aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64ISelLowering.cpp
blob: 84051d40ecae0916bceea34c14c15b0aa78d6fbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "aarch64-isel"
#include "AArch64.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "AArch64TargetObjectFile.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallingConv.h"

using namespace llvm;

static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();

  if (Subtarget->isTargetLinux())
    return new AArch64LinuxTargetObjectFile();
  if (Subtarget->isTargetELF())
    return new TargetLoweringObjectFileELF();
  llvm_unreachable("unknown subtarget type");
}

AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {

  // SIMD compares set the entire lane's bits to 1
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);

  // Scalar register <-> type mapping
  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
  addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
  addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
  addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
  addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);

  computeRegisterProperties();

  // We combine OR nodes for bitfield and NEON BSL operations.
  setTargetDAGCombine(ISD::OR);

  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::SRA);

  // AArch64 does not have i1 loads, or much of anything for i1 really.
  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);

  setStackPointerRegisterToSaveRestore(AArch64::XSP);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);

  // We'll lower globals to wrappers for selection.
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);

  // A64 instructions have the comparison predicate attached to the user of the
  // result, but having a separate comparison is valuable for matching.
  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
  setOperationAction(ISD::BR_CC, MVT::f64, Custom);

  setOperationAction(ISD::SELECT, MVT::i32, Custom);
  setOperationAction(ISD::SELECT, MVT::i64, Custom);
  setOperationAction(ISD::SELECT, MVT::f32, Custom);
  setOperationAction(ISD::SELECT, MVT::f64, Custom);

  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);

  setOperationAction(ISD::BRCOND, MVT::Other, Custom);

  setOperationAction(ISD::SETCC, MVT::i32, Custom);
  setOperationAction(ISD::SETCC, MVT::i64, Custom);
  setOperationAction(ISD::SETCC, MVT::f32, Custom);
  setOperationAction(ISD::SETCC, MVT::f64, Custom);

  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
  setOperationAction(ISD::JumpTable, MVT::i64, Custom);

  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);
  setOperationAction(ISD::VAARG, MVT::Other, Expand);

  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);

  setOperationAction(ISD::ROTL, MVT::i32, Expand);
  setOperationAction(ISD::ROTL, MVT::i64, Expand);

  setOperationAction(ISD::UREM, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i64, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);

  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::SREM, MVT::i64, Expand);
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);

  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
  setOperationAction(ISD::CTPOP, MVT::i64, Expand);

  // Legal floating-point operations.
  setOperationAction(ISD::FABS, MVT::f32, Legal);
  setOperationAction(ISD::FABS, MVT::f64, Legal);

  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
  setOperationAction(ISD::FCEIL, MVT::f64, Legal);

  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);

  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);

  setOperationAction(ISD::FNEG, MVT::f32, Legal);
  setOperationAction(ISD::FNEG, MVT::f64, Legal);

  setOperationAction(ISD::FRINT, MVT::f32, Legal);
  setOperationAction(ISD::FRINT, MVT::f64, Legal);

  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
  setOperationAction(ISD::FSQRT, MVT::f64, Legal);

  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);

  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);

  // Illegal floating-point operations.
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);

  setOperationAction(ISD::FCOS, MVT::f32, Expand);
  setOperationAction(ISD::FCOS, MVT::f64, Expand);

  setOperationAction(ISD::FEXP, MVT::f32, Expand);
  setOperationAction(ISD::FEXP, MVT::f64, Expand);

  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
  setOperationAction(ISD::FEXP2, MVT::f64, Expand);

  setOperationAction(ISD::FLOG, MVT::f32, Expand);
  setOperationAction(ISD::FLOG, MVT::f64, Expand);

  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
  setOperationAction(ISD::FLOG2, MVT::f64, Expand);

  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
  setOperationAction(ISD::FLOG10, MVT::f64, Expand);

  setOperationAction(ISD::FPOW, MVT::f32, Expand);
  setOperationAction(ISD::FPOW, MVT::f64, Expand);

  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
  setOperationAction(ISD::FPOWI, MVT::f64, Expand);

  setOperationAction(ISD::FREM, MVT::f32, Expand);
  setOperationAction(ISD::FREM, MVT::f64, Expand);

  setOperationAction(ISD::FSIN, MVT::f32, Expand);
  setOperationAction(ISD::FSIN, MVT::f64, Expand);

  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);

  // Virtually no operation on f128 is legal, but LLVM can't expand them when
  // there's a valid register class, so we need custom operations in most cases.
  setOperationAction(ISD::FABS,       MVT::f128, Expand);
  setOperationAction(ISD::FADD,       MVT::f128, Custom);
  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
  setOperationAction(ISD::FMA,        MVT::f128, Expand);
  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
  setOperationAction(ISD::FREM,       MVT::f128, Expand);
  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);

  // Lowering for many of the conversions is actually specified by the non-f128
  // type. The LowerXXX function will be trivial when f128 isn't involved.
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);

  // This prevents LLVM trying to compress double constants into a floating
  // constant-pool entry and trying to load from there. It's of doubtful benefit
  // for A64: we'd need LDR followed by FCVT, I believe.
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);

  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
  setTruncStoreAction(MVT::f32, MVT::f16, Expand);

  setExceptionPointerRegister(AArch64::X0);
  setExceptionSelectorRegister(AArch64::X1);
}

EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
  // It's reasonably important that this value matches the "natural" legal
  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
  if (!VT.isVector()) return MVT::i32;
  return VT.changeVectorElementTypeToInteger();
}

static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
                                  unsigned &LdrOpc,
                                  unsigned &StrOpc) {
  static unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
                                 AArch64::LDXR_word, AArch64::LDXR_dword};
  static unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
                                AArch64::LDAXR_word, AArch64::LDAXR_dword};
  static unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
                                  AArch64::STXR_word, AArch64::STXR_dword};
  static unsigned StoreRels[] = {AArch64::STLXR_byte, AArch64::STLXR_hword,
                                 AArch64::STLXR_word, AArch64::STLXR_dword};

  unsigned *LoadOps, *StoreOps;
  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
    LoadOps = LoadAcqs;
  else
    LoadOps = LoadBares;

  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
    StoreOps = StoreRels;
  else
    StoreOps = StoreBares;

  assert(isPowerOf2_32(Size) && Size <= 8 &&
         "unsupported size for atomic binary op!");

  LdrOpc = LoadOps[Log2_32(Size)];
  StrOpc = StoreOps[Log2_32(Size)];
}

MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
                                        unsigned Size,
                                        unsigned BinOpcode) const {
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();

  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction *MF = BB->getParent();
  MachineFunction::iterator It = BB;
  ++It;

  unsigned dest = MI->getOperand(0).getReg();
  unsigned ptr = MI->getOperand(1).getReg();
  unsigned incr = MI->getOperand(2).getReg();
  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
  DebugLoc dl = MI->getDebugLoc();

  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();

  unsigned ldrOpc, strOpc;
  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);

  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, loopMBB);
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  const TargetRegisterClass *TRC
    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);

  //  thisMBB:
  //   ...
  //   fallthrough --> loopMBB
  BB->addSuccessor(loopMBB);

  //  loopMBB:
  //   ldxr dest, ptr
  //   <binop> scratch, dest, incr
  //   stxr stxr_status, scratch, ptr
  //   cbnz stxr_status, loopMBB
  //   fallthrough --> exitMBB
  BB = loopMBB;
  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
  if (BinOpcode) {
    // All arithmetic operations we'll be creating are designed to take an extra
    // shift or extend operand, which we can conveniently set to zero.

    // Operand order needs to go the other way for NAND.
    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
        .addReg(incr).addReg(dest).addImm(0);
    else
      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
        .addReg(dest).addReg(incr).addImm(0);
  }

  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);

  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
    .addReg(stxr_status).addMBB(loopMBB);

  BB->addSuccessor(loopMBB);
  BB->addSuccessor(exitMBB);

  //  exitMBB:
  //   ...
  BB = exitMBB;

  MI->eraseFromParent();   // The instruction is gone now.

  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
                                              MachineBasicBlock *BB,
                                              unsigned Size,
                                              unsigned CmpOp,
                                              A64CC::CondCodes Cond) const {
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();

  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction *MF = BB->getParent();
  MachineFunction::iterator It = BB;
  ++It;

  unsigned dest = MI->getOperand(0).getReg();
  unsigned ptr = MI->getOperand(1).getReg();
  unsigned incr = MI->getOperand(2).getReg();
  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());

  unsigned oldval = dest;
  DebugLoc dl = MI->getDebugLoc();

  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
  const TargetRegisterClass *TRC, *TRCsp;
  if (Size == 8) {
    TRC = &AArch64::GPR64RegClass;
    TRCsp = &AArch64::GPR64xspRegClass;
  } else {
    TRC = &AArch64::GPR32RegClass;
    TRCsp = &AArch64::GPR32wspRegClass;
  }

  unsigned ldrOpc, strOpc;
  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);

  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, loopMBB);
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  unsigned scratch = MRI.createVirtualRegister(TRC);
  MRI.constrainRegClass(scratch, TRCsp);

  //  thisMBB:
  //   ...
  //   fallthrough --> loopMBB
  BB->addSuccessor(loopMBB);

  //  loopMBB:
  //   ldxr dest, ptr
  //   cmp incr, dest (, sign extend if necessary)
  //   csel scratch, dest, incr, cond
  //   stxr stxr_status, scratch, ptr
  //   cbnz stxr_status, loopMBB
  //   fallthrough --> exitMBB
  BB = loopMBB;
  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);

  // Build compare and cmov instructions.
  MRI.constrainRegClass(incr, TRCsp);
  BuildMI(BB, dl, TII->get(CmpOp))
    .addReg(incr).addReg(oldval).addImm(0);

  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
          scratch)
    .addReg(oldval).addReg(incr).addImm(Cond);

  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);

  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
    .addReg(scratch).addReg(ptr);
  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
    .addReg(stxr_status).addMBB(loopMBB);

  BB->addSuccessor(loopMBB);
  BB->addSuccessor(exitMBB);

  //  exitMBB:
  //   ...
  BB = exitMBB;

  MI->eraseFromParent();   // The instruction is gone now.

  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
                                         MachineBasicBlock *BB,
                                         unsigned Size) const {
  unsigned dest    = MI->getOperand(0).getReg();
  unsigned ptr     = MI->getOperand(1).getReg();
  unsigned oldval  = MI->getOperand(2).getReg();
  unsigned newval  = MI->getOperand(3).getReg();
  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc dl = MI->getDebugLoc();

  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
  const TargetRegisterClass *TRCsp;
  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;

  unsigned ldrOpc, strOpc;
  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);

  MachineFunction *MF = BB->getParent();
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = BB;
  ++It; // insert the new blocks after the current block

  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, loop1MBB);
  MF->insert(It, loop2MBB);
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  //  thisMBB:
  //   ...
  //   fallthrough --> loop1MBB
  BB->addSuccessor(loop1MBB);

  // loop1MBB:
  //   ldxr dest, [ptr]
  //   cmp dest, oldval
  //   b.ne exitMBB
  BB = loop1MBB;
  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);

  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
  MRI.constrainRegClass(dest, TRCsp);
  BuildMI(BB, dl, TII->get(CmpOp))
    .addReg(dest).addReg(oldval).addImm(0);
  BuildMI(BB, dl, TII->get(AArch64::Bcc))
    .addImm(A64CC::NE).addMBB(exitMBB);
  BB->addSuccessor(loop2MBB);
  BB->addSuccessor(exitMBB);

  // loop2MBB:
  //   strex stxr_status, newval, [ptr]
  //   cbnz stxr_status, loop1MBB
  BB = loop2MBB;
  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);

  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
    .addReg(stxr_status).addMBB(loop1MBB);
  BB->addSuccessor(loop1MBB);
  BB->addSuccessor(exitMBB);

  //  exitMBB:
  //   ...
  BB = exitMBB;

  MI->eraseFromParent();   // The instruction is gone now.

  return BB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
                                    MachineBasicBlock *MBB) const {
  // We materialise the F128CSEL pseudo-instruction using conditional branches
  // and loads, giving an instruciton sequence like:
  //     str q0, [sp]
  //     b.ne IfTrue
  //     b Finish
  // IfTrue:
  //     str q1, [sp]
  // Finish:
  //     ldr q0, [sp]
  //
  // Using virtual registers would probably not be beneficial since COPY
  // instructions are expensive for f128 (there's no actual instruction to
  // implement them).
  //
  // An alternative would be to do an integer-CSEL on some address. E.g.:
  //     mov x0, sp
  //     add x1, sp, #16
  //     str q0, [x0]
  //     str q1, [x1]
  //     csel x0, x0, x1, ne
  //     ldr q0, [x0]
  //
  // It's unclear which approach is actually optimal.
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  MachineFunction *MF = MBB->getParent();
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  DebugLoc DL = MI->getDebugLoc();
  MachineFunction::iterator It = MBB;
  ++It;

  unsigned DestReg = MI->getOperand(0).getReg();
  unsigned IfTrueReg = MI->getOperand(1).getReg();
  unsigned IfFalseReg = MI->getOperand(2).getReg();
  unsigned CondCode = MI->getOperand(3).getImm();
  bool NZCVKilled = MI->getOperand(4).isKill();

  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MF->insert(It, TrueBB);
  MF->insert(It, EndBB);

  // Transfer rest of current basic-block to EndBB
  EndBB->splice(EndBB->begin(), MBB,
                llvm::next(MachineBasicBlock::iterator(MI)),
                MBB->end());
  EndBB->transferSuccessorsAndUpdatePHIs(MBB);

  // We need somewhere to store the f128 value needed.
  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);

  //     [... start of incoming MBB ...]
  //     str qIFFALSE, [sp]
  //     b.cc IfTrue
  //     b Done
  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
    .addReg(IfFalseReg)
    .addFrameIndex(ScratchFI)
    .addImm(0);
  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
    .addImm(CondCode)
    .addMBB(TrueBB);
  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
    .addMBB(EndBB);
  MBB->addSuccessor(TrueBB);
  MBB->addSuccessor(EndBB);

  // IfTrue:
  //     str qIFTRUE, [sp]
  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
    .addReg(IfTrueReg)
    .addFrameIndex(ScratchFI)
    .addImm(0);

  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
  // blocks.
  TrueBB->addSuccessor(EndBB);

  // Done:
  //     ldr qDEST, [sp]
  //     [... rest of incoming MBB ...]
  if (!NZCVKilled)
    EndBB->addLiveIn(AArch64::NZCV);
  MachineInstr *StartOfEnd = EndBB->begin();
  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
    .addFrameIndex(ScratchFI)
    .addImm(0);

  MI->eraseFromParent();
  return EndBB;
}

MachineBasicBlock *
AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
                                                 MachineBasicBlock *MBB) const {
  switch (MI->getOpcode()) {
  default: llvm_unreachable("Unhandled instruction with custom inserter");
  case AArch64::F128CSEL:
    return EmitF128CSEL(MI, MBB);
  case AArch64::ATOMIC_LOAD_ADD_I8:
    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
  case AArch64::ATOMIC_LOAD_ADD_I16:
    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
  case AArch64::ATOMIC_LOAD_ADD_I32:
    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
  case AArch64::ATOMIC_LOAD_ADD_I64:
    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);

  case AArch64::ATOMIC_LOAD_SUB_I8:
    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
  case AArch64::ATOMIC_LOAD_SUB_I16:
    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
  case AArch64::ATOMIC_LOAD_SUB_I32:
    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
  case AArch64::ATOMIC_LOAD_SUB_I64:
    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);

  case AArch64::ATOMIC_LOAD_AND_I8:
    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
  case AArch64::ATOMIC_LOAD_AND_I16:
    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
  case AArch64::ATOMIC_LOAD_AND_I32:
    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
  case AArch64::ATOMIC_LOAD_AND_I64:
    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);

  case AArch64::ATOMIC_LOAD_OR_I8:
    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
  case AArch64::ATOMIC_LOAD_OR_I16:
    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
  case AArch64::ATOMIC_LOAD_OR_I32:
    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
  case AArch64::ATOMIC_LOAD_OR_I64:
    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);

  case AArch64::ATOMIC_LOAD_XOR_I8:
    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
  case AArch64::ATOMIC_LOAD_XOR_I16:
    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
  case AArch64::ATOMIC_LOAD_XOR_I32:
    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
  case AArch64::ATOMIC_LOAD_XOR_I64:
    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);

  case AArch64::ATOMIC_LOAD_NAND_I8:
    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
  case AArch64::ATOMIC_LOAD_NAND_I16:
    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
  case AArch64::ATOMIC_LOAD_NAND_I32:
    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
  case AArch64::ATOMIC_LOAD_NAND_I64:
    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);

  case AArch64::ATOMIC_LOAD_MIN_I8:
    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
  case AArch64::ATOMIC_LOAD_MIN_I16:
    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
  case AArch64::ATOMIC_LOAD_MIN_I32:
    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
  case AArch64::ATOMIC_LOAD_MIN_I64:
    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);

  case AArch64::ATOMIC_LOAD_MAX_I8:
    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
  case AArch64::ATOMIC_LOAD_MAX_I16:
    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
  case AArch64::ATOMIC_LOAD_MAX_I32:
    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
  case AArch64::ATOMIC_LOAD_MAX_I64:
    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);

  case AArch64::ATOMIC_LOAD_UMIN_I8:
    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
  case AArch64::ATOMIC_LOAD_UMIN_I16:
    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
  case AArch64::ATOMIC_LOAD_UMIN_I32:
    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
  case AArch64::ATOMIC_LOAD_UMIN_I64:
    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);

  case AArch64::ATOMIC_LOAD_UMAX_I8:
    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
  case AArch64::ATOMIC_LOAD_UMAX_I16:
    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
  case AArch64::ATOMIC_LOAD_UMAX_I32:
    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
  case AArch64::ATOMIC_LOAD_UMAX_I64:
    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);

  case AArch64::ATOMIC_SWAP_I8:
    return emitAtomicBinary(MI, MBB, 1, 0);
  case AArch64::ATOMIC_SWAP_I16:
    return emitAtomicBinary(MI, MBB, 2, 0);
  case AArch64::ATOMIC_SWAP_I32:
    return emitAtomicBinary(MI, MBB, 4, 0);
  case AArch64::ATOMIC_SWAP_I64:
    return emitAtomicBinary(MI, MBB, 8, 0);

  case AArch64::ATOMIC_CMP_SWAP_I8:
    return emitAtomicCmpSwap(MI, MBB, 1);
  case AArch64::ATOMIC_CMP_SWAP_I16:
    return emitAtomicCmpSwap(MI, MBB, 2);
  case AArch64::ATOMIC_CMP_SWAP_I32:
    return emitAtomicCmpSwap(MI, MBB, 4);
  case AArch64::ATOMIC_CMP_SWAP_I64:
    return emitAtomicCmpSwap(MI, MBB, 8);
  }
}


const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
  case AArch64ISD::Call:           return "AArch64ISD::Call";
  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";

  default:                       return NULL;
  }
}

static const uint16_t AArch64FPRArgRegs[] = {
  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
};
static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);

static const uint16_t AArch64ArgRegs[] = {
  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
};
static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);

static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
                                 CCValAssign::LocInfo LocInfo,
                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
  // Mark all remaining general purpose registers as allocated. We don't
  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
  // i64 will go in registers (C.11).
  for (unsigned i = 0; i < NumArgRegs; ++i)
    State.AllocateReg(AArch64ArgRegs[i]);

  return false;
}

#include "AArch64GenCallingConv.inc"

CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {

  switch(CC) {
  default: llvm_unreachable("Unsupported calling convention");
  case CallingConv::Fast:
  case CallingConv::C:
    return CC_A64_APCS;
  }
}

void
AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
                                           SDLoc DL, SDValue &Chain) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  AArch64MachineFunctionInfo *FuncInfo
    = MF.getInfo<AArch64MachineFunctionInfo>();

  SmallVector<SDValue, 8> MemOps;

  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
                                                         NumArgRegs);
  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
                                                         NumFPRArgRegs);

  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
  int GPRIdx = 0;
  if (GPRSaveSize != 0) {
    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);

    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());

    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
                                   MachinePointerInfo::getStack(i * 8),
                                   false, false, 0);
      MemOps.push_back(Store);
      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
                        DAG.getConstant(8, getPointerTy()));
    }
  }

  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
  int FPRIdx = 0;
  if (FPRSaveSize != 0) {
    FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);

    SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());

    for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
      unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
                                   &AArch64::FPR128RegClass);
      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
                                   MachinePointerInfo::getStack(i * 16),
                                   false, false, 0);
      MemOps.push_back(Store);
      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
                        DAG.getConstant(16, getPointerTy()));
    }
  }

  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);

  FuncInfo->setVariadicStackIdx(StackIdx);
  FuncInfo->setVariadicGPRIdx(GPRIdx);
  FuncInfo->setVariadicGPRSize(GPRSaveSize);
  FuncInfo->setVariadicFPRIdx(FPRIdx);
  FuncInfo->setVariadicFPRSize(FPRSaveSize);

  if (!MemOps.empty()) {
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
                        MemOps.size());
  }
}


SDValue
AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
                                      CallingConv::ID CallConv, bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                      SDLoc dl, SelectionDAG &DAG,
                                      SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  AArch64MachineFunctionInfo *FuncInfo
    = MF.getInfo<AArch64MachineFunctionInfo>();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), ArgLocs, *DAG.getContext());
  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));

  SmallVector<SDValue, 16> ArgValues;

  SDValue ArgValue;
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    ISD::ArgFlagsTy Flags = Ins[i].Flags;

    if (Flags.isByVal()) {
      // Byval is used for small structs and HFAs in the PCS, but the system
      // should work in a non-compliant manner for larger structs.
      EVT PtrTy = getPointerTy();
      int Size = Flags.getByValSize();
      unsigned NumRegs = (Size + 7) / 8;

      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
                                                 VA.getLocMemOffset(),
                                                 false);
      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
      InVals.push_back(FrameIdxN);

      continue;
    } else if (VA.isRegLoc()) {
      MVT RegVT = VA.getLocVT();
      const TargetRegisterClass *RC = getRegClassFor(RegVT);
      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);

      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
    } else { // VA.isRegLoc()
      assert(VA.isMemLoc());

      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
                                      VA.getLocMemOffset(), true);

      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
                             MachinePointerInfo::getFixedStack(FI),
                             false, false, false, 0);


    }

    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::BCvt:
      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
      break;
    case CCValAssign::SExt:
    case CCValAssign::ZExt:
    case CCValAssign::AExt: {
      unsigned DestSize = VA.getValVT().getSizeInBits();
      unsigned DestSubReg;

      switch (DestSize) {
      case 8: DestSubReg = AArch64::sub_8; break;
      case 16: DestSubReg = AArch64::sub_16; break;
      case 32: DestSubReg = AArch64::sub_32; break;
      case 64: DestSubReg = AArch64::sub_64; break;
      default: llvm_unreachable("Unexpected argument promotion");
      }

      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
                                   VA.getValVT(), ArgValue,
                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
                         0);
      break;
    }
    }

    InVals.push_back(ArgValue);
  }

  if (isVarArg)
    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);

  unsigned StackArgSize = CCInfo.getNextStackOffset();
  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
    // This is a non-standard ABI so by fiat I say we're allowed to make full
    // use of the stack area to be popped, which must be aligned to 16 bytes in
    // any case:
    StackArgSize = RoundUpToAlignment(StackArgSize, 16);

    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
    // a multiple of 16.
    FuncInfo->setArgumentStackToRestore(StackArgSize);

    // This realignment carries over to the available bytes below. Our own
    // callers will guarantee the space is free by giving an aligned value to
    // CALLSEQ_START.
  }
  // Even if we're not expected to free up the space, it's useful to know how
  // much is there while considering tail calls (because we can reuse it).
  FuncInfo->setBytesInStackArgArea(StackArgSize);

  return Chain;
}

SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain,
                                   CallingConv::ID CallConv, bool isVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   SDLoc dl, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to a location.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slots.
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), RVLocs, *DAG.getContext());

  // Analyze outgoing return values.
  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
    // PCS: "If the type, T, of the result of a function is such that
    // void func(T arg) would require that arg be passed as a value in a
    // register (or set of registers) according to the rules in 5.4, then the
    // result is returned in the same registers as would be used for such an
    // argument.
    //
    // Otherwise, the caller shall reserve a block of memory of sufficient
    // size and alignment to hold the result. The address of the memory block
    // shall be passed as an additional argument to the function in x8."
    //
    // This is implemented in two places. The register-return values are dealt
    // with here, more complex returns are passed as an sret parameter, which
    // means we don't have to worry about it during actual return.
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");


    SDValue Arg = OutVals[i];

    // There's no convenient note in the ABI about this as there is for normal
    // arguments, but it says return values are passed in the same registers as
    // an argument would be. I believe that includes the comments about
    // unspecified higher bits, putting the burden of widening on the *caller*
    // for return values.
    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info");
    case CCValAssign::Full: break;
    case CCValAssign::SExt:
    case CCValAssign::ZExt:
    case CCValAssign::AExt:
      // Floating-point values should only be extended when they're going into
      // memory, which can't happen here so an integer extend is acceptable.
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
      break;
    }

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
                     &RetOps[0], RetOps.size());
}

SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
                                 SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  bool &IsTailCall                      = CLI.IsTailCall;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool IsVarArg                         = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();
  AArch64MachineFunctionInfo *FuncInfo
    = MF.getInfo<AArch64MachineFunctionInfo>();
  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
  bool IsSibCall = false;

  if (IsTailCall) {
    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
                                                   Outs, OutVals, Ins, DAG);

    // A sibling call is one where we're under the usual C ABI and not planning
    // to change that but can still do a tail call:
    if (!TailCallOpt && IsTailCall)
      IsSibCall = true;
  }

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), ArgLocs, *DAG.getContext());
  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));

  // On AArch64 (and all other architectures I'm aware of) the most this has to
  // do is adjust the stack pointer.
  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
  if (IsSibCall) {
    // Since we're not changing the ABI to make this a tail call, the memory
    // operands are already available in the caller's incoming argument space.
    NumBytes = 0;
  }

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0. Completely unused for non-tail calls.
  int FPDiff = 0;

  if (IsTailCall && !IsSibCall) {
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // can actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
  }

  if (!IsSibCall)
    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
                                 dl);

  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
                                        getPointerTy());

  SmallVector<SDValue, 8> MemOpChains;
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    SDValue Arg = OutVals[i];

    // Callee does the actual widening, so all extensions just use an implicit
    // definition of the rest of the Loc. Aesthetically, this would be nicer as
    // an ANY_EXTEND, but that isn't valid for floating-point types and this
    // alternative works on integer types too.
    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::SExt:
    case CCValAssign::ZExt:
    case CCValAssign::AExt: {
      unsigned SrcSize = VA.getValVT().getSizeInBits();
      unsigned SrcSubReg;

      switch (SrcSize) {
      case 8: SrcSubReg = AArch64::sub_8; break;
      case 16: SrcSubReg = AArch64::sub_16; break;
      case 32: SrcSubReg = AArch64::sub_32; break;
      case 64: SrcSubReg = AArch64::sub_64; break;
      default: llvm_unreachable("Unexpected argument promotion");
      }

      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
                                    VA.getLocVT(),
                                    DAG.getUNDEF(VA.getLocVT()),
                                    Arg,
                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
                    0);

      break;
    }
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
      break;
    }

    if (VA.isRegLoc()) {
      // A normal register (sub-) argument. For now we just note it down because
      // we want to copy things into registers as late as possible to avoid
      // register-pressure (and possibly worse).
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      continue;
    }

    assert(VA.isMemLoc() && "unexpected argument location");

    SDValue DstAddr;
    MachinePointerInfo DstInfo;
    if (IsTailCall) {
      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
                                          VA.getLocVT().getSizeInBits();
      OpSize = (OpSize + 7) / 8;
      int32_t Offset = VA.getLocMemOffset() + FPDiff;
      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);

      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
      DstInfo = MachinePointerInfo::getFixedStack(FI);

      // Make sure any stack arguments overlapping with where we're storing are
      // loaded before this eventual operation. Otherwise they'll be clobbered.
      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
    } else {
      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());

      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
    }

    if (Flags.isByVal()) {
      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
                                  Flags.getByValAlign(),
                                  /*isVolatile = */ false,
                                  /*alwaysInline = */ false,
                                  DstInfo, MachinePointerInfo(0));
      MemOpChains.push_back(Cpy);
    } else {
      // Normal stack argument, put it where it's needed.
      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
                                   false, false, 0);
      MemOpChains.push_back(Store);
    }
  }

  // The loads and stores generated above shouldn't clash with each
  // other. Combining them with this TokenFactor notes that fact for the rest of
  // the backend.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                        &MemOpChains[0], MemOpChains.size());

  // Most of the rest of the instructions need to be glued together; we don't
  // want assignments to actual registers used by a call to be rearranged by a
  // well-meaning scheduler.
  SDValue InFlag;

  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // The linker is responsible for inserting veneers when necessary to put a
  // function call destination in range, so we don't need to bother with a
  // wrapper here.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    const GlobalValue *GV = G->getGlobal();
    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    const char *Sym = S->getSymbol();
    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
  }

  // We don't usually want to end the call-sequence here because we would tidy
  // the frame up *after* the call, however in the ABI-changing tail-call case
  // we've carefully laid out the parameters so that when sp is reset they'll be
  // in the correct location.
  if (IsTailCall && !IsSibCall) {
    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
                               DAG.getIntPtrConstant(0, true), InFlag, dl);
    InFlag = Chain.getValue(1);
  }

  // We produce the following DAG scheme for the actual call instruction:
  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
  //
  // Most arguments aren't going to be used and just keep the values live as
  // far as LLVM is concerned. It's expected to be selected as simply "bl
  // callee" (for a direct, non-tail call).
  std::vector<SDValue> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  if (IsTailCall) {
    // Each tail call may have to adjust the stack by a different amount, so
    // this information must travel along with the operation for eventual
    // consumption by emitEpilogue.
    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
  }

  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));


  // Add a register mask operand representing the call-preserved registers. This
  // is used later in codegen to constrain register-allocation.
  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  // If we needed glue, put it in as the last argument.
  if (InFlag.getNode())
    Ops.push_back(InFlag);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  if (IsTailCall) {
    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
  }

  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
  InFlag = Chain.getValue(1);

  // Now we can reclaim the stack, just as well do it before working out where
  // our return value is.
  if (!IsSibCall) {
    uint64_t CalleePopBytes
      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;

    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
                               DAG.getIntPtrConstant(CalleePopBytes, true),
                               InFlag, dl);
    InFlag = Chain.getValue(1);
  }

  return LowerCallResult(Chain, InFlag, CallConv,
                         IsVarArg, Ins, dl, DAG, InVals);
}

SDValue
AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
                                      CallingConv::ID CallConv, bool IsVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                      SDLoc dl, SelectionDAG &DAG,
                                      SmallVectorImpl<SDValue> &InVals) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), RVLocs, *DAG.getContext());
  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));

  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign VA = RVLocs[i];

    // Return values that are too big to fit into registers should use an sret
    // pointer, so this can be a lot simpler than the main argument code.
    assert(VA.isRegLoc() && "Memory locations not expected for call return");

    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
                                     InFlag);
    Chain = Val.getValue(1);
    InFlag = Val.getValue(2);

    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
      break;
    case CCValAssign::ZExt:
    case CCValAssign::SExt:
    case CCValAssign::AExt:
      // Floating-point arguments only get extended/truncated if they're going
      // in memory, so using the integer operation is acceptable here.
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

bool
AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
                                    CallingConv::ID CalleeCC,
                                    bool IsVarArg,
                                    bool IsCalleeStructRet,
                                    bool IsCallerStructRet,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                    SelectionDAG& DAG) const {

  // For CallingConv::C this function knows whether the ABI needs
  // changing. That's not true for other conventions so they will have to opt in
  // manually.
  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
    return false;

  const MachineFunction &MF = DAG.getMachineFunction();
  const Function *CallerF = MF.getFunction();
  CallingConv::ID CallerCC = CallerF->getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;

  // Byval parameters hand the function a pointer directly into the stack area
  // we want to reuse during a tail call. Working around this *is* possible (see
  // X86) but less efficient and uglier in LowerCall.
  for (Function::const_arg_iterator i = CallerF->arg_begin(),
         e = CallerF->arg_end(); i != e; ++i)
    if (i->hasByValAttr())
      return false;

  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
    if (IsTailCallConvention(CalleeCC) && CCMatch)
      return true;
    return false;
  }

  // Now we search for cases where we can use a tail call without changing the
  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
  // concept.

  // I want anyone implementing a new calling convention to think long and hard
  // about this assert.
  assert((!IsVarArg || CalleeCC == CallingConv::C)
         && "Unexpected variadic calling convention");

  if (IsVarArg && !Outs.empty()) {
    // At least two cases here: if caller is fastcc then we can't have any
    // memory arguments (we'd be expected to clean up the stack afterwards). If
    // caller is C then we could potentially use its argument area.

    // FIXME: for now we take the most conservative of these in both cases:
    // disallow all variadic memory operands.
    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
                   getTargetMachine(), ArgLocs, *DAG.getContext());

    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
      if (!ArgLocs[i].isRegLoc())
        return false;
  }

  // If the calling conventions do not match, then we'd better make sure the
  // results are returned in the same way as what the caller expects.
  if (!CCMatch) {
    SmallVector<CCValAssign, 16> RVLocs1;
    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
                    getTargetMachine(), RVLocs1, *DAG.getContext());
    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));

    SmallVector<CCValAssign, 16> RVLocs2;
    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
                    getTargetMachine(), RVLocs2, *DAG.getContext());
    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));

    if (RVLocs1.size() != RVLocs2.size())
      return false;
    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
        return false;
      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
        return false;
      if (RVLocs1[i].isRegLoc()) {
        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
          return false;
      } else {
        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
          return false;
      }
    }
  }

  // Nothing more to check if the callee is taking no arguments
  if (Outs.empty())
    return true;

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), ArgLocs, *DAG.getContext());

  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));

  const AArch64MachineFunctionInfo *FuncInfo
    = MF.getInfo<AArch64MachineFunctionInfo>();

  // If the stack arguments for this call would fit into our own save area then
  // the call can be made tail.
  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
}

bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
                                                   bool TailCallOpt) const {
  return CallCC == CallingConv::Fast && TailCallOpt;
}

bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
  return CallCC == CallingConv::Fast;
}

SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
                                                   SelectionDAG &DAG,
                                                   MachineFrameInfo *MFI,
                                                   int ClobberedFI) const {
  SmallVector<SDValue, 8> ArgChains;
  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;

  // Include the original chain at the beginning of the list. When this is
  // used by target LowerCall hooks, this helps legalize find the
  // CALLSEQ_BEGIN node.
  ArgChains.push_back(Chain);

  // Add a chain value for each stack argument corresponding
  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
        if (FI->getIndex() < 0) {
          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
          int64_t InLastByte = InFirstByte;
          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;

          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
            ArgChains.push_back(SDValue(L, 1));
        }

   // Build a tokenfactor for all the chains.
   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
                      &ArgChains[0], ArgChains.size());
}

static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
  switch (CC) {
  case ISD::SETEQ:  return A64CC::EQ;
  case ISD::SETGT:  return A64CC::GT;
  case ISD::SETGE:  return A64CC::GE;
  case ISD::SETLT:  return A64CC::LT;
  case ISD::SETLE:  return A64CC::LE;
  case ISD::SETNE:  return A64CC::NE;
  case ISD::SETUGT: return A64CC::HI;
  case ISD::SETUGE: return A64CC::HS;
  case ISD::SETULT: return A64CC::LO;
  case ISD::SETULE: return A64CC::LS;
  default: llvm_unreachable("Unexpected condition code");
  }
}

bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
  // icmp is implemented using adds/subs immediate, which take an unsigned
  // 12-bit immediate, optionally shifted left by 12 bits.

  // Symmetric by using adds/subs
  if (Val < 0)
    Val = -Val;

  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
}

SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
                                        ISD::CondCode CC, SDValue &A64cc,
                                        SelectionDAG &DAG, SDLoc &dl) const {
  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
    int64_t C = 0;
    EVT VT = RHSC->getValueType(0);
    bool knownInvalid = false;

    // I'm not convinced the rest of LLVM handles these edge cases properly, but
    // we can at least get it right.
    if (isSignedIntSetCC(CC)) {
      C = RHSC->getSExtValue();
    } else if (RHSC->getZExtValue() > INT64_MAX) {
      // A 64-bit constant not representable by a signed 64-bit integer is far
      // too big to fit into a SUBS immediate anyway.
      knownInvalid = true;
    } else {
      C = RHSC->getZExtValue();
    }

    if (!knownInvalid && !isLegalICmpImmediate(C)) {
      // Constant does not fit, try adjusting it by one?
      switch (CC) {
      default: break;
      case ISD::SETLT:
      case ISD::SETGE:
        if (isLegalICmpImmediate(C-1)) {
          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
          RHS = DAG.getConstant(C-1, VT);
        }
        break;
      case ISD::SETULT:
      case ISD::SETUGE:
        if (isLegalICmpImmediate(C-1)) {
          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
          RHS = DAG.getConstant(C-1, VT);
        }
        break;
      case ISD::SETLE:
      case ISD::SETGT:
        if (isLegalICmpImmediate(C+1)) {
          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
          RHS = DAG.getConstant(C+1, VT);
        }
        break;
      case ISD::SETULE:
      case ISD::SETUGT:
        if (isLegalICmpImmediate(C+1)) {
          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
          RHS = DAG.getConstant(C+1, VT);
        }
        break;
      }
    }
  }

  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
  A64cc = DAG.getConstant(CondCode, MVT::i32);
  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
                     DAG.getCondCode(CC));
}

static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
                                    A64CC::CondCodes &Alternative) {
  A64CC::CondCodes CondCode = A64CC::Invalid;
  Alternative = A64CC::Invalid;

  switch (CC) {
  default: llvm_unreachable("Unknown FP condition!");
  case ISD::SETEQ:
  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
  case ISD::SETGT:
  case ISD::SETOGT: CondCode = A64CC::GT; break;
  case ISD::SETGE:
  case ISD::SETOGE: CondCode = A64CC::GE; break;
  case ISD::SETOLT: CondCode = A64CC::MI; break;
  case ISD::SETOLE: CondCode = A64CC::LS; break;
  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
  case ISD::SETO:   CondCode = A64CC::VC; break;
  case ISD::SETUO:  CondCode = A64CC::VS; break;
  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
  case ISD::SETUGT: CondCode = A64CC::HI; break;
  case ISD::SETUGE: CondCode = A64CC::PL; break;
  case ISD::SETLT:
  case ISD::SETULT: CondCode = A64CC::LT; break;
  case ISD::SETLE:
  case ISD::SETULE: CondCode = A64CC::LE; break;
  case ISD::SETNE:
  case ISD::SETUNE: CondCode = A64CC::NE; break;
  }
  return CondCode;
}

SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT PtrVT = getPointerTy();
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();

  switch(getTargetMachine().getCodeModel()) {
  case CodeModel::Small:
    // The most efficient code is PC-relative anyway for the small memory model,
    // so we don't need to worry about relocation model.
    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
                                                 AArch64II::MO_NO_FLAG),
                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
                                                 AArch64II::MO_LO12),
                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
  case CodeModel::Large:
    return DAG.getNode(
      AArch64ISD::WrapperLarge, DL, PtrVT,
      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
  default:
    llvm_unreachable("Only small and large code models supported now");
  }
}


// (BRCOND chain, val, dest)
SDValue
AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue Chain = Op.getOperand(0);
  SDValue TheBit = Op.getOperand(1);
  SDValue DestBB = Op.getOperand(2);

  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
  // that as the consumer we are responsible for ignoring rubbish in higher
  // bits.
  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
                       DAG.getConstant(1, MVT::i32));

  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
                               DAG.getConstant(0, TheBit.getValueType()),
                               DAG.getCondCode(ISD::SETNE));

  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
                     DestBB);
}

// (BR_CC chain, condcode, lhs, rhs, dest)
SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue DestBB = Op.getOperand(4);

  if (LHS.getValueType() == MVT::f128) {
    // f128 comparisons are lowered to runtime calls by a routine which sets
    // LHS, RHS and CC appropriately for the rest of this function to continue.
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);

    // If softenSetCCOperands returned a scalar, we need to compare the result
    // against zero to select between true and false values.
    if (RHS.getNode() == 0) {
      RHS = DAG.getConstant(0, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  if (LHS.getValueType().isInteger()) {
    SDValue A64cc;

    // Integers are handled in a separate function because the combinations of
    // immediates and tests can get hairy and we may want to fiddle things.
    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);

    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
                       Chain, CmpOp, A64cc, DestBB);
  }

  // Note that some LLVM floating-point CondCodes can't be lowered to a single
  // conditional branch, hence FPCCToA64CC can set a second test, where either
  // passing is sufficient.
  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
  CondCode = FPCCToA64CC(CC, Alternative);
  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
                              DAG.getCondCode(CC));
  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
                                 Chain, SetCC, A64cc, DestBB);

  if (Alternative != A64CC::Invalid) {
    A64cc = DAG.getConstant(Alternative, MVT::i32);
    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
                           A64BR_CC, SetCC, A64cc, DestBB);

  }

  return A64BR_CC;
}

SDValue
AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
                                       RTLIB::Libcall Call) const {
  ArgListTy Args;
  ArgListEntry Entry;
  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
    EVT ArgVT = Op.getOperand(i).getValueType();
    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
    Entry.isSExt = false;
    Entry.isZExt = false;
    Args.push_back(Entry);
  }
  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());

  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());

  // By default, the input chain to this libcall is the entry node of the
  // function. If the libcall is going to be emitted as a tail call then
  // isUsedByReturnOnly will change it to the right chain if the return
  // node which is being folded has a non-entry input chain.
  SDValue InChain = DAG.getEntryNode();

  // isTailCall may be true since the callee does not reference caller stack
  // frame. Check if it's in the right position.
  SDValue TCChain = InChain;
  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
  if (isTailCall)
    InChain = TCChain;

  TargetLowering::
  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
                    0, getLibcallCallingConv(Call), isTailCall,
                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
                    Callee, Args, DAG, SDLoc(Op));
  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);

  if (!CallInfo.second.getNode())
    // It's a tailcall, return the chain (which is the DAG root).
    return DAG.getRoot();

  return CallInfo.first;
}

SDValue
AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
  if (Op.getOperand(0).getValueType() != MVT::f128) {
    // It's legal except when f128 is involved
    return Op;
  }

  RTLIB::Libcall LC;
  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());

  SDValue SrcVal = Op.getOperand(0);
  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
                     /*isSigned*/ false, SDLoc(Op));
}

SDValue
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");

  RTLIB::Libcall LC;
  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());

  return LowerF128ToCall(Op, DAG, LC);
}

SDValue
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
                                      bool IsSigned) const {
  if (Op.getOperand(0).getValueType() != MVT::f128) {
    // It's legal except when f128 is involved
    return Op;
  }

  RTLIB::Libcall LC;
  if (IsSigned)
    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
  else
    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());

  return LowerF128ToCall(Op, DAG, LC);
}

SDValue
AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
                                                  SelectionDAG &DAG) const {
  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
  assert(getTargetMachine().getRelocationModel() == Reloc::Static);

  EVT PtrVT = getPointerTy();
  SDLoc dl(Op);
  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GN->getGlobal();

  SDValue GlobalAddr = DAG.getNode(
      AArch64ISD::WrapperLarge, dl, PtrVT,
      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));

  if (GN->getOffset() != 0)
    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
                       DAG.getConstant(GN->getOffset(), PtrVT));

  return GlobalAddr;
}

SDValue
AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
                                                  SelectionDAG &DAG) const {
  assert(getTargetMachine().getCodeModel() == CodeModel::Small);

  EVT PtrVT = getPointerTy();
  SDLoc dl(Op);
  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GN->getGlobal();
  unsigned Alignment = GV->getAlignment();
  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
    // to zero when they remain undefined. In PIC mode the GOT can take care of
    // this, but in absolute mode we use a constant pool load.
    SDValue PoolAddr;
    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
                                                     AArch64II::MO_NO_FLAG),
                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
                                                     AArch64II::MO_LO12),
                           DAG.getConstant(8, MVT::i32));
    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
                                     MachinePointerInfo::getConstantPool(),
                                     /*isVolatile=*/ false,
                                     /*isNonTemporal=*/ true,
                                     /*isInvariant=*/ true, 8);
    if (GN->getOffset() != 0)
      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
                         DAG.getConstant(GN->getOffset(), PtrVT));

    return GlobalAddr;
  }

  if (Alignment == 0) {
    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
    if (GVPtrTy->getElementType()->isSized()) {
      Alignment
        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
    } else {
      // Be conservative if we can't guess, not that it really matters:
      // functions and labels aren't valid for loads, and the methods used to
      // actually calculate an address work with any alignment.
      Alignment = 1;
    }
  }

  unsigned char HiFixup, LoFixup;
  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);

  if (UseGOT) {
    HiFixup = AArch64II::MO_GOT;
    LoFixup = AArch64II::MO_GOT_LO12;
    Alignment = 8;
  } else {
    HiFixup = AArch64II::MO_NO_FLAG;
    LoFixup = AArch64II::MO_LO12;
  }

  // AArch64's small model demands the following sequence:
  // ADRP x0, somewhere
  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
                                                             HiFixup),
                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
                                                             LoFixup),
                                  DAG.getConstant(Alignment, MVT::i32));

  if (UseGOT) {
    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
                            GlobalRef);
  }

  if (GN->getOffset() != 0)
    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
                       DAG.getConstant(GN->getOffset(), PtrVT));

  return GlobalRef;
}

SDValue
AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
                                             SelectionDAG &DAG) const {
  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
  // we make those distinctions here.

  switch (getTargetMachine().getCodeModel()) {
  case CodeModel::Small:
    return LowerGlobalAddressELFSmall(Op, DAG);
  case CodeModel::Large:
    return LowerGlobalAddressELFLarge(Op, DAG);
  default:
    llvm_unreachable("Only small and large code models supported now");
  }
}

SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
                                                SDValue DescAddr,
                                                SDLoc DL,
                                                SelectionDAG &DAG) const {
  EVT PtrVT = getPointerTy();

  // The function we need to call is simply the first entry in the GOT for this
  // descriptor, load it in preparation.
  SDValue Func, Chain;
  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
                     DescAddr);

  // The function takes only one argument: the address of the descriptor itself
  // in X0.
  SDValue Glue;
  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
  Glue = Chain.getValue(1);

  // Finally, there's a special calling-convention which means that the lookup
  // must preserve all registers (except X0, obviously).
  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
  const AArch64RegisterInfo *A64RI
    = static_cast<const AArch64RegisterInfo *>(TRI);
  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();

  // We're now ready to populate the argument list, as with a normal call:
  std::vector<SDValue> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Func);
  Ops.push_back(SymAddr);
  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
  Ops.push_back(DAG.getRegisterMask(Mask));
  Ops.push_back(Glue);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
                      Ops.size());
  Glue = Chain.getValue(1);

  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
  // back to the generic handling code.
  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}

SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
                                             SelectionDAG &DAG) const {
  assert(getSubtarget()->isTargetELF() &&
         "TLS not implemented for non-ELF targets");
  assert(getTargetMachine().getCodeModel() == CodeModel::Small
         && "TLS only supported in small memory model");
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);

  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());

  SDValue TPOff;
  EVT PtrVT = getPointerTy();
  SDLoc DL(Op);
  const GlobalValue *GV = GA->getGlobal();

  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);

  if (Model == TLSModel::InitialExec) {
    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                                   AArch64II::MO_GOTTPREL),
                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                                   AArch64II::MO_GOTTPREL_LO12),
                        DAG.getConstant(8, MVT::i32));
    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
                        TPOff);
  } else if (Model == TLSModel::LocalExec) {
    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
                                               AArch64II::MO_TPREL_G1);
    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
                                               AArch64II::MO_TPREL_G0_NC);

    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
                                       DAG.getTargetConstant(0, MVT::i32)), 0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
                                       TPOff, LoVar,
                                       DAG.getTargetConstant(0, MVT::i32)), 0);
  } else if (Model == TLSModel::GeneralDynamic) {
    // Accesses used in this sequence go via the TLS descriptor which lives in
    // the GOT. Prepare an address we can use to handle this.
    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                                AArch64II::MO_TLSDESC);
    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                                AArch64II::MO_TLSDESC_LO12);
    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
                                   HiDesc, LoDesc,
                                   DAG.getConstant(8, MVT::i32));
    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);

    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
  } else if (Model == TLSModel::LocalDynamic) {
    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
    // the beginning of the module's TLS region, followed by a DTPREL offset
    // calculation.

    // These accesses will need deduplicating if there's more than one.
    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
      .getInfo<AArch64MachineFunctionInfo>();
    MFI->incNumLocalDynamicTLSAccesses();


    // Get the location of _TLS_MODULE_BASE_:
    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
                                                AArch64II::MO_TLSDESC);
    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
                                                AArch64II::MO_TLSDESC_LO12);
    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
                                   HiDesc, LoDesc,
                                   DAG.getConstant(8, MVT::i32));
    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);

    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);

    // Get the variable's offset from _TLS_MODULE_BASE_
    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
                                               AArch64II::MO_DTPREL_G1);
    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
                                               AArch64II::MO_DTPREL_G0_NC);

    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
                                       DAG.getTargetConstant(0, MVT::i32)), 0);
    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
                                       TPOff, LoVar,
                                       DAG.getTargetConstant(0, MVT::i32)), 0);
  } else
      llvm_unreachable("Unsupported TLS access model");


  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}

SDValue
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
                                      bool IsSigned) const {
  if (Op.getValueType() != MVT::f128) {
    // Legal for everything except f128.
    return Op;
  }

  RTLIB::Libcall LC;
  if (IsSigned)
    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
  else
    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());

  return LowerF128ToCall(Op, DAG, LC);
}


SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
  SDLoc dl(JT);
  EVT PtrVT = getPointerTy();

  // When compiling PIC, jump tables get put in the code section so a static
  // relocation-style is acceptable for both cases.
  switch (getTargetMachine().getCodeModel()) {
  case CodeModel::Small:
    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
                                              AArch64II::MO_LO12),
                       DAG.getConstant(1, MVT::i32));
  case CodeModel::Large:
    return DAG.getNode(
      AArch64ISD::WrapperLarge, dl, PtrVT,
      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
  default:
    llvm_unreachable("Only small and large code models supported now");
  }
}

// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue IfTrue = Op.getOperand(2);
  SDValue IfFalse = Op.getOperand(3);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();

  if (LHS.getValueType() == MVT::f128) {
    // f128 comparisons are lowered to libcalls, but slot in nicely here
    // afterwards.
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);

    // If softenSetCCOperands returned a scalar, we need to compare the result
    // against zero to select between true and false values.
    if (RHS.getNode() == 0) {
      RHS = DAG.getConstant(0, LHS.getValueType());
      CC = ISD::SETNE;
    }
  }

  if (LHS.getValueType().isInteger()) {
    SDValue A64cc;

    // Integers are handled in a separate function because the combinations of
    // immediates and tests can get hairy and we may want to fiddle things.
    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);

    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
                       CmpOp, IfTrue, IfFalse, A64cc);
  }

  // Note that some LLVM floating-point CondCodes can't be lowered to a single
  // conditional branch, hence FPCCToA64CC can set a second test, where either
  // passing is sufficient.
  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
  CondCode = FPCCToA64CC(CC, Alternative);
  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
                              DAG.getCondCode(CC));
  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
                                     Op.getValueType(),
                                     SetCC, IfTrue, IfFalse, A64cc);

  if (Alternative != A64CC::Invalid) {
    A64cc = DAG.getConstant(Alternative, MVT::i32);
    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
                               SetCC, IfTrue, A64SELECT_CC, A64cc);

  }

  return A64SELECT_CC;
}

// (SELECT testbit, iftrue, iffalse)
SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue TheBit = Op.getOperand(0);
  SDValue IfTrue = Op.getOperand(1);
  SDValue IfFalse = Op.getOperand(2);

  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
  // that as the consumer we are responsible for ignoring rubbish in higher
  // bits.
  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
                       DAG.getConstant(1, MVT::i32));
  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
                               DAG.getConstant(0, TheBit.getValueType()),
                               DAG.getCondCode(ISD::SETNE));

  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
                     A64CMP, IfTrue, IfFalse,
                     DAG.getConstant(A64CC::NE, MVT::i32));
}

// (SETCC lhs, rhs, condcode)
SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  EVT VT = Op.getValueType();

  if (LHS.getValueType() == MVT::f128) {
    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
    // for the rest of the function (some i32 or i64 values).
    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);

    // If softenSetCCOperands returned a scalar, use it.
    if (RHS.getNode() == 0) {
      assert(LHS.getValueType() == Op.getValueType() &&
             "Unexpected setcc expansion!");
      return LHS;
    }
  }

  if (LHS.getValueType().isInteger()) {
    SDValue A64cc;

    // Integers are handled in a separate function because the combinations of
    // immediates and tests can get hairy and we may want to fiddle things.
    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);

    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
                       A64cc);
  }

  // Note that some LLVM floating-point CondCodes can't be lowered to a single
  // conditional branch, hence FPCCToA64CC can set a second test, where either
  // passing is sufficient.
  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
  CondCode = FPCCToA64CC(CC, Alternative);
  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
                              DAG.getCondCode(CC));
  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
                                     CmpOp, DAG.getConstant(1, VT),
                                     DAG.getConstant(0, VT), A64cc);

  if (Alternative != A64CC::Invalid) {
    A64cc = DAG.getConstant(Alternative, MVT::i32);
    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
  }

  return A64SELECT_CC;
}

SDValue
AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();

  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
  // rather than just 8.
  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
                       Op.getOperand(1), Op.getOperand(2),
                       DAG.getConstant(32, MVT::i32), 8, false, false,
                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
}

SDValue
AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  // The layout of the va_list struct is specified in the AArch64 Procedure Call
  // Standard, section B.3.
  MachineFunction &MF = DAG.getMachineFunction();
  AArch64MachineFunctionInfo *FuncInfo
    = MF.getInfo<AArch64MachineFunctionInfo>();
  SDLoc DL(Op);

  SDValue Chain = Op.getOperand(0);
  SDValue VAList = Op.getOperand(1);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  SmallVector<SDValue, 4> MemOps;

  // void *__stack at offset 0
  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
                                    getPointerTy());
  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
                                MachinePointerInfo(SV), false, false, 0));

  // void *__gr_top at offset 8
  int GPRSize = FuncInfo->getVariadicGPRSize();
  if (GPRSize > 0) {
    SDValue GRTop, GRTopAddr;

    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
                            DAG.getConstant(8, getPointerTy()));

    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
                        DAG.getConstant(GPRSize, getPointerTy()));

    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
                                  MachinePointerInfo(SV, 8),
                                  false, false, 0));
  }

  // void *__vr_top at offset 16
  int FPRSize = FuncInfo->getVariadicFPRSize();
  if (FPRSize > 0) {
    SDValue VRTop, VRTopAddr;
    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
                            DAG.getConstant(16, getPointerTy()));

    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
                        DAG.getConstant(FPRSize, getPointerTy()));

    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
                                  MachinePointerInfo(SV, 16),
                                  false, false, 0));
  }

  // int __gr_offs at offset 24
  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
                                   DAG.getConstant(24, getPointerTy()));
  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
                                GROffsAddr, MachinePointerInfo(SV, 24),
                                false, false, 0));

  // int __vr_offs at offset 28
  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
                                   DAG.getConstant(28, getPointerTy()));
  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
                                VROffsAddr, MachinePointerInfo(SV, 28),
                                false, false, 0));

  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
                     MemOps.size());
}

SDValue
AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default: llvm_unreachable("Don't know how to custom lower this!");
  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);

  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
  case ISD::SELECT: return LowerSELECT(Op, DAG);
  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
  case ISD::SETCC: return LowerSETCC(Op, DAG);
  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
  case ISD::VASTART: return LowerVASTART(Op, DAG);
  }

  return SDValue();
}

static SDValue PerformANDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // We're looking for an SRA/SHL pair which form an SBFX.

  if (VT != MVT::i32 && VT != MVT::i64)
    return SDValue();

  if (!isa<ConstantSDNode>(N->getOperand(1)))
    return SDValue();

  uint64_t TruncMask = N->getConstantOperandVal(1);
  if (!isMask_64(TruncMask))
    return SDValue();

  uint64_t Width = CountPopulation_64(TruncMask);
  SDValue Shift = N->getOperand(0);

  if (Shift.getOpcode() != ISD::SRL)
    return SDValue();

  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
    return SDValue();
  uint64_t LSB = Shift->getConstantOperandVal(1);

  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
    return SDValue();

  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
                     DAG.getConstant(LSB, MVT::i64),
                     DAG.getConstant(LSB + Width - 1, MVT::i64));
}

/// For a true bitfield insert, the bits getting into that contiguous mask
/// should come from the low part of an existing value: they must be formed from
/// a compatible SHL operation (unless they're already low). This function
/// checks that condition and returns the least-significant bit that's
/// intended. If the operation not a field preparation, -1 is returned.
static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
                            SDValue &MaskedVal, uint64_t Mask) {
  if (!isShiftedMask_64(Mask))
    return -1;

  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
  // instruction. BFI will do a left-shift by LSB before applying the mask we've
  // spotted, so in general we should pre-emptively "undo" that by making sure
  // the incoming bits have had a right-shift applied to them.
  //
  // This right shift, however, will combine with existing left/right shifts. In
  // the simplest case of a completely straight bitfield operation, it will be
  // expected to completely cancel out with an existing SHL. More complicated
  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
  // the BFI.

  uint64_t LSB = countTrailingZeros(Mask);
  int64_t ShiftRightRequired = LSB;
  if (MaskedVal.getOpcode() == ISD::SHL &&
      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
    MaskedVal = MaskedVal.getOperand(0);
  } else if (MaskedVal.getOpcode() == ISD::SRL &&
             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
    MaskedVal = MaskedVal.getOperand(0);
  }

  if (ShiftRightRequired > 0)
    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
                            DAG.getConstant(ShiftRightRequired, MVT::i64));
  else if (ShiftRightRequired < 0) {
    // We could actually end up with a residual left shift, for example with
    // "struc.bitfield = val << 1".
    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
  }

  return LSB;
}

/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
/// a mask and an extension. Returns true if a BFI was found and provides
/// information on its surroundings.
static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
                          bool &Extended) {
  Extended = false;
  if (N.getOpcode() == ISD::ZERO_EXTEND) {
    Extended = true;
    N = N.getOperand(0);
  }

  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
    Mask = N->getConstantOperandVal(1);
    N = N.getOperand(0);
  } else {
    // Mask is the whole width.
    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
  }

  if (N.getOpcode() == AArch64ISD::BFI) {
    BFI = N;
    return true;
  }

  return false;
}

/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
/// can often be further combined with a larger mask. Ultimately, we want mask
/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
static SDValue tryCombineToBFI(SDNode *N,
                               TargetLowering::DAGCombinerInfo &DCI,
                               const AArch64Subtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  assert(N->getOpcode() == ISD::OR && "Unexpected root");

  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
  // abandon the effort.
  SDValue LHS = N->getOperand(0);
  if (LHS.getOpcode() != ISD::AND)
    return SDValue();

  uint64_t LHSMask;
  if (isa<ConstantSDNode>(LHS.getOperand(1)))
    LHSMask = LHS->getConstantOperandVal(1);
  else
    return SDValue();

  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
  // is or abandon the effort.
  SDValue RHS = N->getOperand(1);
  if (RHS.getOpcode() != ISD::AND)
    return SDValue();

  uint64_t RHSMask;
  if (isa<ConstantSDNode>(RHS.getOperand(1)))
    RHSMask = RHS->getConstantOperandVal(1);
  else
    return SDValue();

  // Can't do anything if the masks are incompatible.
  if (LHSMask & RHSMask)
    return SDValue();

  // Now we need one of the masks to be a contiguous field. Without loss of
  // generality that should be the RHS one.
  SDValue Bitfield = LHS.getOperand(0);
  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
    // We know that LHS is a candidate new value, and RHS isn't already a better
    // one.
    std::swap(LHS, RHS);
    std::swap(LHSMask, RHSMask);
  }

  // We've done our best to put the right operands in the right places, all we
  // can do now is check whether a BFI exists.
  Bitfield = RHS.getOperand(0);
  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
  if (LSB == -1)
    return SDValue();

  uint32_t Width = CountPopulation_64(RHSMask);
  assert(Width && "Expected non-zero bitfield width");

  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
                            LHS.getOperand(0), Bitfield,
                            DAG.getConstant(LSB, MVT::i64),
                            DAG.getConstant(Width, MVT::i64));

  // Mask is trivial
  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
    return BFI;

  return DAG.getNode(ISD::AND, DL, VT, BFI,
                     DAG.getConstant(LHSMask | RHSMask, VT));
}

/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
/// original input. This is surprisingly common because SROA splits things up
/// into i8 chunks, so the originally detected MaskedBFI may actually only act
/// on the low (say) byte of a word. This is then orred into the rest of the
/// word afterwards.
///
/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
///
/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
/// involved.
static SDValue tryCombineToLargerBFI(SDNode *N,
                                     TargetLowering::DAGCombinerInfo &DCI,
                                     const AArch64Subtarget *Subtarget) {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // First job is to hunt for a MaskedBFI on either the left or right. Swap
  // operands if it's actually on the right.
  SDValue BFI;
  SDValue PossExtraMask;
  uint64_t ExistingMask = 0;
  bool Extended = false;
  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
    PossExtraMask = N->getOperand(1);
  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
    PossExtraMask = N->getOperand(0);
  else
    return SDValue();

  // We can only combine a BFI with another compatible mask.
  if (PossExtraMask.getOpcode() != ISD::AND ||
      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
    return SDValue();

  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);

  // Masks must be compatible.
  if (ExtraMask & ExistingMask)
    return SDValue();

  SDValue OldBFIVal = BFI.getOperand(0);
  SDValue NewBFIVal = BFI.getOperand(1);
  if (Extended) {
    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
    // need to be made compatible.
    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
           && "Invalid types for BFI");
    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
  }

  // We need the MaskedBFI to be combined with a mask of the *same* value.
  if (PossExtraMask.getOperand(0) != OldBFIVal)
    return SDValue();

  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
                    OldBFIVal, NewBFIVal,
                    BFI.getOperand(2), BFI.getOperand(3));

  // If the masking is trivial, we don't need to create it.
  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
    return BFI;

  return DAG.getNode(ISD::AND, DL, VT, BFI,
                     DAG.getConstant(ExtraMask | ExistingMask, VT));
}

/// An EXTR instruction is made up of two shifts, ORed together. This helper
/// searches for and classifies those shifts.
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
                         bool &FromHi) {
  if (N.getOpcode() == ISD::SHL)
    FromHi = false;
  else if (N.getOpcode() == ISD::SRL)
    FromHi = true;
  else
    return false;

  if (!isa<ConstantSDNode>(N.getOperand(1)))
    return false;

  ShiftAmount = N->getConstantOperandVal(1);
  Src = N->getOperand(0);
  return true;
}

/// EXTR instruction extracts a contiguous chunk of bits from two existing
/// registers viewed as a high/low pair. This function looks for the pattern:
/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
/// EXTR. Can't quite be done in TableGen because the two immediates aren't
/// independent.
static SDValue tryCombineToEXTR(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI) {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  assert(N->getOpcode() == ISD::OR && "Unexpected root");

  if (VT != MVT::i32 && VT != MVT::i64)
    return SDValue();

  SDValue LHS;
  uint32_t ShiftLHS = 0;
  bool LHSFromHi = 0;
  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
    return SDValue();

  SDValue RHS;
  uint32_t ShiftRHS = 0;
  bool RHSFromHi = 0;
  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
    return SDValue();

  // If they're both trying to come from the high part of the register, they're
  // not really an EXTR.
  if (LHSFromHi == RHSFromHi)
    return SDValue();

  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
    return SDValue();

  if (LHSFromHi) {
    std::swap(LHS, RHS);
    std::swap(ShiftLHS, ShiftRHS);
  }

  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
                     LHS, RHS,
                     DAG.getConstant(ShiftRHS, MVT::i64));
}

/// Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
                                TargetLowering::DAGCombinerInfo &DCI,
                                const AArch64Subtarget *Subtarget) {

  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
    return SDValue();

  // Attempt to recognise bitfield-insert operations.
  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
  if (Res.getNode())
    return Res;

  // Attempt to combine an existing MaskedBFI operation into one with a larger
  // mask.
  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
  if (Res.getNode())
    return Res;

  Res = tryCombineToEXTR(N, DCI);
  if (Res.getNode())
    return Res;

  return SDValue();
}

/// Target-specific dag combine xforms for ISD::SRA
static SDValue PerformSRACombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);
  EVT VT = N->getValueType(0);

  // We're looking for an SRA/SHL pair which form an SBFX.

  if (VT != MVT::i32 && VT != MVT::i64)
    return SDValue();

  if (!isa<ConstantSDNode>(N->getOperand(1)))
    return SDValue();

  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
  SDValue Shift = N->getOperand(0);

  if (Shift.getOpcode() != ISD::SHL)
    return SDValue();

  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
    return SDValue();

  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;

  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
    return SDValue();

  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
                     DAG.getConstant(LSB, MVT::i64),
                     DAG.getConstant(LSB + Width - 1, MVT::i64));
}


SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode *N,
                                         DAGCombinerInfo &DCI) const {
  switch (N->getOpcode()) {
  default: break;
  case ISD::AND: return PerformANDCombine(N, DCI);
  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
  case ISD::SRA: return PerformSRACombine(N, DCI);
  }
  return SDValue();
}

AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    default: break;
    case 'w': // An FP/SIMD vector register
      return C_RegisterClass;
    case 'I': // Constant that can be used with an ADD instruction
    case 'J': // Constant that can be used with a SUB instruction
    case 'K': // Constant that can be used with a 32-bit logical instruction
    case 'L': // Constant that can be used with a 64-bit logical instruction
    case 'M': // Constant that can be used as a 32-bit MOV immediate
    case 'N': // Constant that can be used as a 64-bit MOV immediate
    case 'Y': // Floating point constant zero
    case 'Z': // Integer constant zero
      return C_Other;
    case 'Q': // A memory reference with base register and no offset
      return C_Memory;
    case 'S': // A symbolic address
      return C_Other;
    }
  }

  // FIXME: Ump, Utf, Usa, Ush
  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
  //      whatever they may be
  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
  // Usa: An absolute symbolic address
  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
         && Constraint != "Ush" && "Unimplemented constraints");

  return TargetLowering::getConstraintType(Constraint);
}

TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
                                                const char *Constraint) const {

  llvm_unreachable("Constraint weight unimplemented");
}

void
AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                    std::string &Constraint,
                                                    std::vector<SDValue> &Ops,
                                                    SelectionDAG &DAG) const {
  SDValue Result(0, 0);

  // Only length 1 constraints are C_Other.
  if (Constraint.size() != 1) return;

  // Only C_Other constraints get lowered like this. That means constants for us
  // so return early if there's no hope the constraint can be lowered.

  switch(Constraint[0]) {
  default: break;
  case 'I': case 'J': case 'K': case 'L':
  case 'M': case 'N': case 'Z': {
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
    if (!C)
      return;

    uint64_t CVal = C->getZExtValue();
    uint32_t Bits;

    switch (Constraint[0]) {
    default:
      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
      // is a peculiarly useless SUB constraint.
      llvm_unreachable("Unimplemented C_Other constraint");
    case 'I':
      if (CVal <= 0xfff)
        break;
      return;
    case 'K':
      if (A64Imms::isLogicalImm(32, CVal, Bits))
        break;
      return;
    case 'L':
      if (A64Imms::isLogicalImm(64, CVal, Bits))
        break;
      return;
    case 'Z':
      if (CVal == 0)
        break;
      return;
    }

    Result = DAG.getTargetConstant(CVal, Op.getValueType());
    break;
  }
  case 'S': {
    // An absolute symbolic address or label reference.
    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
                                          GA->getValueType(0));
    } else if (const BlockAddressSDNode *BA
                 = dyn_cast<BlockAddressSDNode>(Op)) {
      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
                                         BA->getValueType(0));
    } else if (const ExternalSymbolSDNode *ES
                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
                                           ES->getValueType(0));
    } else
      return;
    break;
  }
  case 'Y':
    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
      if (CFP->isExactlyValue(0.0)) {
        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
        break;
      }
    }
    return;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  // It's an unknown constraint for us. Let generic code have a go.
  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

std::pair<unsigned, const TargetRegisterClass*>
AArch64TargetLowering::getRegForInlineAsmConstraint(
                                                  const std::string &Constraint,
                                                  MVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':
      if (VT.getSizeInBits() <= 32)
        return std::make_pair(0U, &AArch64::GPR32RegClass);
      else if (VT == MVT::i64)
        return std::make_pair(0U, &AArch64::GPR64RegClass);
      break;
    case 'w':
      if (VT == MVT::f16)
        return std::make_pair(0U, &AArch64::FPR16RegClass);
      else if (VT == MVT::f32)
        return std::make_pair(0U, &AArch64::FPR32RegClass);
      else if (VT == MVT::f64)
        return std::make_pair(0U, &AArch64::FPR64RegClass);
      else if (VT.getSizeInBits() == 64)
        return std::make_pair(0U, &AArch64::VPR64RegClass);
      else if (VT == MVT::f128)
        return std::make_pair(0U, &AArch64::FPR128RegClass);
      else if (VT.getSizeInBits() == 128)
        return std::make_pair(0U, &AArch64::VPR128RegClass);
      break;
    }
  }

  // Use the default implementation in TargetLowering to convert the register
  // constraint into a member of a register class.
  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}