aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64/AArch64PromoteConstant.cpp
blob: 16c33b71ed2147893f38c616014b463a52638c78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
//=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64PromoteConstant pass which promotes constants
// to global variables when this is likely to be more efficient. Currently only
// types related to constant vector (i.e., constant vector, array of constant
// vectors, constant structure with a constant vector field, etc.) are promoted
// to global variables. Constant vectors are likely to be lowered in target
// constant pool during instruction selection already; therefore, the access
// will remain the same (memory load), but the structure types are not split
// into different constant pool accesses for each field. A bonus side effect is
// that created globals may be merged by the global merge pass.
//
// FIXME: This pass may be useful for other targets too.
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-promote-const"

// Stress testing mode - disable heuristics.
static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
                            cl::desc("Promote all vector constants"));

STATISTIC(NumPromoted, "Number of promoted constants");
STATISTIC(NumPromotedUses, "Number of promoted constants uses");

//===----------------------------------------------------------------------===//
//                       AArch64PromoteConstant
//===----------------------------------------------------------------------===//

namespace {
/// Promotes interesting constant into global variables.
/// The motivating example is:
/// static const uint16_t TableA[32] = {
///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
/// };
///
/// uint8x16x4_t LoadStatic(void) {
///   uint8x16x4_t ret;
///   ret.val[0] = vld1q_u16(TableA +  0);
///   ret.val[1] = vld1q_u16(TableA +  8);
///   ret.val[2] = vld1q_u16(TableA + 16);
///   ret.val[3] = vld1q_u16(TableA + 24);
///   return ret;
/// }
///
/// The constants in this example are folded into the uses. Thus, 4 different
/// constants are created.
///
/// As their type is vector the cheapest way to create them is to load them
/// for the memory.
///
/// Therefore the final assembly final has 4 different loads. With this pass
/// enabled, only one load is issued for the constants.
class AArch64PromoteConstant : public ModulePass {

public:
  static char ID;
  AArch64PromoteConstant() : ModulePass(ID) {}

  const char *getPassName() const override { return "AArch64 Promote Constant"; }

  /// Iterate over the functions and promote the interesting constants into
  /// global variables with module scope.
  bool runOnModule(Module &M) override {
    DEBUG(dbgs() << getPassName() << '\n');
    bool Changed = false;
    for (auto &MF : M) {
      Changed |= runOnFunction(MF);
    }
    return Changed;
  }

private:
  /// Look for interesting constants used within the given function.
  /// Promote them into global variables, load these global variables within
  /// the related function, so that the number of inserted load is minimal.
  bool runOnFunction(Function &F);

  // This transformation requires dominator info
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }

  /// Type to store a list of User.
  typedef SmallVector<Value::user_iterator, 4> Users;
  /// Map an insertion point to all the uses it dominates.
  typedef DenseMap<Instruction *, Users> InsertionPoints;
  /// Map a function to the required insertion point of load for a
  /// global variable.
  typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;

  /// Find the closest point that dominates the given Use.
  Instruction *findInsertionPoint(Value::user_iterator &Use);

  /// Check if the given insertion point is dominated by an existing
  /// insertion point.
  /// If true, the given use is added to the list of dominated uses for
  /// the related existing point.
  /// \param NewPt the insertion point to be checked
  /// \param UseIt the use to be added into the list of dominated uses
  /// \param InsertPts existing insertion points
  /// \pre NewPt and all instruction in InsertPts belong to the same function
  /// \return true if one of the insertion point in InsertPts dominates NewPt,
  ///         false otherwise
  bool isDominated(Instruction *NewPt, Value::user_iterator &UseIt,
                   InsertionPoints &InsertPts);

  /// Check if the given insertion point can be merged with an existing
  /// insertion point in a common dominator.
  /// If true, the given use is added to the list of the created insertion
  /// point.
  /// \param NewPt the insertion point to be checked
  /// \param UseIt the use to be added into the list of dominated uses
  /// \param InsertPts existing insertion points
  /// \pre NewPt and all instruction in InsertPts belong to the same function
  /// \pre isDominated returns false for the exact same parameters.
  /// \return true if it exists an insertion point in InsertPts that could
  ///         have been merged with NewPt in a common dominator,
  ///         false otherwise
  bool tryAndMerge(Instruction *NewPt, Value::user_iterator &UseIt,
                   InsertionPoints &InsertPts);

  /// Compute the minimal insertion points to dominates all the interesting
  /// uses of value.
  /// Insertion points are group per function and each insertion point
  /// contains a list of all the uses it dominates within the related function
  /// \param Val constant to be examined
  /// \param[out] InsPtsPerFunc output storage of the analysis
  void computeInsertionPoints(Constant *Val,
                              InsertionPointsPerFunc &InsPtsPerFunc);

  /// Insert a definition of a new global variable at each point contained in
  /// InsPtsPerFunc and update the related uses (also contained in
  /// InsPtsPerFunc).
  bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);

  /// Compute the minimal insertion points to dominate all the interesting
  /// uses of Val and insert a definition of a new global variable
  /// at these points.
  /// Also update the uses of Val accordingly.
  /// Currently a use of Val is considered interesting if:
  /// - Val is not UndefValue
  /// - Val is not zeroinitialized
  /// - Replacing Val per a load of a global variable is valid.
  /// \see shouldConvert for more details
  bool computeAndInsertDefinitions(Constant *Val);

  /// Promote the given constant into a global variable if it is expected to
  /// be profitable.
  /// \return true if Cst has been promoted
  bool promoteConstant(Constant *Cst);

  /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
  /// Append UseIt to this list and delete the entry of IPI in InsertPts.
  static void appendAndTransferDominatedUses(Instruction *NewPt,
                                             Value::user_iterator &UseIt,
                                             InsertionPoints::iterator &IPI,
                                             InsertionPoints &InsertPts) {
    // Record the dominated use.
    IPI->second.push_back(UseIt);
    // Transfer the dominated uses of IPI to NewPt
    // Inserting into the DenseMap may invalidate existing iterator.
    // Keep a copy of the key to find the iterator to erase.
    Instruction *OldInstr = IPI->first;
    InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second));
    // Erase IPI.
    IPI = InsertPts.find(OldInstr);
    InsertPts.erase(IPI);
  }
};
} // end anonymous namespace

char AArch64PromoteConstant::ID = 0;

namespace llvm {
void initializeAArch64PromoteConstantPass(PassRegistry &);
}

INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
                      "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
                    "AArch64 Promote Constant Pass", false, false)

ModulePass *llvm::createAArch64PromoteConstantPass() {
  return new AArch64PromoteConstant();
}

/// Check if the given type uses a vector type.
static bool isConstantUsingVectorTy(const Type *CstTy) {
  if (CstTy->isVectorTy())
    return true;
  if (CstTy->isStructTy()) {
    for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
         EltIdx < EndEltIdx; ++EltIdx)
      if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
        return true;
  } else if (CstTy->isArrayTy())
    return isConstantUsingVectorTy(CstTy->getArrayElementType());
  return false;
}

/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A use should be converted if it is legal to do so.
/// For instance, it is not legal to turn the mask operand of a shuffle vector
/// into a load of a global variable.
static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
                             unsigned OpIdx) {
  // shufflevector instruction expects a const for the mask argument, i.e., the
  // third argument. Do not promote this use in that case.
  if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
    return false;

  // extractvalue instruction expects a const idx.
  if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
    return false;

  // extractvalue instruction expects a const idx.
  if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
    return false;

  if (isa<const AllocaInst>(Instr) && OpIdx > 0)
    return false;

  // Alignment argument must be constant.
  if (isa<const LoadInst>(Instr) && OpIdx > 0)
    return false;

  // Alignment argument must be constant.
  if (isa<const StoreInst>(Instr) && OpIdx > 1)
    return false;

  // Index must be constant.
  if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
    return false;

  // Personality function and filters must be constant.
  // Give up on that instruction.
  if (isa<const LandingPadInst>(Instr))
    return false;

  // Switch instruction expects constants to compare to.
  if (isa<const SwitchInst>(Instr))
    return false;

  // Expected address must be a constant.
  if (isa<const IndirectBrInst>(Instr))
    return false;

  // Do not mess with intrinsics.
  if (isa<const IntrinsicInst>(Instr))
    return false;

  // Do not mess with inline asm.
  const CallInst *CI = dyn_cast<const CallInst>(Instr);
  if (CI && isa<const InlineAsm>(CI->getCalledValue()))
    return false;

  return true;
}

/// Check if the given Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A constant should be converted if it is likely that the materialization of
/// the constant will be tricky. Thus, we give up on zero or undef values.
///
/// \todo Currently, accept only vector related types.
/// Also we give up on all simple vector type to keep the existing
/// behavior. Otherwise, we should push here all the check of the lowering of
/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
/// constant via global merge and the fact that the same constant is stored
/// only once with this method (versus, as many function that uses the constant
/// for the regular approach, even for float).
/// Again, the simplest solution would be to promote every
/// constant and rematerialize them when they are actually cheap to create.
static bool shouldConvert(const Constant *Cst) {
  if (isa<const UndefValue>(Cst))
    return false;

  // FIXME: In some cases, it may be interesting to promote in memory
  // a zero initialized constant.
  // E.g., when the type of Cst require more instructions than the
  // adrp/add/load sequence or when this sequence can be shared by several
  // instances of Cst.
  // Ideally, we could promote this into a global and rematerialize the constant
  // when it was a bad idea.
  if (Cst->isZeroValue())
    return false;

  if (Stress)
    return true;

  // FIXME: see function \todo
  if (Cst->getType()->isVectorTy())
    return false;
  return isConstantUsingVectorTy(Cst->getType());
}

Instruction *
AArch64PromoteConstant::findInsertionPoint(Value::user_iterator &Use) {
  // If this user is a phi, the insertion point is in the related
  // incoming basic block.
  PHINode *PhiInst = dyn_cast<PHINode>(*Use);
  Instruction *InsertionPoint;
  if (PhiInst)
    InsertionPoint =
        PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
  else
    InsertionPoint = dyn_cast<Instruction>(*Use);
  assert(InsertionPoint && "User is not an instruction!");
  return InsertionPoint;
}

bool AArch64PromoteConstant::isDominated(Instruction *NewPt,
                                         Value::user_iterator &UseIt,
                                         InsertionPoints &InsertPts) {

  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
      *NewPt->getParent()->getParent()).getDomTree();

  // Traverse all the existing insertion points and check if one is dominating
  // NewPt. If it is, remember that.
  for (auto &IPI : InsertPts) {
    if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
        // When IPI.first is a terminator instruction, DT may think that
        // the result is defined on the edge.
        // Here we are testing the insertion point, not the definition.
        (IPI.first->getParent() != NewPt->getParent() &&
         DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
      // No need to insert this point. Just record the dominated use.
      DEBUG(dbgs() << "Insertion point dominated by:\n");
      DEBUG(IPI.first->print(dbgs()));
      DEBUG(dbgs() << '\n');
      IPI.second.push_back(UseIt);
      return true;
    }
  }
  return false;
}

bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt,
                                         Value::user_iterator &UseIt,
                                         InsertionPoints &InsertPts) {
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
      *NewPt->getParent()->getParent()).getDomTree();
  BasicBlock *NewBB = NewPt->getParent();

  // Traverse all the existing insertion point and check if one is dominated by
  // NewPt and thus useless or can be combined with NewPt into a common
  // dominator.
  for (InsertionPoints::iterator IPI = InsertPts.begin(),
                                 EndIPI = InsertPts.end();
       IPI != EndIPI; ++IPI) {
    BasicBlock *CurBB = IPI->first->getParent();
    if (NewBB == CurBB) {
      // Instructions are in the same block.
      // By construction, NewPt is dominating the other.
      // Indeed, isDominated returned false with the exact same arguments.
      DEBUG(dbgs() << "Merge insertion point with:\n");
      DEBUG(IPI->first->print(dbgs()));
      DEBUG(dbgs() << "\nat considered insertion point.\n");
      appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
      return true;
    }

    // Look for a common dominator
    BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
    // If none exists, we cannot merge these two points.
    if (!CommonDominator)
      continue;

    if (CommonDominator != NewBB) {
      // By construction, the CommonDominator cannot be CurBB.
      assert(CommonDominator != CurBB &&
             "Instruction has not been rejected during isDominated check!");
      // Take the last instruction of the CommonDominator as insertion point
      NewPt = CommonDominator->getTerminator();
    }
    // else, CommonDominator is the block of NewBB, hence NewBB is the last
    // possible insertion point in that block.
    DEBUG(dbgs() << "Merge insertion point with:\n");
    DEBUG(IPI->first->print(dbgs()));
    DEBUG(dbgs() << '\n');
    DEBUG(NewPt->print(dbgs()));
    DEBUG(dbgs() << '\n');
    appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
    return true;
  }
  return false;
}

void AArch64PromoteConstant::computeInsertionPoints(
    Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
  DEBUG(dbgs() << "** Compute insertion points **\n");
  for (Value::user_iterator UseIt = Val->user_begin(),
                            EndUseIt = Val->user_end();
       UseIt != EndUseIt; ++UseIt) {
    // If the user is not an Instruction, we cannot modify it.
    if (!isa<Instruction>(*UseIt))
      continue;

    // Filter out uses that should not be converted.
    if (!shouldConvertUse(Val, cast<Instruction>(*UseIt), UseIt.getOperandNo()))
      continue;

    DEBUG(dbgs() << "Considered use, opidx " << UseIt.getOperandNo() << ":\n");
    DEBUG((*UseIt)->print(dbgs()));
    DEBUG(dbgs() << '\n');

    Instruction *InsertionPoint = findInsertionPoint(UseIt);

    DEBUG(dbgs() << "Considered insertion point:\n");
    DEBUG(InsertionPoint->print(dbgs()));
    DEBUG(dbgs() << '\n');

    // Check if the current insertion point is useless, i.e., it is dominated
    // by another one.
    InsertionPoints &InsertPts =
        InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
    if (isDominated(InsertionPoint, UseIt, InsertPts))
      continue;
    // This insertion point is useful, check if we can merge some insertion
    // point in a common dominator or if NewPt dominates an existing one.
    if (tryAndMerge(InsertionPoint, UseIt, InsertPts))
      continue;

    DEBUG(dbgs() << "Keep considered insertion point\n");

    // It is definitely useful by its own
    InsertPts[InsertionPoint].push_back(UseIt);
  }
}

bool AArch64PromoteConstant::insertDefinitions(
    Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
  // We will create one global variable per Module.
  DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
  bool HasChanged = false;

  // Traverse all insertion points in all the function.
  for (InsertionPointsPerFunc::iterator FctToInstPtsIt = InsPtsPerFunc.begin(),
                                        EndIt = InsPtsPerFunc.end();
       FctToInstPtsIt != EndIt; ++FctToInstPtsIt) {
    InsertionPoints &InsertPts = FctToInstPtsIt->second;
// Do more checking for debug purposes.
#ifndef NDEBUG
    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
        *FctToInstPtsIt->first).getDomTree();
#endif
    GlobalVariable *PromotedGV;
    assert(!InsertPts.empty() && "Empty uses does not need a definition");

    Module *M = FctToInstPtsIt->first->getParent();
    DenseMap<Module *, GlobalVariable *>::iterator MapIt =
        ModuleToMergedGV.find(M);
    if (MapIt == ModuleToMergedGV.end()) {
      PromotedGV = new GlobalVariable(
          *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
          "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
      PromotedGV->setInitializer(Cst);
      ModuleToMergedGV[M] = PromotedGV;
      DEBUG(dbgs() << "Global replacement: ");
      DEBUG(PromotedGV->print(dbgs()));
      DEBUG(dbgs() << '\n');
      ++NumPromoted;
      HasChanged = true;
    } else {
      PromotedGV = MapIt->second;
    }

    for (InsertionPoints::iterator IPI = InsertPts.begin(),
                                   EndIPI = InsertPts.end();
         IPI != EndIPI; ++IPI) {
      // Create the load of the global variable.
      IRBuilder<> Builder(IPI->first->getParent(), IPI->first);
      LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
      DEBUG(dbgs() << "**********\n");
      DEBUG(dbgs() << "New def: ");
      DEBUG(LoadedCst->print(dbgs()));
      DEBUG(dbgs() << '\n');

      // Update the dominated uses.
      Users &DominatedUsers = IPI->second;
      for (Value::user_iterator Use : DominatedUsers) {
#ifndef NDEBUG
        assert((DT.dominates(LoadedCst, cast<Instruction>(*Use)) ||
                (isa<PHINode>(*Use) &&
                 DT.dominates(LoadedCst, findInsertionPoint(Use)))) &&
               "Inserted definition does not dominate all its uses!");
#endif
        DEBUG(dbgs() << "Use to update " << Use.getOperandNo() << ":");
        DEBUG(Use->print(dbgs()));
        DEBUG(dbgs() << '\n');
        Use->setOperand(Use.getOperandNo(), LoadedCst);
        ++NumPromotedUses;
      }
    }
  }
  return HasChanged;
}

bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
  InsertionPointsPerFunc InsertPtsPerFunc;
  computeInsertionPoints(Val, InsertPtsPerFunc);
  return insertDefinitions(Val, InsertPtsPerFunc);
}

bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
  assert(Cst && "Given variable is not a valid constant.");

  if (!shouldConvert(Cst))
    return false;

  DEBUG(dbgs() << "******************************\n");
  DEBUG(dbgs() << "Candidate constant: ");
  DEBUG(Cst->print(dbgs()));
  DEBUG(dbgs() << '\n');

  return computeAndInsertDefinitions(Cst);
}

bool AArch64PromoteConstant::runOnFunction(Function &F) {
  // Look for instructions using constant vector. Promote that constant to a
  // global variable. Create as few loads of this variable as possible and
  // update the uses accordingly.
  bool LocalChange = false;
  SmallSet<Constant *, 8> AlreadyChecked;

  for (auto &MBB : F) {
    for (auto &MI : MBB) {
      // Traverse the operand, looking for constant vectors. Replace them by a
      // load of a global variable of constant vector type.
      for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands();
           OpIdx != EndOpIdx; ++OpIdx) {
        Constant *Cst = dyn_cast<Constant>(MI.getOperand(OpIdx));
        // There is no point in promoting global values as they are already
        // global. Do not promote constant expressions either, as they may
        // require some code expansion.
        if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
            AlreadyChecked.insert(Cst).second)
          LocalChange |= promoteConstant(Cst);
      }
    }
  }
  return LocalChange;
}