aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM/ARMCodeEmitter.cpp
blob: f786df97b8a5a0252e577f99b89767a8da9bc6eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMInstrInfo.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

STATISTIC(NumEmitted, "Number of machine instructions emitted");

namespace {
  class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
    ARMJITInfo                *JTI;
    const ARMInstrInfo        *II;
    const TargetData          *TD;
    TargetMachine             &TM;
    MachineCodeEmitter        &MCE;
    const std::vector<MachineConstantPoolEntry> *MCPEs;
    
  public:
    static char ID;
    explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
      : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
      MCE(mce), MCPEs(0) {}
    ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
            const ARMInstrInfo &ii, const TargetData &td)
      : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
      MCE(mce), MCPEs(0) {}

    bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const {
      return "ARM Machine Code Emitter";
    }

    void emitInstruction(const MachineInstr &MI);

  private:

    void emitWordLE(unsigned Binary);

    void emitConstPoolInstruction(const MachineInstr &MI);

    void emitMOVi2piecesInstruction(const MachineInstr &MI);

    void addPCLabel(unsigned LabelID);

    void emitPseudoInstruction(const MachineInstr &MI);

    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
                                    const TargetInstrDesc &TID,
                                    const MachineOperand &MO,
                                    unsigned OpIdx);

    unsigned getMachineSoImmOpValue(unsigned SoImm);

    unsigned getAddrModeSBit(const MachineInstr &MI,
                             const TargetInstrDesc &TID) const;

    void emitDataProcessingInstruction(const MachineInstr &MI,
                                       unsigned ImplicitRn = 0);

    void emitLoadStoreInstruction(const MachineInstr &MI,
                                  unsigned ImplicitRn = 0);

    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
                                      unsigned ImplicitRn = 0);

    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);

    void emitMulFrmInstruction(const MachineInstr &MI);

    void emitExtendInstruction(const MachineInstr &MI);

    void emitMiscArithInstruction(const MachineInstr &MI);

    void emitBranchInstruction(const MachineInstr &MI);

    void emitMiscBranchInstruction(const MachineInstr &MI);

    /// getBinaryCodeForInstr - This function, generated by the
    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
    /// machine instructions.
    ///
    unsigned getBinaryCodeForInstr(const MachineInstr &MI);

    /// getMachineOpValue - Return binary encoding of operand. If the machine
    /// operand requires relocation, record the relocation and return zero.
    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
      return getMachineOpValue(MI, MI.getOperand(OpIdx));
    }

    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    ///
    unsigned getShiftOp(unsigned Imm) const ;

    /// Routines that handle operands which add machine relocations which are
    /// fixed up by the JIT fixup stage.
    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
                           bool NeedStub);
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                              int Disp = 0, unsigned PCAdj = 0 );
    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
                              unsigned PCAdj = 0);
    void emitGlobalConstant(const Constant *CV);
    void emitMachineBasicBlock(MachineBasicBlock *BB);
  };
  char ARMCodeEmitter::ID = 0;
}

/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
/// to the specified MCE object.
FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
                                             MachineCodeEmitter &MCE) {
  return new ARMCodeEmitter(TM, MCE);
}

bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
          MF.getTarget().getRelocationModel() != Reloc::Static) &&
         "JIT relocation model must be set to static or default!");
  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
  JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
  MCPEs = &MF.getConstantPool()->getConstants();
  JTI->Initialize(MCPEs);

  do {
    DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
    MCE.startFunction(MF);
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
         MBB != E; ++MBB) {
      MCE.StartMachineBasicBlock(MBB);
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
           I != E; ++I)
        emitInstruction(*I);
    }
  } while (MCE.finishFunction(MF));

  return false;
}

/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
  default: assert(0 && "Unknown shift opc!");
  case ARM_AM::asr: return 2;
  case ARM_AM::lsl: return 0;
  case ARM_AM::lsr: return 1;
  case ARM_AM::ror:
  case ARM_AM::rrx: return 3;
  }
  return 0;
}

/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
                                           const MachineOperand &MO) {
  if (MO.isReg())
    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
  else if (MO.isImm())
    return static_cast<unsigned>(MO.getImm());
  else if (MO.isGlobal())
    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
  else if (MO.isSymbol())
    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
  else if (MO.isCPI())
    emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
  else if (MO.isJTI())
    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
  else if (MO.isMBB())
    emitMachineBasicBlock(MO.getMBB());
  else {
    cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
    abort();
  }
  return 0;
}

/// emitGlobalAddress - Emit the specified address to the code stream.
///
void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV,
                                       unsigned Reloc, bool NeedStub) {
  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
                                             Reloc, GV, 0, NeedStub));
}

/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
                                                 Reloc, ES));
}

/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                                          int Disp /* = 0 */,
                                          unsigned PCAdj /* = 0 */) {
  // Tell JIT emitter we'll resolve the address.
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
                                                    Reloc, CPI, PCAdj, true));
}

/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
                                          unsigned PCAdj /* = 0 */) {
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
                                                    Reloc, JTIndex, PCAdj));
}

/// emitMachineBasicBlock - Emit the specified address basic block.
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
                                             ARM::reloc_arm_branch, BB));
}

void ARMCodeEmitter::emitWordLE(unsigned Binary) {
  DOUT << "  " << (void*)Binary << "\n";
  MCE.emitWordLE(Binary);
}

void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
  DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;

  NumEmitted++;  // Keep track of the # of mi's emitted
  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
  default:
    assert(0 && "Unhandled instruction encoding format!");
    break;
  case ARMII::Pseudo:
    emitPseudoInstruction(MI);
    break;
  case ARMII::DPFrm:
  case ARMII::DPSoRegFrm:
    emitDataProcessingInstruction(MI);
    break;
  case ARMII::LdFrm:
  case ARMII::StFrm:
    emitLoadStoreInstruction(MI);
    break;
  case ARMII::LdMiscFrm:
  case ARMII::StMiscFrm:
    emitMiscLoadStoreInstruction(MI);
    break;
  case ARMII::LdMulFrm:
  case ARMII::StMulFrm:
    emitLoadStoreMultipleInstruction(MI);
    break;
  case ARMII::MulFrm:
    emitMulFrmInstruction(MI);
    break;
  case ARMII::ExtFrm:
    emitExtendInstruction(MI);
    break;
  case ARMII::ArithMiscFrm:
    emitMiscArithInstruction(MI);
    break;
  case ARMII::BrFrm:
    emitBranchInstruction(MI);
    break;
  case ARMII::BrMiscFrm:
    emitMiscBranchInstruction(MI);
    break;
  }
}

void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
  unsigned CPI = MI.getOperand(0).getImm();
  unsigned CPIndex = MI.getOperand(1).getIndex();
  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
  
  // Remember the CONSTPOOL_ENTRY address for later relocation.
  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());

  // Emit constpool island entry. In most cases, the actual values will be
  // resolved and relocated after code emission.
  if (MCPE.isMachineConstantPoolEntry()) {
    ARMConstantPoolValue *ACPV =
      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);

    DOUT << "  ** ARM constant pool #" << CPI << " @ "
         << (void*)MCE.getCurrentPCValue() << " " << *ACPV << "\n";

    GlobalValue *GV = ACPV->getGV();
    if (GV) {
      assert(!ACPV->isStub() && "Don't know how to deal this yet!");
      MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
                                                ARM::reloc_arm_machine_cp_entry,
                                                GV, CPIndex, false));
     } else  {
      assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
    }
    emitWordLE(0);
  } else {
    Constant *CV = MCPE.Val.ConstVal;

    DOUT << "  ** Constant pool #" << CPI << " @ "
         << (void*)MCE.getCurrentPCValue() << " " << *CV << "\n";

    if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
      emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
      emitWordLE(0);
    } else {
      assert(CV->getType()->isInteger() &&
             "Not expecting non-integer constpool entries yet!");
      const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
      emitWordLE(Val);
    }
  }
}

void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
  const MachineOperand &MO0 = MI.getOperand(0);
  const MachineOperand &MO1 = MI.getOperand(1);
  assert(MO1.isImm() && "Not a valid so_imm value!");
  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());

  // Emit the 'mov' instruction.
  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101

  // Set the conditional execution predicate.
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;

  // Encode so_imm.
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
  Binary |= 1 << ARMII::I_BitShift;
  Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
  emitWordLE(Binary);

  // Now the 'orr' instruction.
  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100

  // Set the conditional execution predicate.
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode Rd.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;

  // Encode Rn.
  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;

  // Encode so_imm.
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
  Binary |= 1 << ARMII::I_BitShift;
  Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
  emitWordLE(Binary);
}

void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
  DOUT << "  ** LPC" << LabelID << " @ "
       << (void*)MCE.getCurrentPCValue() << '\n';
  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
}

void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
  unsigned Opcode = MI.getDesc().Opcode;
  switch (Opcode) {
  default:
    abort(); // FIXME:
  case ARM::CONSTPOOL_ENTRY:
    emitConstPoolInstruction(MI);
    break;
  case ARM::PICADD: {
    // Remember of the address of the PC label for relocation later.
    addPCLabel(MI.getOperand(2).getImm());
    // PICADD is just an add instruction that implicitly read pc.
    emitDataProcessingInstruction(MI, ARM::PC);
    break;
  }
  case ARM::PICLDR:
  case ARM::PICLDRB:
  case ARM::PICSTR:
  case ARM::PICSTRB: {
    // Remember of the address of the PC label for relocation later.
    addPCLabel(MI.getOperand(2).getImm());
    // These are just load / store instructions that implicitly read pc.
    emitLoadStoreInstruction(MI, ARM::PC);
    break;
  }
  case ARM::PICLDRH:
  case ARM::PICLDRSH:
  case ARM::PICLDRSB:
  case ARM::PICSTRH: {
    // Remember of the address of the PC label for relocation later.
    addPCLabel(MI.getOperand(2).getImm());
    // These are just load / store instructions that implicitly read pc.
    emitMiscLoadStoreInstruction(MI, ARM::PC);
    break;
  }
  case ARM::MOVi2pieces:
    // Two instructions to materialize a constant.
    emitMOVi2piecesInstruction(MI);
    break;
  }
}


unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
                                                const TargetInstrDesc &TID,
                                                const MachineOperand &MO,
                                                unsigned OpIdx) {
  unsigned Binary = getMachineOpValue(MI, MO);

  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());

  // Encode the shift opcode.
  unsigned SBits = 0;
  unsigned Rs = MO1.getReg();
  if (Rs) {
    // Set shift operand (bit[7:4]).
    // LSL - 0001
    // LSR - 0011
    // ASR - 0101
    // ROR - 0111
    // RRX - 0110 and bit[11:8] clear.
    switch (SOpc) {
    default: assert(0 && "Unknown shift opc!");
    case ARM_AM::lsl: SBits = 0x1; break;
    case ARM_AM::lsr: SBits = 0x3; break;
    case ARM_AM::asr: SBits = 0x5; break;
    case ARM_AM::ror: SBits = 0x7; break;
    case ARM_AM::rrx: SBits = 0x6; break;
    }
  } else {
    // Set shift operand (bit[6:4]).
    // LSL - 000
    // LSR - 010
    // ASR - 100
    // ROR - 110
    switch (SOpc) {
    default: assert(0 && "Unknown shift opc!");
    case ARM_AM::lsl: SBits = 0x0; break;
    case ARM_AM::lsr: SBits = 0x2; break;
    case ARM_AM::asr: SBits = 0x4; break;
    case ARM_AM::ror: SBits = 0x6; break;
    }
  }
  Binary |= SBits << 4;
  if (SOpc == ARM_AM::rrx)
    return Binary;

  // Encode the shift operation Rs or shift_imm (except rrx).
  if (Rs) {
    // Encode Rs bit[11:8].
    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
    return Binary |
      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
  }

  // Encode shift_imm bit[11:7].
  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}

unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
  // Encode rotate_imm.
  unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
    << ARMII::SoRotImmShift;

  // Encode immed_8.
  Binary |= ARM_AM::getSOImmValImm(SoImm);
  return Binary;
}

unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
                                         const TargetInstrDesc &TID) const {
  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
    const MachineOperand &MO = MI.getOperand(i-1);
    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
      return 1 << ARMII::S_BitShift;
  }
  return 0;
}

void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
                                                   unsigned ImplicitRn) {
  const TargetInstrDesc &TID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode S bit if MI modifies CPSR.
  Binary |= getAddrModeSBit(MI, TID);

  // Encode register def if there is one.
  unsigned NumDefs = TID.getNumDefs();
  unsigned OpIdx = 0;
  if (NumDefs) {
    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdShift;
    ++OpIdx;
  }

  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
    ++OpIdx;

  // Encode first non-shifter register operand if there is one.
  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
  if (!isUnary) {
    if (ImplicitRn)
      // Special handling for implicit use (e.g. PC).
      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
                 << ARMII::RegRnShift);
    else {
      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
      ++OpIdx;
    }
  }

  // Encode shifter operand.
  const MachineOperand &MO = MI.getOperand(OpIdx);
  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
    // Encode SoReg.
    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
    return;
  }

  if (MO.isReg()) {
    // Encode register Rm.
    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
    return;
  }

  // Encode so_imm.
  // Set bit I(25) to identify this is the immediate form of <shifter_op>
  Binary |= 1 << ARMII::I_BitShift;
  Binary |= getMachineSoImmOpValue(MO.getImm());

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
                                              unsigned ImplicitRn) {
  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Set first operand
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Set second operand
  unsigned OpIdx = 1;
  if (ImplicitRn)
    // Special handling for implicit use (e.g. PC).
    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
               << ARMII::RegRnShift);
  else {
    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
    ++OpIdx;
  }

  const MachineOperand &MO2 = MI.getOperand(OpIdx);
  unsigned AM2Opc = (ImplicitRn == ARM::PC)
    ? 0 : MI.getOperand(OpIdx+1).getImm();

  // Set bit U(23) according to sign of immed value (positive or negative).
  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
             ARMII::U_BitShift);
  if (!MO2.getReg()) { // is immediate
    if (ARM_AM::getAM2Offset(AM2Opc))
      // Set the value of offset_12 field
      Binary |= ARM_AM::getAM2Offset(AM2Opc);
    emitWordLE(Binary);
    return;
  }

  // Set bit I(25), because this is not in immediate enconding.
  Binary |= 1 << ARMII::I_BitShift;
  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
  // Set bit[3:0] to the corresponding Rm register
  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());

  // if this instr is in scaled register offset/index instruction, set
  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
    Binary |= getShiftOp(AM2Opc) << 5;  // shift
    Binary |= ShImm              << 7;  // shift_immed
  }

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
                                                  unsigned ImplicitRn) {
  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Set first operand
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;

  // Set second operand
  unsigned OpIdx = 1;
  if (ImplicitRn)
    // Special handling for implicit use (e.g. PC).
    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
               << ARMII::RegRnShift);
  else {
    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
    ++OpIdx;
  }

  const MachineOperand &MO2 = MI.getOperand(OpIdx);
  unsigned AM3Opc = (ImplicitRn == ARM::PC)
    ? 0 : MI.getOperand(OpIdx+1).getImm();

  // Set bit U(23) according to sign of immed value (positive or negative)
  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
             ARMII::U_BitShift);

  // If this instr is in register offset/index encoding, set bit[3:0]
  // to the corresponding Rm register.
  if (MO2.getReg()) {
    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
    emitWordLE(Binary);
    return;
  }

  // This instr is in immediate offset/index encoding, set bit 22 to 1.
  Binary |= 1 << ARMII::AM3_I_BitShift;
  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
    // Set operands
    Binary |= (ImmOffs >> 4) << 8;  // immedH
    Binary |= (ImmOffs & ~0xF);     // immedL
  }

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Set first operand
  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;

  // Set addressing mode by modifying bits U(23) and P(24)
  // IA - Increment after  - bit U = 1 and bit P = 0
  // IB - Increment before - bit U = 1 and bit P = 1
  // DA - Decrement after  - bit U = 0 and bit P = 0
  // DB - Decrement before - bit U = 0 and bit P = 1
  const MachineOperand &MO = MI.getOperand(1);
  ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
  switch (Mode) {
  default: assert(0 && "Unknown addressing sub-mode!");
  case ARM_AM::da:                      break;
  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
  }

  // Set bit W(21)
  if (ARM_AM::getAM4WBFlag(MO.getImm()))
    Binary |= 0x1 << ARMII::W_BitShift;

  // Set registers
  for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (MO.isReg() && MO.isImplicit())
      continue;
    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
           RegNum < 16);
    Binary |= 0x1 << RegNum;
  }

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
  const TargetInstrDesc &TID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Encode S bit if MI modifies CPSR.
  Binary |= getAddrModeSBit(MI, TID);

  // 32x32->64bit operations have two destination registers. The number
  // of register definitions will tell us if that's what we're dealing with.
  unsigned OpIdx = 0;
  if (TID.getNumDefs() == 2)
    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;

  // Encode Rd
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;

  // Encode Rm
  Binary |= getMachineOpValue(MI, OpIdx++);

  // Encode Rs
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;

  // Many multiple instructions (e.g. MLA) have three src operands. Encode
  // it as Rn (for multiply, that's in the same offset as RdLo.
  if (TID.getNumOperands() > OpIdx &&
      !TID.OpInfo[OpIdx].isPredicate() &&
      !TID.OpInfo[OpIdx].isOptionalDef())
    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
  const TargetInstrDesc &TID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;

  // Encode Rd
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;

  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
  const MachineOperand &MO2 = MI.getOperand(OpIdx);
  if (MO2.isReg()) {
    // Two register operand form.
    // Encode Rn.
    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;

    // Encode Rm.
    Binary |= getMachineOpValue(MI, MO2);
    ++OpIdx;
  } else {
    Binary |= getMachineOpValue(MI, MO1);
  }

  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
  if (MI.getOperand(OpIdx).isImm() &&
      !TID.OpInfo[OpIdx].isPredicate() &&
      !TID.OpInfo[OpIdx].isOptionalDef())
    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
  const TargetInstrDesc &TID = MI.getDesc();

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  unsigned OpIdx = 0;

  // Encode Rd
  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;

  const MachineOperand &MO = MI.getOperand(OpIdx++);
  if (OpIdx == TID.getNumOperands() ||
      TID.OpInfo[OpIdx].isPredicate() ||
      TID.OpInfo[OpIdx].isOptionalDef()) {
    // Encode Rm and it's done.
    Binary |= getMachineOpValue(MI, MO);
    emitWordLE(Binary);
    return;
  }

  // Encode Rn.
  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;

  // Encode Rm.
  Binary |= getMachineOpValue(MI, OpIdx++);

  // Encode shift_imm.
  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
  Binary |= ShiftAmt << ARMII::ShiftShift;
  
  emitWordLE(Binary);
}

void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
  const TargetInstrDesc &TID = MI.getDesc();

  if (TID.Opcode == ARM::TPsoft)
    abort(); // FIXME

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  // Set signed_immed_24 field
  Binary |= getMachineOpValue(MI, 0);

  emitWordLE(Binary);
}

void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
  const TargetInstrDesc &TID = MI.getDesc();
  if (TID.Opcode == ARM::BX ||
      TID.Opcode == ARM::BR_JTr ||
      TID.Opcode == ARM::BR_JTm ||
      TID.Opcode == ARM::BR_JTadd)
    abort(); // FIXME

  // Part of binary is determined by TableGn.
  unsigned Binary = getBinaryCodeForInstr(MI);

  // Set the conditional execution predicate
  Binary |= II->getPredicate(&MI) << ARMII::CondShift;

  if (TID.Opcode == ARM::BX_RET)
    // The return register is LR.
    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
  else 
    // otherwise, set the return register
    Binary |= getMachineOpValue(MI, 0);

  emitWordLE(Binary);
}

#include "ARMGenCodeEmitter.inc"