.getNode();
  }
  case ISD::Constant: {
    // Materialize zero constants as copies from WZR/XZR.  This allows
    // the coalescer to propagate these into other instructions.
    ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
    if (ConstNode->isNullValue()) {
      if (VT == MVT::i32)
        return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
                                      AArch64::WZR, MVT::i32).getNode();
      else if (VT == MVT::i64)
        return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
                                      AArch64::XZR, MVT::i64).getNode();
    }
    break;
  }

  case ISD::FrameIndex: {
    // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
    int FI = cast<FrameIndexSDNode>(Node)->getIndex();
    unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
    const TargetLowering *TLI = getTargetLowering();
    SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
    SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
                      CurDAG->getTargetConstant(Shifter, MVT::i32) };
    return CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
  }
  case ISD::INTRINSIC_W_CHAIN: {
    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    switch (IntNo) {
    default:
      break;
    case Intrinsic::aarch64_ldaxp:
    case Intrinsic::aarch64_ldxp: {
      unsigned Op =
          IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
      SDValue MemAddr = Node->getOperand(2);
      SDLoc DL(Node);
      SDValue Chain = Node->getOperand(0);

      SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
                                          MVT::Other, MemAddr, Chain);

      // Transfer memoperands.
      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
      MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
      cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
      return Ld;
    }
    case Intrinsic::aarch64_stlxp:
    case Intrinsic::aarch64_stxp: {
      unsigned Op =
          IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
      SDLoc DL(Node);
      SDValue Chain = Node->getOperand(0);
      SDValue ValLo = Node->getOperand(2);
      SDValue ValHi = Node->getOperand(3);
      SDValue MemAddr = Node->getOperand(4);

      // Place arguments in the right order.
      SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};

      SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
      // Transfer memoperands.
      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
      MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
      cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);

      return St;
    }
    case Intrinsic::aarch64_neon_ld1x2:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld1x3:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld1x4:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld2:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld3:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld4:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
      else if (VT == MVT::v8i16  || VT == MVT::v8f16)
        return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld2r:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld3r:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld4r:
      if (VT == MVT::v8i8)
        return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
      else if (VT == MVT::v16i8)
        return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
      break;
    case Intrinsic::aarch64_neon_ld2lane:
      if (VT == MVT::v16i8 || VT == MVT::v8i8)
        return SelectLoadLane(Node, 2, AArch64::LD2i8);
      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
               VT == MVT::v8f16)
        return SelectLoadLane(Node, 2, AArch64::LD2i16);
      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
               VT == MVT::v2f32)
        return SelectLoadLane(Node, 2, AArch64::LD2i32);
      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
               VT == MVT::v1f64)
        return SelectLoadLane(Node, 2, AArch64::LD2i64);
      break;
    case Intrinsic::aarch64_neon_ld3lane:
      if (VT == MVT::v16i8 || VT == MVT::v8i8)
        return SelectLoadLane(Node, 3, AArch64::LD3i8);
      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
               VT == MVT::v8f16)
        return SelectLoadLane(Node, 3, AArch64::LD3i16);
      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
               VT == MVT::v2f32)
        return SelectLoadLane(Node, 3, AArch64::LD3i32);
      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
               VT == MVT::v1f64)
        return SelectLoadLane(Node, 3, AArch64::LD3i64);
      break;
    case Intrinsic::aarch64_neon_ld4lane:
      if (VT == MVT::v16i8 || VT == MVT::v8i8)
        return SelectLoadLane(Node, 4, AArch64::LD4i8);
      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
               VT == MVT::v8f16)
        return SelectLoadLane(Node, 4, AArch64::LD4i16);
      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
               VT == MVT::v2f32)
        return SelectLoadLane(Node, 4, AArch64::LD4i32);
      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
               VT == MVT::v1f64)
        return SelectLoadLane(Node, 4, AArch64::LD4i64);
      break;
    }
  } break;
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    switch (IntNo) {
    default:
      break;
    case Intrinsic::aarch64_neon_tbl2:
      return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBLv8i8Two
                                                  : AArch64::TBLv16i8Two,
                         false);
    case Intrinsic::aarch64_neon_tbl3:
      return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
                                                  : AArch64::TBLv16i8Three,
                         false);
    case Intrinsic::aarch64_neon_tbl4:
      return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
                                                  : AArch64::TBLv16i8Four,
                         false);
    case Intrinsic::aarch64_neon_tbx2:
      return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBXv8i8Two
                                                  : AArch64::TBXv16i8Two,
                         true);
    case Intrinsic::aarch64_neon_tbx3:
      return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
                                                  : AArch64::TBXv16i8Three,
                         true);
    case Intrinsic::aarch64_neon_tbx4:
      return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
                                                  : AArch64::TBXv16i8Four,
                         true);
    case Intrinsic::aarch64_neon_smull:
    case Intrinsic::aarch64_neon_umull:
      if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
        return N;
      break;
    }
    break;
  }
  case ISD::INTRINSIC_VOID: {
    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    if (Node->getNumOperands() >= 3)
      VT = Node->getOperand(2)->getValueType(0);
    switch (IntNo) {
    default:
      break;
    case Intrinsic::aarch64_neon_st1x2: {
      if (VT == MVT::v8i8)
        return SelectStore(Node, 2, AArch64::ST1Twov8b);
      else if (VT == MVT::v16i8)
        return SelectStore(Node, 2, AArch64::ST1Twov16b);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectStore(Node, 2, AArch64::ST1Twov4h);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectStore(Node, 2, AArch64::ST1Twov8h);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectStore(Node, 2, AArch64::ST1Twov2s);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectStore(Node, 2, AArch64::ST1Twov4s);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectStore(Node, 2, AArch64::ST1Twov2d);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectStore(Node, 2, AArch64::ST1Twov1d);
      break;
    }
    case Intrinsic::aarch64_neon_st1x3: {
      if (VT == MVT::v8i8)
        return SelectStore(Node, 3, AArch64::ST1Threev8b);
      else if (VT == MVT::v16i8)
        return SelectStore(Node, 3, AArch64::ST1Threev16b);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectStore(Node, 3, AArch64::ST1Threev4h);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectStore(Node, 3, AArch64::ST1Threev8h);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectStore(Node, 3, AArch64::ST1Threev2s);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectStore(Node, 3, AArch64::ST1Threev4s);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectStore(Node, 3, AArch64::ST1Threev2d);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectStore(Node, 3, AArch64::ST1Threev1d);
      break;
    }
    case Intrinsic::aarch64_neon_st1x4: {
      if (VT == MVT::v8i8)
        return SelectStore(Node, 4, AArch64::ST1Fourv8b);
      else if (VT == MVT::v16i8)
        return SelectStore(Node, 4, AArch64::ST1Fourv16b);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectStore(Node, 4, AArch64::ST1Fourv4h);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectStore(Node, 4, AArch64::ST1Fourv8h);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectStore(Node, 4, AArch64::ST1Fourv2s);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectStore(Node, 4, AArch64::ST1Fourv4s);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectStore(Node, 4, AArch64::ST1Fourv2d);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectStore(Node, 4, AArch64::ST1Fourv1d);
      break;
    }
    case Intrinsic::aarch64_neon_st2: {
      if (VT == MVT::v8i8)
        return SelectStore(Node, 2, AArch64::ST2Twov8b);
      else if (VT == MVT::v16i8)
        return SelectStore(Node, 2, AArch64::ST2Twov16b);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectStore(Node, 2, AArch64::ST2Twov4h);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectStore(Node, 2, AArch64::ST2Twov8h);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectStore(Node, 2, AArch64::ST2Twov2s);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectStore(Node, 2, AArch64::ST2Twov4s);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectStore(Node, 2, AArch64::ST2Twov2d);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectStore(Node, 2, AArch64::ST1Twov1d);
      break;
    }
    case Intrinsic::aarch64_neon_st3: {
      if (VT == MVT::v8i8)
        return SelectStore(Node, 3, AArch64::ST3Threev8b);
      else if (VT == MVT::v16i8)
        return SelectStore(Node, 3, AArch64::ST3Threev16b);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectStore(Node, 3, AArch64::ST3Threev4h);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectStore(Node, 3, AArch64::ST3Threev8h);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectStore(Node, 3, AArch64::ST3Threev2s);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectStore(Node, 3, AArch64::ST3Threev4s);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectStore(Node, 3, AArch64::ST3Threev2d);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectStore(Node, 3, AArch64::ST1Threev1d);
      break;
    }
    case Intrinsic::aarch64_neon_st4: {
      if (VT == MVT::v8i8)
        return SelectStore(Node, 4, AArch64::ST4Fourv8b);
      else if (VT == MVT::v16i8)
        return SelectStore(Node, 4, AArch64::ST4Fourv16b);
      else if (VT == MVT::v4i16 || VT == MVT::v4f16)
        return SelectStore(Node, 4, AArch64::ST4Fourv4h);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return SelectStore(Node, 4, AArch64::ST4Fourv8h);
      else if (VT == MVT::v2i32 || VT == MVT::v2f32)
        return SelectStore(Node, 4, AArch64::ST4Fourv2s);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return SelectStore(Node, 4, AArch64::ST4Fourv4s);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return SelectStore(Node, 4, AArch64::ST4Fourv2d);
      else if (VT == MVT::v1i64 || VT == MVT::v1f64)
        return SelectStore(Node, 4, AArch64::ST1Fourv1d);
      break;
    }
    case Intrinsic::aarch64_neon_st2lane: {
      if (VT == MVT::v16i8 || VT == MVT::v8i8)
        return SelectStoreLane(Node, 2, AArch64::ST2i8);
      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
               VT == MVT::v8f16)
        return SelectStoreLane(Node, 2, AArch64::ST2i16);
      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
               VT == MVT::v2f32)
        return SelectStoreLane(Node, 2, AArch64::ST2i32);
      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
               VT == MVT::v1f64)
        return SelectStoreLane(Node, 2, AArch64::ST2i64);
      break;
    }
    case Intrinsic::aarch64_neon_st3lane: {
      if (VT == MVT::v16i8 || VT == MVT::v8i8)
        return SelectStoreLane(Node, 3, AArch64::ST3i8);
      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
               VT == MVT::v8f16)
        return SelectStoreLane(Node, 3, AArch64::ST3i16);
      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
               VT == MVT::v2f32)
        return SelectStoreLane(Node, 3, AArch64::ST3i32);
      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
               VT == MVT::v1f64)
        return SelectStoreLane(Node, 3, AArch64::ST3i64);
      break;
    }
    case Intrinsic::aarch64_neon_st4lane: {
      if (VT == MVT::v16i8 || VT == MVT::v8i8)
        return SelectStoreLane(Node, 4, AArch64::ST4i8);
      else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
               VT == MVT::v8f16)
        return SelectStoreLane(Node, 4, AArch64::ST4i16);
      else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
               VT == MVT::v2f32)
        return SelectStoreLane(Node, 4, AArch64::ST4i32);
      else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
               VT == MVT::v1f64)
        return SelectStoreLane(Node, 4, AArch64::ST4i64);
      break;
    }
    }
  }
  case AArch64ISD::LD2post: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD3post: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD4post: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD1x2post: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD1x3post: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD1x4post: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD1DUPpost: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD2DUPpost: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD3DUPpost: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD4DUPpost: {
    if (VT == MVT::v8i8)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
    else if (VT == MVT::v16i8)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
    break;
  }
  case AArch64ISD::LD1LANEpost: {
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
    break;
  }
  case AArch64ISD::LD2LANEpost: {
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
    break;
  }
  case AArch64ISD::LD3LANEpost: {
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
    break;
  }
  case AArch64ISD::LD4LANEpost: {
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
    break;
  }
  case AArch64ISD::ST2post: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v8i8)
      return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
    else if (VT == MVT::v16i8)
      return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
    break;
  }
  case AArch64ISD::ST3post: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v8i8)
      return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
    else if (VT == MVT::v16i8)
      return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
    break;
  }
  case AArch64ISD::ST4post: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v8i8)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
    else if (VT == MVT::v16i8)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
    break;
  }
  case AArch64ISD::ST1x2post: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v8i8)
      return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
    else if (VT == MVT::v16i8)
      return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
    break;
  }
  case AArch64ISD::ST1x3post: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v8i8)
      return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
    else if (VT == MVT::v16i8)
      return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
    break;
  }
  case AArch64ISD::ST1x4post: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v8i8)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
    else if (VT == MVT::v16i8)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
    else if (VT == MVT::v4i16 || VT == MVT::v4f16)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v8f16)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
    else if (VT == MVT::v2i32 || VT == MVT::v2f32)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v4f32)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
    else if (VT == MVT::v1i64 || VT == MVT::v1f64)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v2f64)
      return SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
    break;
  }
  case AArch64ISD::ST2LANEpost: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
    break;
  }
  case AArch64ISD::ST3LANEpost: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
    break;
  }
  case AArch64ISD::ST4LANEpost: {
    VT = Node->getOperand(1).getValueType();
    if (VT == MVT::v16i8 || VT == MVT::v8i8)
      return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
    else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
             VT == MVT::v8f16)
      return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
    else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
             VT == MVT::v2f32)
      return SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
    else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
             VT == MVT::v1f64)
      return SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
    break;
  }

  case ISD::FCEIL:
  case ISD::FFLOOR:
  case ISD::FTRUNC:
  case ISD::FROUND:
    if (SDNode *I = SelectLIBM(Node))
      return I;
    break;
  }

  // Select the default instruction
  ResNode = SelectCode(Node);

  DEBUG(errs() << "=> ");
  if (ResNode == nullptr || ResNode == Node)
    DEBUG(Node->dump(CurDAG));
  else
    DEBUG(ResNode->dump(CurDAG));
  DEBUG(errs() << "\n");

  return ResNode;
}

/// createAArch64ISelDag - This pass converts a legalized DAG into a
/// AArch64-specific DAG, ready for instruction scheduling.
FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
                                         CodeGenOpt::Level OptLevel) {
  return new AArch64DAGToDAGISel(TM, OptLevel);
}