1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
|
//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace llvm;
namespace {
class ARMOperand;
class ARMAsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
MCAsmParser &Parser;
struct {
ARMCC::CondCodes Cond; // Condition for IT block.
unsigned Mask:4; // Condition mask for instructions.
// Starting at first 1 (from lsb).
// '1' condition as indicated in IT.
// '0' inverse of condition (else).
// Count of instructions in IT block is
// 4 - trailingzeroes(mask)
bool FirstCond; // Explicit flag for when we're parsing the
// First instruction in the IT block. It's
// implied in the mask, so needs special
// handling.
unsigned CurPosition; // Current position in parsing of IT
// block. In range [0,3]. Initialized
// according to count of instructions in block.
// ~0U if no active IT block.
} ITState;
bool inITBlock() { return ITState.CurPosition != ~0U;}
void forwardITPosition() {
if (!inITBlock()) return;
// Move to the next instruction in the IT block, if there is one. If not,
// mark the block as done.
unsigned TZ = CountTrailingZeros_32(ITState.Mask);
if (++ITState.CurPosition == 5 - TZ)
ITState.CurPosition = ~0U; // Done with the IT block after this.
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
int tryParseRegister();
bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
unsigned &ShiftAmount);
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool parseDirectiveThumb(SMLoc L);
bool parseDirectiveThumbFunc(SMLoc L);
bool parseDirectiveCode(SMLoc L);
bool parseDirectiveSyntax(SMLoc L);
StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
bool &CarrySetting, unsigned &ProcessorIMod,
StringRef &ITMask);
void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode);
bool isThumb() const {
// FIXME: Can tablegen auto-generate this?
return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
}
bool isThumbOne() const {
return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
}
bool isThumbTwo() const {
return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
}
bool hasV6Ops() const {
return STI.getFeatureBits() & ARM::HasV6Ops;
}
bool hasV7Ops() const {
return STI.getFeatureBits() & ARM::HasV7Ops;
}
void SwitchMode() {
unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
setAvailableFeatures(FB);
}
bool isMClass() const {
return STI.getFeatureBits() & ARM::FeatureMClass;
}
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"
/// }
OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseCoprocNumOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseCoprocRegOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseCoprocOptionOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseMemBarrierOptOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseProcIFlagsOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseMSRMaskOperand(
SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
StringRef Op, int Low, int High);
OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
return parsePKHImm(O, "lsl", 0, 31);
}
OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
return parsePKHImm(O, "asr", 1, 32);
}
OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
// Asm Match Converter Methods
bool cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtStrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtVLDwbFixed(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtVLDwbRegister(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtVSTwbFixed(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool cvtVSTwbRegister(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &);
bool validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
void processInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
bool shouldOmitCCOutOperand(StringRef Mnemonic,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
public:
enum ARMMatchResultTy {
Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
Match_RequiresNotITBlock,
Match_RequiresV6,
Match_RequiresThumb2
};
ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
: MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
MCAsmParserExtension::Initialize(_Parser);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
// Not in an ITBlock to start with.
ITState.CurPosition = ~0U;
}
// Implementation of the MCTargetAsmParser interface:
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirective(AsmToken DirectiveID);
unsigned checkTargetMatchPredicate(MCInst &Inst);
bool MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out);
};
} // end anonymous namespace
namespace {
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
class ARMOperand : public MCParsedAsmOperand {
enum KindTy {
k_CondCode,
k_CCOut,
k_ITCondMask,
k_CoprocNum,
k_CoprocReg,
k_CoprocOption,
k_Immediate,
k_FPImmediate,
k_MemBarrierOpt,
k_Memory,
k_PostIndexRegister,
k_MSRMask,
k_ProcIFlags,
k_VectorIndex,
k_Register,
k_RegisterList,
k_DPRRegisterList,
k_SPRRegisterList,
k_VectorList,
k_ShiftedRegister,
k_ShiftedImmediate,
k_ShifterImmediate,
k_RotateImmediate,
k_BitfieldDescriptor,
k_Token
} Kind;
SMLoc StartLoc, EndLoc;
SmallVector<unsigned, 8> Registers;
union {
struct {
ARMCC::CondCodes Val;
} CC;
struct {
unsigned Val;
} Cop;
struct {
unsigned Val;
} CoprocOption;
struct {
unsigned Mask:4;
} ITMask;
struct {
ARM_MB::MemBOpt Val;
} MBOpt;
struct {
ARM_PROC::IFlags Val;
} IFlags;
struct {
unsigned Val;
} MMask;
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
} Reg;
// A vector register list is a sequential list of 1 to 4 registers.
struct {
unsigned RegNum;
unsigned Count;
} VectorList;
struct {
unsigned Val;
} VectorIndex;
struct {
const MCExpr *Val;
} Imm;
struct {
unsigned Val; // encoded 8-bit representation
} FPImm;
/// Combined record for all forms of ARM address expressions.
struct {
unsigned BaseRegNum;
// Offset is in OffsetReg or OffsetImm. If both are zero, no offset
// was specified.
const MCConstantExpr *OffsetImm; // Offset immediate value
unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
unsigned ShiftImm; // shift for OffsetReg.
unsigned Alignment; // 0 = no alignment specified
// n = alignment in bytes (8, 16, or 32)
unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
} Memory;
struct {
unsigned RegNum;
bool isAdd;
ARM_AM::ShiftOpc ShiftTy;
unsigned ShiftImm;
} PostIdxReg;
struct {
bool isASR;
unsigned Imm;
} ShifterImm;
struct {
ARM_AM::ShiftOpc ShiftTy;
unsigned SrcReg;
unsigned ShiftReg;
unsigned ShiftImm;
} RegShiftedReg;
struct {
ARM_AM::ShiftOpc ShiftTy;
unsigned SrcReg;
unsigned ShiftImm;
} RegShiftedImm;
struct {
unsigned Imm;
} RotImm;
struct {
unsigned LSB;
unsigned Width;
} Bitfield;
};
ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case k_CondCode:
CC = o.CC;
break;
case k_ITCondMask:
ITMask = o.ITMask;
break;
case k_Token:
Tok = o.Tok;
break;
case k_CCOut:
case k_Register:
Reg = o.Reg;
break;
case k_RegisterList:
case k_DPRRegisterList:
case k_SPRRegisterList:
Registers = o.Registers;
break;
case k_VectorList:
VectorList = o.VectorList;
break;
case k_CoprocNum:
case k_CoprocReg:
Cop = o.Cop;
break;
case k_CoprocOption:
CoprocOption = o.CoprocOption;
break;
case k_Immediate:
Imm = o.Imm;
break;
case k_FPImmediate:
FPImm = o.FPImm;
break;
case k_MemBarrierOpt:
MBOpt = o.MBOpt;
break;
case k_Memory:
Memory = o.Memory;
break;
case k_PostIndexRegister:
PostIdxReg = o.PostIdxReg;
break;
case k_MSRMask:
MMask = o.MMask;
break;
case k_ProcIFlags:
IFlags = o.IFlags;
break;
case k_ShifterImmediate:
ShifterImm = o.ShifterImm;
break;
case k_ShiftedRegister:
RegShiftedReg = o.RegShiftedReg;
break;
case k_ShiftedImmediate:
RegShiftedImm = o.RegShiftedImm;
break;
case k_RotateImmediate:
RotImm = o.RotImm;
break;
case k_BitfieldDescriptor:
Bitfield = o.Bitfield;
break;
case k_VectorIndex:
VectorIndex = o.VectorIndex;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
ARMCC::CondCodes getCondCode() const {
assert(Kind == k_CondCode && "Invalid access!");
return CC.Val;
}
unsigned getCoproc() const {
assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
return Cop.Val;
}
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
return Reg.RegNum;
}
const SmallVectorImpl<unsigned> &getRegList() const {
assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
Kind == k_SPRRegisterList) && "Invalid access!");
return Registers;
}
const MCExpr *getImm() const {
assert(Kind == k_Immediate && "Invalid access!");
return Imm.Val;
}
unsigned getFPImm() const {
assert(Kind == k_FPImmediate && "Invalid access!");
return FPImm.Val;
}
unsigned getVectorIndex() const {
assert(Kind == k_VectorIndex && "Invalid access!");
return VectorIndex.Val;
}
ARM_MB::MemBOpt getMemBarrierOpt() const {
assert(Kind == k_MemBarrierOpt && "Invalid access!");
return MBOpt.Val;
}
ARM_PROC::IFlags getProcIFlags() const {
assert(Kind == k_ProcIFlags && "Invalid access!");
return IFlags.Val;
}
unsigned getMSRMask() const {
assert(Kind == k_MSRMask && "Invalid access!");
return MMask.Val;
}
bool isCoprocNum() const { return Kind == k_CoprocNum; }
bool isCoprocReg() const { return Kind == k_CoprocReg; }
bool isCoprocOption() const { return Kind == k_CoprocOption; }
bool isCondCode() const { return Kind == k_CondCode; }
bool isCCOut() const { return Kind == k_CCOut; }
bool isITMask() const { return Kind == k_ITCondMask; }
bool isITCondCode() const { return Kind == k_CondCode; }
bool isImm() const { return Kind == k_Immediate; }
bool isFPImm() const { return Kind == k_FPImmediate; }
bool isImm8s4() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
}
bool isImm0_1020s4() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
}
bool isImm0_508s4() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
}
bool isImm0_255() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 256;
}
bool isImm0_7() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 8;
}
bool isImm0_15() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 16;
}
bool isImm0_31() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 32;
}
bool isImm1_16() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value < 17;
}
bool isImm1_32() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value < 33;
}
bool isImm0_65535() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 65536;
}
bool isImm0_65535Expr() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// If it's not a constant expression, it'll generate a fixup and be
// handled later.
if (!CE) return true;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 65536;
}
bool isImm24bit() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value <= 0xffffff;
}
bool isImmThumbSR() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value < 33;
}
bool isPKHLSLImm() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 32;
}
bool isPKHASRImm() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && Value <= 32;
}
bool isARMSOImm() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getSOImmVal(Value) != -1;
}
bool isARMSOImmNot() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getSOImmVal(~Value) != -1;
}
bool isT2SOImm() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getT2SOImmVal(Value) != -1;
}
bool isT2SOImmNot() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getT2SOImmVal(~Value) != -1;
}
bool isSetEndImm() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value == 1 || Value == 0;
}
bool isReg() const { return Kind == k_Register; }
bool isRegList() const { return Kind == k_RegisterList; }
bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
bool isToken() const { return Kind == k_Token; }
bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
bool isMemory() const { return Kind == k_Memory; }
bool isShifterImm() const { return Kind == k_ShifterImmediate; }
bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
bool isRotImm() const { return Kind == k_RotateImmediate; }
bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
bool isPostIdxReg() const {
return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy == ARM_AM::no_shift;
}
bool isMemNoOffset(bool alignOK = false) const {
if (!isMemory())
return false;
// No offset of any kind.
return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
(alignOK || Memory.Alignment == 0);
}
bool isAlignedMemory() const {
return isMemNoOffset(true);
}
bool isAddrMode2() const {
if (!isMemory() || Memory.Alignment != 0) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return true;
// Immediate offset in range [-4095, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val > -4096 && Val < 4096;
}
bool isAM2OffsetImm() const {
if (Kind != k_Immediate)
return false;
// Immediate offset in range [-4095, 4095].
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return Val > -4096 && Val < 4096;
}
bool isAddrMode3() const {
if (!isMemory() || Memory.Alignment != 0) return false;
// No shifts are legal for AM3.
if (Memory.ShiftType != ARM_AM::no_shift) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return true;
// Immediate offset in range [-255, 255].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val > -256 && Val < 256;
}
bool isAM3Offset() const {
if (Kind != k_Immediate && Kind != k_PostIndexRegister)
return false;
if (Kind == k_PostIndexRegister)
return PostIdxReg.ShiftTy == ARM_AM::no_shift;
// Immediate offset in range [-255, 255].
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
// Special case, #-0 is INT32_MIN.
return (Val > -256 && Val < 256) || Val == INT32_MIN;
}
bool isAddrMode5() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (Kind == k_Immediate && !isa<MCConstantExpr>(getImm()))
return true;
if (!isMemory() || Memory.Alignment != 0) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return false;
// Immediate offset in range [-1020, 1020] and a multiple of 4.
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
Val == INT32_MIN;
}
bool isMemTBB() const {
if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
return false;
return true;
}
bool isMemTBH() const {
if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
Memory.Alignment != 0 )
return false;
return true;
}
bool isMemRegOffset() const {
if (!isMemory() || !Memory.OffsetRegNum || Memory.Alignment != 0)
return false;
return true;
}
bool isT2MemRegOffset() const {
if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.Alignment != 0)
return false;
// Only lsl #{0, 1, 2, 3} allowed.
if (Memory.ShiftType == ARM_AM::no_shift)
return true;
if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
return false;
return true;
}
bool isMemThumbRR() const {
// Thumb reg+reg addressing is simple. Just two registers, a base and
// an offset. No shifts, negations or any other complicating factors.
if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
return false;
return isARMLowRegister(Memory.BaseRegNum) &&
(!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
}
bool isMemThumbRIs4() const {
if (!isMemory() || Memory.OffsetRegNum != 0 ||
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
return false;
// Immediate offset, multiple of 4 in range [0, 124].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 124 && (Val % 4) == 0;
}
bool isMemThumbRIs2() const {
if (!isMemory() || Memory.OffsetRegNum != 0 ||
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
return false;
// Immediate offset, multiple of 4 in range [0, 62].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 62 && (Val % 2) == 0;
}
bool isMemThumbRIs1() const {
if (!isMemory() || Memory.OffsetRegNum != 0 ||
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
return false;
// Immediate offset in range [0, 31].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 31;
}
bool isMemThumbSPI() const {
if (!isMemory() || Memory.OffsetRegNum != 0 ||
Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
return false;
// Immediate offset, multiple of 4 in range [0, 1020].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
}
bool isMemImm8s4Offset() const {
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset a multiple of 4 in range [-1020, 1020].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= -1020 && Val <= 1020 && (Val & 3) == 0;
}
bool isMemImm0_1020s4Offset() const {
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset a multiple of 4 in range [0, 1020].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
}
bool isMemImm8Offset() const {
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [-255, 255].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val == INT32_MIN) || (Val > -256 && Val < 256);
}
bool isMemPosImm8Offset() const {
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [0, 255].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val < 256;
}
bool isMemNegImm8Offset() const {
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [-255, -1].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val > -256 && Val < 0;
}
bool isMemUImm12Offset() const {
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [0, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val >= 0 && Val < 4096);
}
bool isMemImm12Offset() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (Kind == k_Immediate && !isa<MCConstantExpr>(getImm()))
return true;
if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [-4095, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
}
bool isPostIdxImm8() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return (Val > -256 && Val < 256) || (Val == INT32_MIN);
}
bool isPostIdxImm8s4() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
(Val == INT32_MIN);
}
bool isMSRMask() const { return Kind == k_MSRMask; }
bool isProcIFlags() const { return Kind == k_ProcIFlags; }
// NEON operands.
bool isVecListOneD() const {
if (Kind != k_VectorList) return false;
return VectorList.Count == 1;
}
bool isVecListTwoD() const {
if (Kind != k_VectorList) return false;
return VectorList.Count == 2;
}
bool isVecListThreeD() const {
if (Kind != k_VectorList) return false;
return VectorList.Count == 3;
}
bool isVecListFourD() const {
if (Kind != k_VectorList) return false;
return VectorList.Count == 4;
}
bool isVecListTwoQ() const {
if (Kind != k_VectorList) return false;
//FIXME: We haven't taught the parser to handle by-two register lists
// yet, so don't pretend to know one.
return VectorList.Count == 2 && false;
}
bool isVectorIndex8() const {
if (Kind != k_VectorIndex) return false;
return VectorIndex.Val < 8;
}
bool isVectorIndex16() const {
if (Kind != k_VectorIndex) return false;
return VectorIndex.Val < 4;
}
bool isVectorIndex32() const {
if (Kind != k_VectorIndex) return false;
return VectorIndex.Val < 2;
}
bool isNEONi8splat() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
int64_t Value = CE->getValue();
// i8 value splatted across 8 bytes. The immediate is just the 8 byte
// value.
return Value >= 0 && Value < 256;
}
bool isNEONi16splat() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
int64_t Value = CE->getValue();
// i16 value in the range [0,255] or [0x0100, 0xff00]
return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
}
bool isNEONi32splat() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
int64_t Value = CE->getValue();
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
return (Value >= 0 && Value < 256) ||
(Value >= 0x0100 && Value <= 0xff00) ||
(Value >= 0x010000 && Value <= 0xff0000) ||
(Value >= 0x01000000 && Value <= 0xff000000);
}
bool isNEONi32vmov() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
int64_t Value = CE->getValue();
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
// for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
return (Value >= 0 && Value < 256) ||
(Value >= 0x0100 && Value <= 0xff00) ||
(Value >= 0x010000 && Value <= 0xff0000) ||
(Value >= 0x01000000 && Value <= 0xff000000) ||
(Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
(Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
}
bool isNEONi64splat() const {
if (Kind != k_Immediate)
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
uint64_t Value = CE->getValue();
// i64 value with each byte being either 0 or 0xff.
for (unsigned i = 0; i < 8; ++i)
if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
return true;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
Inst.addOperand(MCOperand::CreateReg(RegNum));
}
void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getCoproc()));
}
void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getCoproc()));
}
void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
}
void addITMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
}
void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
}
void addCCOutOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
assert(isRegShiftedReg() && "addRegShiftedRegOperands() on non RegShiftedReg!");
Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
Inst.addOperand(MCOperand::CreateImm(
ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
}
void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
assert(isRegShiftedImm() && "addRegShiftedImmOperands() on non RegShiftedImm!");
Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
Inst.addOperand(MCOperand::CreateImm(
ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, RegShiftedImm.ShiftImm)));
}
void addShifterImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
ShifterImm.Imm));
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ++I)
Inst.addOperand(MCOperand::CreateReg(*I));
}
void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addRotImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Encoded as val>>3. The printer handles display as 8, 16, 24.
Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
}
void addBitfieldOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Munge the lsb/width into a bitfield mask.
unsigned lsb = Bitfield.LSB;
unsigned width = Bitfield.Width;
// Make a 32-bit mask w/ the referenced bits clear and all other bits set.
uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
(32 - (lsb + width)));
Inst.addOperand(MCOperand::CreateImm(Mask));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getFPImm()));
}
void addImm8s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// FIXME: We really want to scale the value here, but the LDRD/STRD
// instruction don't encode operands that way yet.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
}
void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
}
void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
}
void addImm0_255Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_7Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_15Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_31Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm1_16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate-1, and we store in the instruction
// the bits as encoded, so subtract off one here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
}
void addImm1_32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate-1, and we store in the instruction
// the bits as encoded, so subtract off one here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
}
void addImm0_65535Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm0_65535ExprOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImm24bitOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate, except for 32, which encodes as
// zero.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Imm = CE->getValue();
Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
}
void addPKHLSLImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// An ASR value of 32 encodes as 0, so that's how we want to add it to
// the instruction as well.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
int Val = CE->getValue();
Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
}
void addARMSOImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addT2SOImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually a t2_so_imm, but we have its bitwise
// negation in the assembly source, so twiddle it here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
}
void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually a so_imm, but we have its bitwise
// negation in the assembly source, so twiddle it here.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
}
void addSetEndImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
}
void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
}
void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
}
void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
if (!Memory.OffsetRegNum) {
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
} else {
// For register offset, we encode the shift type and negation flag
// here.
Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
Memory.ShiftImm, Memory.ShiftType);
}
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant AM2OffsetImm operand!");
int32_t Val = CE->getValue();
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
Inst.addOperand(MCOperand::CreateReg(0));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
if (!Memory.OffsetRegNum) {
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM3Opc(AddSub, Val);
} else {
// For register offset, we encode the shift type and negation flag
// here.
Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
}
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
if (Kind == k_PostIndexRegister) {
int32_t Val =
ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
return;
}
// Constant offset.
const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
int32_t Val = CE->getValue();
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM3Opc(AddSub, Val);
Inst.addOperand(MCOperand::CreateReg(0));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm()) {
Inst.addOperand(MCOperand::CreateExpr(getImm()));
Inst.addOperand(MCOperand::CreateImm(0));
return;
}
// The lower two bits are always zero and as such are not encoded.
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == INT32_MIN) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM5Opc(AddSub, Val);
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// The lower two bits are always zero and as such are not encoded.
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
addMemImm8OffsetOperands(Inst, N);
}
void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
addMemImm8OffsetOperands(Inst, N);
}
void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If this is an immediate, it's a label reference.
if (Kind == k_Immediate) {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::CreateImm(0));
return;
}
// Otherwise, it's a normal memory reg+offset.
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If this is an immediate, it's a label reference.
if (Kind == k_Immediate) {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::CreateImm(0));
return;
}
// Otherwise, it's a normal memory reg+offset.
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemTBBOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
}
void addMemTBHOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
}
void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
unsigned Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
Memory.ShiftImm, Memory.ShiftType);
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
}
void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
}
void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::CreateImm(Val));
}
void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant post-idx-imm8 operand!");
int Imm = CE->getValue();
bool isAdd = Imm >= 0;
if (Imm == INT32_MIN) Imm = 0;
Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
Inst.addOperand(MCOperand::CreateImm(Imm));
}
void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant post-idx-imm8s4 operand!");
int Imm = CE->getValue();
bool isAdd = Imm >= 0;
if (Imm == INT32_MIN) Imm = 0;
// Immediate is scaled by 4.
Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
Inst.addOperand(MCOperand::CreateImm(Imm));
}
void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
}
void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
// The sign, shift type, and shift amount are encoded in a single operand
// using the AM2 encoding helpers.
ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
PostIdxReg.ShiftTy);
Inst.addOperand(MCOperand::CreateImm(Imm));
}
void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
}
void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
}
void addVecListOneDOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
}
void addVecListTwoDOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Only the first register actually goes on the instruction. The rest
// are implied by the opcode.
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
}
void addVecListThreeDOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Only the first register actually goes on the instruction. The rest
// are implied by the opcode.
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
}
void addVecListFourDOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Only the first register actually goes on the instruction. The rest
// are implied by the opcode.
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
}
void addVecListTwoQOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Only the first register actually goes on the instruction. The rest
// are implied by the opcode.
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
}
void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
}
void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
// Mask in that this is an i8 splat.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
}
void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
if (Value >= 256)
Value = (Value >> 8) | 0xa00;
else
Value |= 0x800;
Inst.addOperand(MCOperand::CreateImm(Value));
}
void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
if (Value >= 256 && Value <= 0xff00)
Value = (Value >> 8) | 0x200;
else if (Value > 0xffff && Value <= 0xff0000)
Value = (Value >> 16) | 0x400;
else if (Value > 0xffffff)
Value = (Value >> 24) | 0x600;
Inst.addOperand(MCOperand::CreateImm(Value));
}
void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
if (Value >= 256 && Value <= 0xffff)
Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
else if (Value > 0xffff && Value <= 0xffffff)
Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
else if (Value > 0xffffff)
Value = (Value >> 24) | 0x600;
Inst.addOperand(MCOperand::CreateImm(Value));
}
void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
unsigned Imm = 0;
for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
Imm |= (Value & 1) << i;
}
Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
}
virtual void print(raw_ostream &OS) const;
static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_ITCondMask);
Op->ITMask.Mask = Mask;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_CondCode);
Op->CC.Val = CC;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_CoprocNum);
Op->Cop.Val = CopVal;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_CoprocReg);
Op->Cop.Val = CopVal;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_CoprocOption);
Op->Cop.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_CCOut);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
unsigned SrcReg,
unsigned ShiftReg,
unsigned ShiftImm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
Op->RegShiftedReg.ShiftTy = ShTy;
Op->RegShiftedReg.SrcReg = SrcReg;
Op->RegShiftedReg.ShiftReg = ShiftReg;
Op->RegShiftedReg.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
unsigned SrcReg,
unsigned ShiftImm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
Op->RegShiftedImm.ShiftTy = ShTy;
Op->RegShiftedImm.SrcReg = SrcReg;
Op->RegShiftedImm.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
Op->ShifterImm.isASR = isASR;
Op->ShifterImm.Imm = Imm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_RotateImmediate);
Op->RotImm.Imm = Imm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
Op->Bitfield.LSB = LSB;
Op->Bitfield.Width = Width;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *
CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
SMLoc StartLoc, SMLoc EndLoc) {
KindTy Kind = k_RegisterList;
if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
Kind = k_DPRRegisterList;
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
contains(Regs.front().first))
Kind = k_SPRRegisterList;
ARMOperand *Op = new ARMOperand(Kind);
for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
I = Regs.begin(), E = Regs.end(); I != E; ++I)
Op->Registers.push_back(I->first);
array_pod_sort(Op->Registers.begin(), Op->Registers.end());
Op->StartLoc = StartLoc;
Op->EndLoc = EndLoc;
return Op;
}
static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_VectorList);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
MCContext &Ctx) {
ARMOperand *Op = new ARMOperand(k_VectorIndex);
Op->VectorIndex.Val = Idx;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateFPImm(unsigned Val, SMLoc S, MCContext &Ctx) {
ARMOperand *Op = new ARMOperand(k_FPImmediate);
Op->FPImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateMem(unsigned BaseRegNum,
const MCConstantExpr *OffsetImm,
unsigned OffsetRegNum,
ARM_AM::ShiftOpc ShiftType,
unsigned ShiftImm,
unsigned Alignment,
bool isNegative,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_Memory);
Op->Memory.BaseRegNum = BaseRegNum;
Op->Memory.OffsetImm = OffsetImm;
Op->Memory.OffsetRegNum = OffsetRegNum;
Op->Memory.ShiftType = ShiftType;
Op->Memory.ShiftImm = ShiftImm;
Op->Memory.Alignment = Alignment;
Op->Memory.isNegative = isNegative;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
ARM_AM::ShiftOpc ShiftTy,
unsigned ShiftImm,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
Op->PostIdxReg.RegNum = RegNum;
Op->PostIdxReg.isAdd = isAdd;
Op->PostIdxReg.ShiftTy = ShiftTy;
Op->PostIdxReg.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
Op->MBOpt.Val = Opt;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_ProcIFlags);
Op->IFlags.Val = IFlags;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
ARMOperand *Op = new ARMOperand(k_MSRMask);
Op->MMask.Val = MMask;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
};
} // end anonymous namespace.
void ARMOperand::print(raw_ostream &OS) const {
switch (Kind) {
case k_FPImmediate:
OS << "<fpimm " << getFPImm() << "(" << ARM_AM::getFPImmFloat(getFPImm())
<< ") >";
break;
case k_CondCode:
OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
break;
case k_CCOut:
OS << "<ccout " << getReg() << ">";
break;
case k_ITCondMask: {
static const char *MaskStr[] = {
"()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
"(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
};
assert((ITMask.Mask & 0xf) == ITMask.Mask);
OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
break;
}
case k_CoprocNum:
OS << "<coprocessor number: " << getCoproc() << ">";
break;
case k_CoprocReg:
OS << "<coprocessor register: " << getCoproc() << ">";
break;
case k_CoprocOption:
OS << "<coprocessor option: " << CoprocOption.Val << ">";
break;
case k_MSRMask:
OS << "<mask: " << getMSRMask() << ">";
break;
case k_Immediate:
getImm()->print(OS);
break;
case k_MemBarrierOpt:
OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
break;
case k_Memory:
OS << "<memory "
<< " base:" << Memory.BaseRegNum;
OS << ">";
break;
case k_PostIndexRegister:
OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
<< PostIdxReg.RegNum;
if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
<< PostIdxReg.ShiftImm;
OS << ">";
break;
case k_ProcIFlags: {
OS << "<ARM_PROC::";
unsigned IFlags = getProcIFlags();
for (int i=2; i >= 0; --i)
if (IFlags & (1 << i))
OS << ARM_PROC::IFlagsToString(1 << i);
OS << ">";
break;
}
case k_Register:
OS << "<register " << getReg() << ">";
break;
case k_ShifterImmediate:
OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
<< " #" << ShifterImm.Imm << ">";
break;
case k_ShiftedRegister:
OS << "<so_reg_reg "
<< RegShiftedReg.SrcReg
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(RegShiftedReg.ShiftImm))
<< ", " << RegShiftedReg.ShiftReg << ", "
<< ARM_AM::getSORegOffset(RegShiftedReg.ShiftImm)
<< ">";
break;
case k_ShiftedImmediate:
OS << "<so_reg_imm "
<< RegShiftedImm.SrcReg
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(RegShiftedImm.ShiftImm))
<< ", " << ARM_AM::getSORegOffset(RegShiftedImm.ShiftImm)
<< ">";
break;
case k_RotateImmediate:
OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
break;
case k_BitfieldDescriptor:
OS << "<bitfield " << "lsb: " << Bitfield.LSB
<< ", width: " << Bitfield.Width << ">";
break;
case k_RegisterList:
case k_DPRRegisterList:
case k_SPRRegisterList: {
OS << "<register_list ";
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ) {
OS << *I;
if (++I < E) OS << ", ";
}
OS << ">";
break;
}
case k_VectorList:
OS << "<vector_list " << VectorList.Count << " * "
<< VectorList.RegNum << ">";
break;
case k_Token:
OS << "'" << getToken() << "'";
break;
case k_VectorIndex:
OS << "<vectorindex " << getVectorIndex() << ">";
break;
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
bool ARMAsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
RegNo = tryParseRegister();
return (RegNo == (unsigned)-1);
}
/// Try to parse a register name. The token must be an Identifier when called,
/// and if it is a register name the token is eaten and the register number is
/// returned. Otherwise return -1.
///
int ARMAsmParser::tryParseRegister() {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) return -1;
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
std::string lowerCase = Tok.getString().lower();
unsigned RegNum = MatchRegisterName(lowerCase);
if (!RegNum) {
RegNum = StringSwitch<unsigned>(lowerCase)
.Case("r13", ARM::SP)
.Case("r14", ARM::LR)
.Case("r15", ARM::PC)
.Case("ip", ARM::R12)
.Default(0);
}
if (!RegNum) return -1;
Parser.Lex(); // Eat identifier token.
return RegNum;
}
// Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
// If a recoverable error occurs, return 1. If an irrecoverable error
// occurs, return -1. An irrecoverable error is one where tokens have been
// consumed in the process of trying to parse the shifter (i.e., when it is
// indeed a shifter operand, but malformed).
int ARMAsmParser::tryParseShiftRegister(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
std::string lowerCase = Tok.getString().lower();
ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
.Case("lsl", ARM_AM::lsl)
.Case("lsr", ARM_AM::lsr)
.Case("asr", ARM_AM::asr)
.Case("ror", ARM_AM::ror)
.Case("rrx", ARM_AM::rrx)
.Default(ARM_AM::no_shift);
if (ShiftTy == ARM_AM::no_shift)
return 1;
Parser.Lex(); // Eat the operator.
// The source register for the shift has already been added to the
// operand list, so we need to pop it off and combine it into the shifted
// register operand instead.
OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
if (!PrevOp->isReg())
return Error(PrevOp->getStartLoc(), "shift must be of a register");
int SrcReg = PrevOp->getReg();
int64_t Imm = 0;
int ShiftReg = 0;
if (ShiftTy == ARM_AM::rrx) {
// RRX Doesn't have an explicit shift amount. The encoder expects
// the shift register to be the same as the source register. Seems odd,
// but OK.
ShiftReg = SrcReg;
} else {
// Figure out if this is shifted by a constant or a register (for non-RRX).
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash.
SMLoc ImmLoc = Parser.getTok().getLoc();
const MCExpr *ShiftExpr = 0;
if (getParser().ParseExpression(ShiftExpr)) {
Error(ImmLoc, "invalid immediate shift value");
return -1;
}
// The expression must be evaluatable as an immediate.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
if (!CE) {
Error(ImmLoc, "invalid immediate shift value");
return -1;
}
// Range check the immediate.
// lsl, ror: 0 <= imm <= 31
// lsr, asr: 0 <= imm <= 32
Imm = CE->getValue();
if (Imm < 0 ||
((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
Error(ImmLoc, "immediate shift value out of range");
return -1;
}
} else if (Parser.getTok().is(AsmToken::Identifier)) {
ShiftReg = tryParseRegister();
SMLoc L = Parser.getTok().getLoc();
if (ShiftReg == -1) {
Error (L, "expected immediate or register in shift operand");
return -1;
}
} else {
Error (Parser.getTok().getLoc(),
"expected immediate or register in shift operand");
return -1;
}
}
if (ShiftReg && ShiftTy != ARM_AM::rrx)
Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
ShiftReg, Imm,
S, Parser.getTok().getLoc()));
else
Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
S, Parser.getTok().getLoc()));
return 0;
}
/// Try to parse a register name. The token must be an Identifier when called.
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
/// if there is a "writeback". 'true' if it's not a register.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::
tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
int RegNo = tryParseRegister();
if (RegNo == -1)
return true;
Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
ExclaimTok.getLoc()));
Parser.Lex(); // Eat exclaim token
return false;
}
// Also check for an index operand. This is only legal for vector registers,
// but that'll get caught OK in operand matching, so we don't need to
// explicitly filter everything else out here.
if (Parser.getTok().is(AsmToken::LBrac)) {
SMLoc SIdx = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for vector index");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(E, "']' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
SIdx, E,
getContext()));
}
return false;
}
/// MatchCoprocessorOperandName - Try to parse an coprocessor related
/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
/// "c5", ...
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
// Use the same layout as the tablegen'erated register name matcher. Ugly,
// but efficient.
switch (Name.size()) {
default: break;
case 2:
if (Name[0] != CoprocOp)
return -1;
switch (Name[1]) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
}
break;
case 3:
if (Name[0] != CoprocOp || Name[1] != '1')
return -1;
switch (Name[2]) {
default: return -1;
case '0': return 10;
case '1': return 11;
case '2': return 12;
case '3': return 13;
case '4': return 14;
case '5': return 15;
}
break;
}
return -1;
}
/// parseITCondCode - Try to parse a condition code for an IT instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
unsigned CC = StringSwitch<unsigned>(Tok.getString())
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("cs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("cc", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
if (CC == ~0U)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the token.
Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
return MatchOperand_Success;
}
/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
if (Num == -1)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
return MatchOperand_Success;
}
/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
if (Reg == -1)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
return MatchOperand_Success;
}
/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
/// coproc_option : '{' imm0_255 '}'
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
// If this isn't a '{', this isn't a coprocessor immediate operand.
if (Parser.getTok().isNot(AsmToken::LCurly))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the '{'
const MCExpr *Expr;
SMLoc Loc = Parser.getTok().getLoc();
if (getParser().ParseExpression(Expr)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
// Check for and consume the closing '}'
if (Parser.getTok().isNot(AsmToken::RCurly))
return MatchOperand_ParseFail;
SMLoc E = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '}'
Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
return MatchOperand_Success;
}
// For register list parsing, we need to map from raw GPR register numbering
// to the enumeration values. The enumeration values aren't sorted by
// register number due to our using "sp", "lr" and "pc" as canonical names.
static unsigned getNextRegister(unsigned Reg) {
// If this is a GPR, we need to do it manually, otherwise we can rely
// on the sort ordering of the enumeration since the other reg-classes
// are sane.
if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
return Reg + 1;
switch(Reg) {
default: assert(0 && "Invalid GPR number!");
case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
}
}
/// Parse a register list.
bool ARMAsmParser::
parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
assert(Parser.getTok().is(AsmToken::LCurly) &&
"Token is not a Left Curly Brace");
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat '{' token.
SMLoc RegLoc = Parser.getTok().getLoc();
// Check the first register in the list to see what register class
// this is a list of.
int Reg = tryParseRegister();
if (Reg == -1)
return Error(RegLoc, "register expected");
const MCRegisterClass *RC;
if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
else
return Error(RegLoc, "invalid register in register list");
// The reglist instructions have at most 16 registers, so reserve
// space for that many.
SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
// Store the first register.
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
// This starts immediately after the first register token in the list,
// so we can see either a comma or a minus (range separator) as a legal
// next token.
while (Parser.getTok().is(AsmToken::Comma) ||
Parser.getTok().is(AsmToken::Minus)) {
if (Parser.getTok().is(AsmToken::Minus)) {
Parser.Lex(); // Eat the comma.
SMLoc EndLoc = Parser.getTok().getLoc();
int EndReg = tryParseRegister();
if (EndReg == -1)
return Error(EndLoc, "register expected");
// If the register is the same as the start reg, there's nothing
// more to do.
if (Reg == EndReg)
continue;
// The register must be in the same register class as the first.
if (!RC->contains(EndReg))
return Error(EndLoc, "invalid register in register list");
// Ranges must go from low to high.
if (getARMRegisterNumbering(Reg) > getARMRegisterNumbering(EndReg))
return Error(EndLoc, "bad range in register list");
// Add all the registers in the range to the register list.
while (Reg != EndReg) {
Reg = getNextRegister(Reg);
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
}
continue;
}
Parser.Lex(); // Eat the comma.
RegLoc = Parser.getTok().getLoc();
int OldReg = Reg;
Reg = tryParseRegister();
if (Reg == -1)
return Error(RegLoc, "register expected");
// The register must be in the same register class as the first.
if (!RC->contains(Reg))
return Error(RegLoc, "invalid register in register list");
// List must be monotonically increasing.
if (getARMRegisterNumbering(Reg) <= getARMRegisterNumbering(OldReg))
return Error(RegLoc, "register list not in ascending order");
// VFP register lists must also be contiguous.
// It's OK to use the enumeration values directly here rather, as the
// VFP register classes have the enum sorted properly.
if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
Reg != OldReg + 1)
return Error(RegLoc, "non-contiguous register range");
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
}
SMLoc E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RCurly))
return Error(E, "'}' expected");
Parser.Lex(); // Eat '}' token.
Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
return false;
}
// Return the low-subreg of a given Q register.
static unsigned getDRegFromQReg(unsigned QReg) {
switch (QReg) {
default: llvm_unreachable("expected a Q register!");
case ARM::Q0: return ARM::D0;
case ARM::Q1: return ARM::D2;
case ARM::Q2: return ARM::D4;
case ARM::Q3: return ARM::D6;
case ARM::Q4: return ARM::D8;
case ARM::Q5: return ARM::D10;
case ARM::Q6: return ARM::D12;
case ARM::Q7: return ARM::D14;
case ARM::Q8: return ARM::D16;
case ARM::Q9: return ARM::D19;
case ARM::Q10: return ARM::D20;
case ARM::Q11: return ARM::D22;
case ARM::Q12: return ARM::D24;
case ARM::Q13: return ARM::D26;
case ARM::Q14: return ARM::D28;
case ARM::Q15: return ARM::D30;
}
}
// parse a vector register list
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
if(Parser.getTok().isNot(AsmToken::LCurly))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat '{' token.
SMLoc RegLoc = Parser.getTok().getLoc();
int Reg = tryParseRegister();
if (Reg == -1) {
Error(RegLoc, "register expected");
return MatchOperand_ParseFail;
}
unsigned Count = 1;
unsigned FirstReg = Reg;
// The list is of D registers, but we also allow Q regs and just interpret
// them as the two D sub-registers.
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
FirstReg = Reg = getDRegFromQReg(Reg);
++Reg;
++Count;
}
while (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
RegLoc = Parser.getTok().getLoc();
int OldReg = Reg;
Reg = tryParseRegister();
if (Reg == -1) {
Error(RegLoc, "register expected");
return MatchOperand_ParseFail;
}
// vector register lists must be contiguous.
// It's OK to use the enumeration values directly here rather, as the
// VFP register classes have the enum sorted properly.
//
// The list is of D registers, but we also allow Q regs and just interpret
// them as the two D sub-registers.
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
Reg = getDRegFromQReg(Reg);
if (Reg != OldReg + 1) {
Error(RegLoc, "non-contiguous register range");
return MatchOperand_ParseFail;
}
++Reg;
Count += 2;
continue;
}
// Normal D register. Just check that it's contiguous and keep going.
if (Reg != OldReg + 1) {
Error(RegLoc, "non-contiguous register range");
return MatchOperand_ParseFail;
}
++Count;
}
SMLoc E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RCurly)) {
Error(E, "'}' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat '}' token.
Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, S, E));
return MatchOperand_Success;
}
/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef OptStr = Tok.getString();
unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
.Case("sy", ARM_MB::SY)
.Case("st", ARM_MB::ST)
.Case("sh", ARM_MB::ISH)
.Case("ish", ARM_MB::ISH)
.Case("shst", ARM_MB::ISHST)
.Case("ishst", ARM_MB::ISHST)
.Case("nsh", ARM_MB::NSH)
.Case("un", ARM_MB::NSH)
.Case("nshst", ARM_MB::NSHST)
.Case("unst", ARM_MB::NSHST)
.Case("osh", ARM_MB::OSH)
.Case("oshst", ARM_MB::OSHST)
.Default(~0U);
if (Opt == ~0U)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
return MatchOperand_Success;
}
/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef IFlagsStr = Tok.getString();
// An iflags string of "none" is interpreted to mean that none of the AIF
// bits are set. Not a terribly useful instruction, but a valid encoding.
unsigned IFlags = 0;
if (IFlagsStr != "none") {
for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
.Case("a", ARM_PROC::A)
.Case("i", ARM_PROC::I)
.Case("f", ARM_PROC::F)
.Default(~0U);
// If some specific iflag is already set, it means that some letter is
// present more than once, this is not acceptable.
if (Flag == ~0U || (IFlags & Flag))
return MatchOperand_NoMatch;
IFlags |= Flag;
}
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
return MatchOperand_Success;
}
/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef Mask = Tok.getString();
if (isMClass()) {
// See ARMv6-M 10.1.1
unsigned FlagsVal = StringSwitch<unsigned>(Mask)
.Case("apsr", 0)
.Case("iapsr", 1)
.Case("eapsr", 2)
.Case("xpsr", 3)
.Case("ipsr", 5)
.Case("epsr", 6)
.Case("iepsr", 7)
.Case("msp", 8)
.Case("psp", 9)
.Case("primask", 16)
.Case("basepri", 17)
.Case("basepri_max", 18)
.Case("faultmask", 19)
.Case("control", 20)
.Default(~0U);
if (FlagsVal == ~0U)
return MatchOperand_NoMatch;
if (!hasV7Ops() && FlagsVal >= 17 && FlagsVal <= 19)
// basepri, basepri_max and faultmask only valid for V7m.
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
return MatchOperand_Success;
}
// Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
size_t Start = 0, Next = Mask.find('_');
StringRef Flags = "";
std::string SpecReg = Mask.slice(Start, Next).lower();
if (Next != StringRef::npos)
Flags = Mask.slice(Next+1, Mask.size());
// FlagsVal contains the complete mask:
// 3-0: Mask
// 4: Special Reg (cpsr, apsr => 0; spsr => 1)
unsigned FlagsVal = 0;
if (SpecReg == "apsr") {
FlagsVal = StringSwitch<unsigned>(Flags)
.Case("nzcvq", 0x8) // same as CPSR_f
.Case("g", 0x4) // same as CPSR_s
.Case("nzcvqg", 0xc) // same as CPSR_fs
.Default(~0U);
if (FlagsVal == ~0U) {
if (!Flags.empty())
return MatchOperand_NoMatch;
else
FlagsVal = 8; // No flag
}
} else if (SpecReg == "cpsr" || SpecReg == "spsr") {
if (Flags == "all") // cpsr_all is an alias for cpsr_fc
Flags = "fc";
for (int i = 0, e = Flags.size(); i != e; ++i) {
unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
.Case("c", 1)
.Case("x", 2)
.Case("s", 4)
.Case("f", 8)
.Default(~0U);
// If some specific flag is already set, it means that some letter is
// present more than once, this is not acceptable.
if (FlagsVal == ~0U || (FlagsVal & Flag))
return MatchOperand_NoMatch;
FlagsVal |= Flag;
}
} else // No match for special register.
return MatchOperand_NoMatch;
// Special register without flags is NOT equivalent to "fc" flags.
// NOTE: This is a divergence from gas' behavior. Uncommenting the following
// two lines would enable gas compatibility at the expense of breaking
// round-tripping.
//
// if (!FlagsVal)
// FlagsVal = 0x9;
// Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
if (SpecReg == "spsr")
FlagsVal |= 16;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
int Low, int High) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
std::string LowerOp = Op.lower();
std::string UpperOp = Op.upper();
if (ShiftName != LowerOp && ShiftName != UpperOp) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat shift type token.
// There must be a '#' and a shift amount.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc Loc = Parser.getTok().getLoc();
if (getParser().ParseExpression(ShiftAmount)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(Loc, "constant expression expected");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
if (Val < Low || Val > High) {
Error(Loc, "immediate value out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc()));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(Tok.getLoc(), "'be' or 'le' operand expected");
return MatchOperand_ParseFail;
}
int Val = StringSwitch<int>(Tok.getString())
.Case("be", 1)
.Case("le", 0)
.Default(-1);
Parser.Lex(); // Eat the token.
if (Val == -1) {
Error(Tok.getLoc(), "'be' or 'le' operand expected");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
getContext()),
S, Parser.getTok().getLoc()));
return MatchOperand_Success;
}
/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
/// instructions. Legal values are:
/// lsl #n 'n' in [0,31]
/// asr #n 'n' in [1,32]
/// n == 32 encoded as n == 0.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(S, "shift operator 'asr' or 'lsl' expected");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
bool isASR;
if (ShiftName == "lsl" || ShiftName == "LSL")
isASR = false;
else if (ShiftName == "asr" || ShiftName == "ASR")
isASR = true;
else {
Error(S, "shift operator 'asr' or 'lsl' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the operator.
// A '#' and a shift amount.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc E = Parser.getTok().getLoc();
if (getParser().ParseExpression(ShiftAmount)) {
Error(E, "malformed shift expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(E, "shift amount must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Val = CE->getValue();
if (isASR) {
// Shift amount must be in [1,32]
if (Val < 1 || Val > 32) {
Error(E, "'asr' shift amount must be in range [1,32]");
return MatchOperand_ParseFail;
}
// asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
if (isThumb() && Val == 32) {
Error(E, "'asr #32' shift amount not allowed in Thumb mode");
return MatchOperand_ParseFail;
}
if (Val == 32) Val = 0;
} else {
// Shift amount must be in [1,32]
if (Val < 0 || Val > 31) {
Error(E, "'lsr' shift amount must be in range [0,31]");
return MatchOperand_ParseFail;
}
}
E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E));
return MatchOperand_Success;
}
/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
/// of instructions. Legal values are:
/// ror #n 'n' in {0, 8, 16, 24}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef ShiftName = Tok.getString();
if (ShiftName != "ror" && ShiftName != "ROR")
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the operator.
// A '#' and a rotate amount.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc E = Parser.getTok().getLoc();
if (getParser().ParseExpression(ShiftAmount)) {
Error(E, "malformed rotate expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(E, "rotate amount must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Val = CE->getValue();
// Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
// normally, zero is represented in asm by omitting the rotate operand
// entirely.
if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
Error(E, "'ror' rotate amount must be 8, 16, or 24");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreateRotImm(Val, S, E));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
// The bitfield descriptor is really two operands, the LSB and the width.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *LSBExpr;
SMLoc E = Parser.getTok().getLoc();
if (getParser().ParseExpression(LSBExpr)) {
Error(E, "malformed immediate expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
if (!CE) {
Error(E, "'lsb' operand must be an immediate");
return MatchOperand_ParseFail;
}
int64_t LSB = CE->getValue();
// The LSB must be in the range [0,31]
if (LSB < 0 || LSB > 31) {
Error(E, "'lsb' operand must be in the range [0,31]");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
// Expect another immediate operand.
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(), "too few operands");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *WidthExpr;
if (getParser().ParseExpression(WidthExpr)) {
Error(E, "malformed immediate expression");
return MatchOperand_ParseFail;
}
CE = dyn_cast<MCConstantExpr>(WidthExpr);
if (!CE) {
Error(E, "'width' operand must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Width = CE->getValue();
// The LSB must be in the range [1,32-lsb]
if (Width < 1 || Width > 32 - LSB) {
Error(E, "'width' operand must be in the range [1,32-lsb]");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Check for a post-index addressing register operand. Specifically:
// postidx_reg := '+' register {, shift}
// | '-' register {, shift}
// | register {, shift}
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
bool haveEaten = false;
bool isAdd = true;
int Reg = -1;
if (Tok.is(AsmToken::Plus)) {
Parser.Lex(); // Eat the '+' token.
haveEaten = true;
} else if (Tok.is(AsmToken::Minus)) {
Parser.Lex(); // Eat the '-' token.
isAdd = false;
haveEaten = true;
}
if (Parser.getTok().is(AsmToken::Identifier))
Reg = tryParseRegister();
if (Reg == -1) {
if (!haveEaten)
return MatchOperand_NoMatch;
Error(Parser.getTok().getLoc(), "register expected");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getLoc();
ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
unsigned ShiftImm = 0;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the ','.
if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
ShiftImm, S, E));
return MatchOperand_Success;
}
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Check for a post-index addressing register operand. Specifically:
// am3offset := '+' register
// | '-' register
// | register
// | # imm
// | # + imm
// | # - imm
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
// Do immediates first, as we always parse those if we have a '#'.
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat the '#'.
// Explicitly look for a '-', as we need to encode negative zero
// differently.
bool isNegative = Parser.getTok().is(AsmToken::Minus);
const MCExpr *Offset;
if (getParser().ParseExpression(Offset))
return MatchOperand_ParseFail;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
if (!CE) {
Error(S, "constant expression expected");
return MatchOperand_ParseFail;
}
SMLoc E = Tok.getLoc();
// Negative zero is encoded as the flag value INT32_MIN.
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
Val = INT32_MIN;
Operands.push_back(
ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
return MatchOperand_Success;
}
bool haveEaten = false;
bool isAdd = true;
int Reg = -1;
if (Tok.is(AsmToken::Plus)) {
Parser.Lex(); // Eat the '+' token.
haveEaten = true;
} else if (Tok.is(AsmToken::Minus)) {
Parser.Lex(); // Eat the '-' token.
isAdd = false;
haveEaten = true;
}
if (Parser.getTok().is(AsmToken::Identifier))
Reg = tryParseRegister();
if (Reg == -1) {
if (!haveEaten)
return MatchOperand_NoMatch;
Error(Parser.getTok().getLoc(), "register expected");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
0, S, E));
return MatchOperand_Success;
}
/// cvtT2LdrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateReg(0));
// addr
((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtT2StrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateReg(0));
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Rt
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
// offset
((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// addr
((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtStrdPre - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtStrdPre(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Rt, Rt2
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
// addr
((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// cvtThumbMultiple- Convert parsed operands to MCInst.
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
/// when they refer multiple MIOperands inside a single one.
bool ARMAsmParser::
cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// The second source operand must be the same register as the destination
// operand.
if (Operands.size() == 6 &&
(((ARMOperand*)Operands[3])->getReg() !=
((ARMOperand*)Operands[5])->getReg()) &&
(((ARMOperand*)Operands[3])->getReg() !=
((ARMOperand*)Operands[4])->getReg())) {
Error(Operands[3]->getStartLoc(),
"destination register must match source register");
return false;
}
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
((ARMOperand*)Operands[4])->addRegOperands(Inst, 1);
// If we have a three-operand form, use that, else the second source operand
// is just the destination operand again.
if (Operands.size() == 6)
((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
else
Inst.addOperand(Inst.getOperand(0));
((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
return true;
}
bool ARMAsmParser::
cvtVLDwbFixed(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Vd
((ARMOperand*)Operands[3])->addVecListTwoDOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Vn
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
bool ARMAsmParser::
cvtVLDwbRegister(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Vd
((ARMOperand*)Operands[3])->addVecListTwoDOperands(Inst, 1);
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Vn
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
// Vm
((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
bool ARMAsmParser::
cvtVSTwbFixed(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Vn
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
// Vt
((ARMOperand*)Operands[3])->addVecListTwoDOperands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
bool ARMAsmParser::
cvtVSTwbRegister(MCInst &Inst, unsigned Opcode,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create a writeback register dummy placeholder.
Inst.addOperand(MCOperand::CreateImm(0));
// Vn
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
// Vm
((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
// Vt
((ARMOperand*)Operands[3])->addVecListTwoDOperands(Inst, 1);
// pred
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
return true;
}
/// Parse an ARM memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
bool ARMAsmParser::
parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LBrac) &&
"Token is not a Left Bracket");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
int BaseRegNum = tryParseRegister();
if (BaseRegNum == -1)
return Error(BaseRegTok.getLoc(), "register expected");
// The next token must either be a comma or a closing bracket.
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
return Error(Tok.getLoc(), "malformed memory operand");
if (Tok.is(AsmToken::RBrac)) {
E = Tok.getLoc();
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
0, 0, false, S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand. It's rather odd, but syntactically valid.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!");
Parser.Lex(); // Eat the comma.
// If we have a ':', it's an alignment specifier.
if (Parser.getTok().is(AsmToken::Colon)) {
Parser.Lex(); // Eat the ':'.
E = Parser.getTok().getLoc();
const MCExpr *Expr;
if (getParser().ParseExpression(Expr))
return true;
// The expression has to be a constant. Memory references with relocations
// don't come through here, as they use the <label> forms of the relevant
// instructions.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE)
return Error (E, "constant expression expected");
unsigned Align = 0;
switch (CE->getValue()) {
default:
return Error(E, "alignment specifier must be 64, 128, or 256 bits");
case 64: Align = 8; break;
case 128: Align = 16; break;
case 256: Align = 32; break;
}
// Now we should have the closing ']'
E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(E, "']' expected");
Parser.Lex(); // Eat right bracket token.
// Don't worry about range checking the value here. That's handled by
// the is*() predicates.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
ARM_AM::no_shift, 0, Align,
false, S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
// If we have a '#', it's an immediate offset, else assume it's a register
// offset.
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat the '#'.
E = Parser.getTok().getLoc();
bool isNegative = getParser().getTok().is(AsmToken::Minus);
const MCExpr *Offset;
if (getParser().ParseExpression(Offset))
return true;
// The expression has to be a constant. Memory references with relocations
// don't come through here, as they use the <label> forms of the relevant
// instructions.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
if (!CE)
return Error (E, "constant expression expected");
// If the constant was #-0, represent it as INT32_MIN.
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
CE = MCConstantExpr::Create(INT32_MIN, getContext());
// Now we should have the closing ']'
E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(E, "']' expected");
Parser.Lex(); // Eat right bracket token.
// Don't worry about range checking the value here. That's handled by
// the is*() predicates.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
ARM_AM::no_shift, 0, 0,
false, S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
// The register offset is optionally preceded by a '+' or '-'
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex(); // Eat the '-'.
} else if (Parser.getTok().is(AsmToken::Plus)) {
// Nothing to do.
Parser.Lex(); // Eat the '+'.
}
E = Parser.getTok().getLoc();
int OffsetRegNum = tryParseRegister();
if (OffsetRegNum == -1)
return Error(E, "register expected");
// If there's a shift operator, handle it.
ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
unsigned ShiftImm = 0;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the ','.
if (parseMemRegOffsetShift(ShiftType, ShiftImm))
return true;
}
// Now we should have the closing ']'
E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(E, "']' expected");
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
ShiftType, ShiftImm, 0, isNegative,
S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
/// parseMemRegOffsetShift - one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// return true if it parses a shift otherwise it returns false.
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
unsigned &Amount) {
SMLoc Loc = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
StringRef ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
St = ARM_AM::lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
St = ARM_AM::lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
St = ARM_AM::asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
St = ARM_AM::ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
St = ARM_AM::rrx;
else
return Error(Loc, "illegal shift operator");
Parser.Lex(); // Eat shift type token.
// rrx stands alone.
Amount = 0;
if (St != ARM_AM::rrx) {
Loc = Parser.getTok().getLoc();
// A '#' and a shift amount.
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
const MCExpr *Expr;
if (getParser().ParseExpression(Expr))
return true;
// Range check the immediate.
// lsl, ror: 0 <= imm <= 31
// lsr, asr: 0 <= imm <= 32
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE)
return Error(Loc, "shift amount must be an immediate");
int64_t Imm = CE->getValue();
if (Imm < 0 ||
((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
return Error(Loc, "immediate shift value out of range");
Amount = Imm;
}
return false;
}
/// parseFPImm - A floating point immediate expression operand.
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::Hash))
return MatchOperand_NoMatch;
// Disambiguate the VMOV forms that can accept an FP immediate.
// vmov.f32 <sreg>, #imm
// vmov.f64 <dreg>, #imm
// vmov.f32 <dreg>, #imm @ vector f32x2
// vmov.f32 <qreg>, #imm @ vector f32x4
//
// There are also the NEON VMOV instructions which expect an
// integer constant. Make sure we don't try to parse an FPImm
// for these:
// vmov.i{8|16|32|64} <dreg|qreg>, #imm
ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
TyOp->getToken() != ".f64"))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the '#'.
// Handle negation, as that still comes through as a separate token.
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex();
}
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 63;
int Val = ARM_AM::getFP64Imm(APInt(64, IntVal));
Parser.Lex(); // Eat the token.
if (Val == -1) {
TokError("floating point value out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateFPImm(Val, S, getContext()));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::Integer)) {
int64_t Val = Tok.getIntVal();
Parser.Lex(); // Eat the token.
if (Val > 255 || Val < 0) {
TokError("encoded floating point value out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateFPImm(Val, S, getContext()));
return MatchOperand_Success;
}
TokError("invalid floating point immediate");
return MatchOperand_ParseFail;
}
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic) {
SMLoc S, E;
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Identifier: {
// If this is VMRS, check for the apsr_nzcv operand.
if (!tryParseRegisterWithWriteBack(Operands))
return false;
int Res = tryParseShiftRegister(Operands);
if (Res == 0) // success
return false;
else if (Res == -1) // irrecoverable error
return true;
if (Mnemonic == "vmrs" && Parser.getTok().getString() == "apsr_nzcv") {
S = Parser.getTok().getLoc();
Parser.Lex();
Operands.push_back(ARMOperand::CreateToken("apsr_nzcv", S));
return false;
}
// Fall though for the Identifier case that is not a register or a
// special name.
}
case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
case AsmToken::Integer: // things like 1f and 2b as a branch targets
case AsmToken::String: // quoted label names.
case AsmToken::Dot: { // . as a branch target
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = Parser.getTok().getLoc();
if (getParser().ParseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::LBrac:
return parseMemory(Operands);
case AsmToken::LCurly:
return parseRegisterList(Operands);
case AsmToken::Hash: {
// #42 -> immediate.
// TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
S = Parser.getTok().getLoc();
Parser.Lex();
bool isNegative = Parser.getTok().is(AsmToken::Minus);
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
if (CE) {
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
}
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
return false;
}
case AsmToken::Colon: {
// ":lower16:" and ":upper16:" expression prefixes
// FIXME: Check it's an expression prefix,
// e.g. (FOO - :lower16:BAR) isn't legal.
ARMMCExpr::VariantKind RefKind;
if (parsePrefix(RefKind))
return true;
const MCExpr *SubExprVal;
if (getParser().ParseExpression(SubExprVal))
return true;
const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
getContext());
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
return false;
}
}
}
// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
// :lower16: and :upper16:.
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
RefKind = ARMMCExpr::VK_ARM_None;
// :lower16: and :upper16: modifiers
assert(getLexer().is(AsmToken::Colon) && "expected a :");
Parser.Lex(); // Eat ':'
if (getLexer().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
return true;
}
StringRef IDVal = Parser.getTok().getIdentifier();
if (IDVal == "lower16") {
RefKind = ARMMCExpr::VK_ARM_LO16;
} else if (IDVal == "upper16") {
RefKind = ARMMCExpr::VK_ARM_HI16;
} else {
Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
return true;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token after prefix");
return true;
}
Parser.Lex(); // Eat the last ':'
return false;
}
/// \brief Given a mnemonic, split out possible predication code and carry
/// setting letters to form a canonical mnemonic and flags.
//
// FIXME: Would be nice to autogen this.
// FIXME: This is a bit of a maze of special cases.
StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
unsigned &PredicationCode,
bool &CarrySetting,
unsigned &ProcessorIMod,
StringRef &ITMask) {
PredicationCode = ARMCC::AL;
CarrySetting = false;
ProcessorIMod = 0;
// Ignore some mnemonics we know aren't predicated forms.
//
// FIXME: Would be nice to autogen this.
if ((Mnemonic == "movs" && isThumb()) ||
Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal")
return Mnemonic;
// First, split out any predication code. Ignore mnemonics we know aren't
// predicated but do have a carry-set and so weren't caught above.
if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
Mnemonic != "sbcs" && Mnemonic != "rscs") {
unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("cs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("cc", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
if (CC != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
PredicationCode = CC;
}
}
// Next, determine if we have a carry setting bit. We explicitly ignore all
// the instructions we know end in 's'.
if (Mnemonic.endswith("s") &&
!(Mnemonic == "cps" || Mnemonic == "mls" ||
Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
Mnemonic == "vrsqrts" || Mnemonic == "srs" ||
(Mnemonic == "movs" && isThumb()))) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
CarrySetting = true;
}
// The "cps" instruction can have a interrupt mode operand which is glued into
// the mnemonic. Check if this is the case, split it and parse the imod op
if (Mnemonic.startswith("cps")) {
// Split out any imod code.
unsigned IMod =
StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
.Case("ie", ARM_PROC::IE)
.Case("id", ARM_PROC::ID)
.Default(~0U);
if (IMod != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
ProcessorIMod = IMod;
}
}
// The "it" instruction has the condition mask on the end of the mnemonic.
if (Mnemonic.startswith("it")) {
ITMask = Mnemonic.slice(2, Mnemonic.size());
Mnemonic = Mnemonic.slice(0, 2);
}
return Mnemonic;
}
/// \brief Given a canonical mnemonic, determine if the instruction ever allows
/// inclusion of carry set or predication code operands.
//
// FIXME: It would be nice to autogen this.
void ARMAsmParser::
getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode) {
if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
Mnemonic == "add" || Mnemonic == "adc" ||
Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
Mnemonic == "orr" || Mnemonic == "mvn" ||
Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
(!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
Mnemonic == "mla" || Mnemonic == "smlal" ||
Mnemonic == "umlal" || Mnemonic == "umull"))) {
CanAcceptCarrySet = true;
} else
CanAcceptCarrySet = false;
if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
(Mnemonic == "clrex" && !isThumb()) ||
(Mnemonic == "nop" && isThumbOne()) ||
((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
!isThumb()) ||
Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
CanAcceptPredicationCode = false;
} else
CanAcceptPredicationCode = true;
if (isThumb()) {
if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
CanAcceptPredicationCode = false;
}
}
bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// FIXME: This is all horribly hacky. We really need a better way to deal
// with optional operands like this in the matcher table.
// The 'mov' mnemonic is special. One variant has a cc_out operand, while
// another does not. Specifically, the MOVW instruction does not. So we
// special case it here and remove the defaulted (non-setting) cc_out
// operand if that's the instruction we're trying to match.
//
// We do this as post-processing of the explicit operands rather than just
// conditionally adding the cc_out in the first place because we need
// to check the type of the parsed immediate operand.
if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
!static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
return true;
// Register-register 'add' for thumb does not have a cc_out operand
// when there are only two register operands.
if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
return true;
// Register-register 'add' for thumb does not have a cc_out operand
// when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
// have to check the immediate range here since Thumb2 has a variant
// that can handle a different range and has a cc_out operand.
if (((isThumb() && Mnemonic == "add") ||
(isThumbTwo() && Mnemonic == "sub")) &&
Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
(static_cast<ARMOperand*>(Operands[5])->isReg() ||
static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
return true;
// For Thumb2, add/sub immediate does not have a cc_out operand for the
// imm0_4095 variant. That's the least-preferred variant when
// selecting via the generic "add" mnemonic, so to know that we
// should remove the cc_out operand, we have to explicitly check that
// it's not one of the other variants. Ugh.
if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[5])->isImm()) {
// Nest conditions rather than one big 'if' statement for readability.
//
// If either register is a high reg, it's either one of the SP
// variants (handled above) or a 32-bit encoding, so we just
// check against T3.
if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
!isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
return false;
// If both registers are low, we're in an IT block, and the immediate is
// in range, we should use encoding T1 instead, which has a cc_out.
if (inITBlock() &&
isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
static_cast<ARMOperand*>(Operands[5])->isImm0_7())
return false;
// Otherwise, we use encoding T4, which does not have a cc_out
// operand.
return true;
}
// The thumb2 multiply instruction doesn't have a CCOut register, so
// if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
// use the 16-bit encoding or not.
if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[4])->isReg() &&
static_cast<ARMOperand*>(Operands[5])->isReg() &&
// If the registers aren't low regs, the destination reg isn't the
// same as one of the source regs, or the cc_out operand is zero
// outside of an IT block, we have to use the 32-bit encoding, so
// remove the cc_out operand.
(!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
!isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
!inITBlock() ||
(static_cast<ARMOperand*>(Operands[3])->getReg() !=
static_cast<ARMOperand*>(Operands[5])->getReg() &&
static_cast<ARMOperand*>(Operands[3])->getReg() !=
static_cast<ARMOperand*>(Operands[4])->getReg())))
return true;
// Register-register 'add/sub' for thumb does not have a cc_out operand
// when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
// the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
// right, this will result in better diagnostics (which operand is off)
// anyway.
if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
(Operands.size() == 5 || Operands.size() == 6) &&
static_cast<ARMOperand*>(Operands[3])->isReg() &&
static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
return true;
return false;
}
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Mnemonic = Name.slice(Start, Next);
// Split out the predication code and carry setting flag from the mnemonic.
unsigned PredicationCode;
unsigned ProcessorIMod;
bool CarrySetting;
StringRef ITMask;
Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
ProcessorIMod, ITMask);
// In Thumb1, only the branch (B) instruction can be predicated.
if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
Parser.EatToEndOfStatement();
return Error(NameLoc, "conditional execution not supported in Thumb1");
}
Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
// Handle the IT instruction ITMask. Convert it to a bitmask. This
// is the mask as it will be for the IT encoding if the conditional
// encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
// where the conditional bit0 is zero, the instruction post-processing
// will adjust the mask accordingly.
if (Mnemonic == "it") {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
if (ITMask.size() > 3) {
Parser.EatToEndOfStatement();
return Error(Loc, "too many conditions on IT instruction");
}
unsigned Mask = 8;
for (unsigned i = ITMask.size(); i != 0; --i) {
char pos = ITMask[i - 1];
if (pos != 't' && pos != 'e') {
Parser.EatToEndOfStatement();
return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
}
Mask >>= 1;
if (ITMask[i - 1] == 't')
Mask |= 8;
}
Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
}
// FIXME: This is all a pretty gross hack. We should automatically handle
// optional operands like this via tblgen.
// Next, add the CCOut and ConditionCode operands, if needed.
//
// For mnemonics which can ever incorporate a carry setting bit or predication
// code, our matching model involves us always generating CCOut and
// ConditionCode operands to match the mnemonic "as written" and then we let
// the matcher deal with finding the right instruction or generating an
// appropriate error.
bool CanAcceptCarrySet, CanAcceptPredicationCode;
getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
// If we had a carry-set on an instruction that can't do that, issue an
// error.
if (!CanAcceptCarrySet && CarrySetting) {
Parser.EatToEndOfStatement();
return Error(NameLoc, "instruction '" + Mnemonic +
"' can not set flags, but 's' suffix specified");
}
// If we had a predication code on an instruction that can't do that, issue an
// error.
if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
Parser.EatToEndOfStatement();
return Error(NameLoc, "instruction '" + Mnemonic +
"' is not predicable, but condition code specified");
}
// Add the carry setting operand, if necessary.
if (CanAcceptCarrySet) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
Loc));
}
// Add the predication code operand, if necessary.
if (CanAcceptPredicationCode) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
CarrySetting);
Operands.push_back(ARMOperand::CreateCondCode(
ARMCC::CondCodes(PredicationCode), Loc));
}
// Add the processor imod operand, if necessary.
if (ProcessorIMod) {
Operands.push_back(ARMOperand::CreateImm(
MCConstantExpr::Create(ProcessorIMod, getContext()),
NameLoc, NameLoc));
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
StringRef ExtraToken = Name.slice(Start, Next);
// For now, we're only parsing Thumb1 (for the most part), so
// just ignore ".n" qualifiers. We'll use them to restrict
// matching when we do Thumb2.
if (ExtraToken != ".n") {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
}
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Mnemonic)) {
Parser.EatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, Mnemonic)) {
Parser.EatToEndOfStatement();
return true;
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
// Some instructions, mostly Thumb, have forms for the same mnemonic that
// do and don't have a cc_out optional-def operand. With some spot-checks
// of the operand list, we can figure out which variant we're trying to
// parse and adjust accordingly before actually matching. We shouldn't ever
// try to remove a cc_out operand that was explicitly set on the the
// mnemonic, of course (CarrySetting == true). Reason number #317 the
// table driven matcher doesn't fit well with the ARM instruction set.
if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
Operands.erase(Operands.begin() + 1);
delete Op;
}
// ARM mode 'blx' need special handling, as the register operand version
// is predicable, but the label operand version is not. So, we can't rely
// on the Mnemonic based checking to correctly figure out when to put
// a k_CondCode operand in the list. If we're trying to match the label
// version, remove the k_CondCode operand here.
if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
static_cast<ARMOperand*>(Operands[2])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
Operands.erase(Operands.begin() + 1);
delete Op;
}
// The vector-compare-to-zero instructions have a literal token "#0" at
// the end that comes to here as an immediate operand. Convert it to a
// token to play nicely with the matcher.
if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" ||
Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[5])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
if (CE && CE->getValue() == 0) {
Operands.erase(Operands.begin() + 5);
Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
delete Op;
}
}
// VCMP{E} does the same thing, but with a different operand count.
if ((Mnemonic == "vcmp" || Mnemonic == "vcmpe") && Operands.size() == 5 &&
static_cast<ARMOperand*>(Operands[4])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[4]);
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
if (CE && CE->getValue() == 0) {
Operands.erase(Operands.begin() + 4);
Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
delete Op;
}
}
// Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the
// end. Convert it to a token here.
if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 &&
static_cast<ARMOperand*>(Operands[5])->isImm()) {
ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
if (CE && CE->getValue() == 0) {
Operands.erase(Operands.begin() + 5);
Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
delete Op;
}
}
return false;
}
// Validate context-sensitive operand constraints.
// return 'true' if register list contains non-low GPR registers,
// 'false' otherwise. If Reg is in the register list or is HiReg, set
// 'containsReg' to true.
static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
unsigned HiReg, bool &containsReg) {
containsReg = false;
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
unsigned OpReg = Inst.getOperand(i).getReg();
if (OpReg == Reg)
containsReg = true;
// Anything other than a low register isn't legal here.
if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
return true;
}
return false;
}
// Check if the specified regisgter is in the register list of the inst,
// starting at the indicated operand number.
static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
unsigned OpReg = Inst.getOperand(i).getReg();
if (OpReg == Reg)
return true;
}
return false;
}
// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
// the ARMInsts array) instead. Getting that here requires awkward
// API changes, though. Better way?
namespace llvm {
extern const MCInstrDesc ARMInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return ARMInsts[Opcode];
}
// FIXME: We would really like to be able to tablegen'erate this.
bool ARMAsmParser::
validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
SMLoc Loc = Operands[0]->getStartLoc();
// Check the IT block state first.
// NOTE: In Thumb mode, the BKPT instruction has the interesting property of
// being allowed in IT blocks, but not being predicable. It just always
// executes.
if (inITBlock() && Inst.getOpcode() != ARM::tBKPT) {
unsigned bit = 1;
if (ITState.FirstCond)
ITState.FirstCond = false;
else
bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
// The instruction must be predicable.
if (!MCID.isPredicable())
return Error(Loc, "instructions in IT block must be predicable");
unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
unsigned ITCond = bit ? ITState.Cond :
ARMCC::getOppositeCondition(ITState.Cond);
if (Cond != ITCond) {
// Find the condition code Operand to get its SMLoc information.
SMLoc CondLoc;
for (unsigned i = 1; i < Operands.size(); ++i)
if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
CondLoc = Operands[i]->getStartLoc();
return Error(CondLoc, "incorrect condition in IT block; got '" +
StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
"', but expected '" +
ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
}
// Check for non-'al' condition codes outside of the IT block.
} else if (isThumbTwo() && MCID.isPredicable() &&
Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
ARMCC::AL && Inst.getOpcode() != ARM::tB &&
Inst.getOpcode() != ARM::t2B)
return Error(Loc, "predicated instructions must be in IT block");
switch (Inst.getOpcode()) {
case ARM::LDRD:
case ARM::LDRD_PRE:
case ARM::LDRD_POST:
case ARM::LDREXD: {
// Rt2 must be Rt + 1.
unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
if (Rt2 != Rt + 1)
return Error(Operands[3]->getStartLoc(),
"destination operands must be sequential");
return false;
}
case ARM::STRD: {
// Rt2 must be Rt + 1.
unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
if (Rt2 != Rt + 1)
return Error(Operands[3]->getStartLoc(),
"source operands must be sequential");
return false;
}
case ARM::STRD_PRE:
case ARM::STRD_POST:
case ARM::STREXD: {
// Rt2 must be Rt + 1.
unsigned Rt = getARMRegisterNumbering(Inst.getOperand(1).getReg());
unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(2).getReg());
if (Rt2 != Rt + 1)
return Error(Operands[3]->getStartLoc(),
"source operands must be sequential");
return false;
}
case ARM::SBFX:
case ARM::UBFX: {
// width must be in range [1, 32-lsb]
unsigned lsb = Inst.getOperand(2).getImm();
unsigned widthm1 = Inst.getOperand(3).getImm();
if (widthm1 >= 32 - lsb)
return Error(Operands[5]->getStartLoc(),
"bitfield width must be in range [1,32-lsb]");
return false;
}
case ARM::tLDMIA: {
// If we're parsing Thumb2, the .w variant is available and handles
// most cases that are normally illegal for a Thumb1 LDM
// instruction. We'll make the transformation in processInstruction()
// if necessary.
//
// Thumb LDM instructions are writeback iff the base register is not
// in the register list.
unsigned Rn = Inst.getOperand(0).getReg();
bool hasWritebackToken =
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
"registers must be in range r0-r7");
// If we should have writeback, then there should be a '!' token.
if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"writeback operator '!' expected");
// If we should not have writeback, there must not be a '!'. This is
// true even for the 32-bit wide encodings.
if (listContainsBase && hasWritebackToken)
return Error(Operands[3]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
break;
}
case ARM::t2LDMIA_UPD: {
if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
return Error(Operands[4]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
break;
}
case ARM::tPOP: {
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, 0, ARM::PC, listContainsBase))
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or pc");
break;
}
case ARM::tPUSH: {
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, 0, ARM::LR, listContainsBase))
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or lr");
break;
}
case ARM::tSTMIA_UPD: {
bool listContainsBase;
if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
return Error(Operands[4]->getStartLoc(),
"registers must be in range r0-r7");
break;
}
}
return false;
}
void ARMAsmParser::
processInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
switch (Inst.getOpcode()) {
case ARM::LDMIA_UPD:
// If this is a load of a single register via a 'pop', then we should use
// a post-indexed LDR instruction instead, per the ARM ARM.
if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
Inst.getNumOperands() == 5) {
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR_POST_IMM);
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset
TmpInst.addOperand(MCOperand::CreateImm(4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
case ARM::STMDB_UPD:
// If this is a store of a single register via a 'push', then we should use
// a pre-indexed STR instruction instead, per the ARM ARM.
if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
Inst.getNumOperands() == 5) {
MCInst TmpInst;
TmpInst.setOpcode(ARM::STR_PRE_IMM);
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
TmpInst.addOperand(MCOperand::CreateImm(-4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
case ARM::tADDi8:
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
// to encoding T1 if <Rd> is omitted."
if (Inst.getOperand(3).getImm() < 8 && Operands.size() == 6)
Inst.setOpcode(ARM::tADDi3);
break;
case ARM::tSUBi8:
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
// to encoding T1 if <Rd> is omitted."
if (Inst.getOperand(3).getImm() < 8 && Operands.size() == 6)
Inst.setOpcode(ARM::tSUBi3);
break;
case ARM::tB:
// A Thumb conditional branch outside of an IT block is a tBcc.
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock())
Inst.setOpcode(ARM::tBcc);
break;
case ARM::t2B:
// A Thumb2 conditional branch outside of an IT block is a t2Bcc.
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock())
Inst.setOpcode(ARM::t2Bcc);
break;
case ARM::t2Bcc:
// If the conditional is AL or we're in an IT block, we really want t2B.
if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock())
Inst.setOpcode(ARM::t2B);
break;
case ARM::tBcc:
// If the conditional is AL, we really want tB.
if (Inst.getOperand(1).getImm() == ARMCC::AL)
Inst.setOpcode(ARM::tB);
break;
case ARM::tLDMIA: {
// If the register list contains any high registers, or if the writeback
// doesn't match what tLDMIA can do, we need to use the 32-bit encoding
// instead if we're in Thumb2. Otherwise, this should have generated
// an error in validateInstruction().
unsigned Rn = Inst.getOperand(0).getReg();
bool hasWritebackToken =
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
(!listContainsBase && !hasWritebackToken) ||
(listContainsBase && hasWritebackToken)) {
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
assert (isThumbTwo());
Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
// If we're switching to the updating version, we need to insert
// the writeback tied operand.
if (hasWritebackToken)
Inst.insert(Inst.begin(),
MCOperand::CreateReg(Inst.getOperand(0).getReg()));
}
break;
}
case ARM::tSTMIA_UPD: {
// If the register list contains any high registers, we need to use
// the 32-bit encoding instead if we're in Thumb2. Otherwise, this
// should have generated an error in validateInstruction().
unsigned Rn = Inst.getOperand(0).getReg();
bool listContainsBase;
if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
assert (isThumbTwo());
Inst.setOpcode(ARM::t2STMIA_UPD);
}
break;
}
case ARM::t2MOVi: {
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
Inst.getOperand(1).getImm() <= 255 &&
((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
Inst.getOperand(4).getReg() == ARM::CPSR) ||
(inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
// The operands aren't in the same order for tMOVi8...
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
}
case ARM::t2MOVr: {
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
Inst.getOperand(2).getImm() == ARMCC::AL &&
Inst.getOperand(4).getReg() == ARM::CPSR &&
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
// The operands aren't the same for tMOV[S]r... (no cc_out)
MCInst TmpInst;
TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
}
case ARM::t2SXTH:
case ARM::t2SXTB:
case ARM::t2UXTH:
case ARM::t2UXTB: {
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
Inst.getOperand(2).getImm() == 0 &&
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Illegal opcode!");
case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
}
// The operands aren't the same for thumb1 (no rotate operand).
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
}
break;
}
case ARM::t2IT: {
// The mask bits for all but the first condition are represented as
// the low bit of the condition code value implies 't'. We currently
// always have 1 implies 't', so XOR toggle the bits if the low bit
// of the condition code is zero. The encoding also expects the low
// bit of the condition to be encoded as bit 4 of the mask operand,
// so mask that in if needed
MCOperand &MO = Inst.getOperand(1);
unsigned Mask = MO.getImm();
unsigned OrigMask = Mask;
unsigned TZ = CountTrailingZeros_32(Mask);
if ((Inst.getOperand(0).getImm() & 1) == 0) {
assert(Mask && TZ <= 3 && "illegal IT mask value!");
for (unsigned i = 3; i != TZ; --i)
Mask ^= 1 << i;
} else
Mask |= 0x10;
MO.setImm(Mask);
// Set up the IT block state according to the IT instruction we just
// matched.
assert(!inITBlock() && "nested IT blocks?!");
ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
ITState.Mask = OrigMask; // Use the original mask, not the updated one.
ITState.CurPosition = 0;
ITState.FirstCond = true;
break;
}
}
}
unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
// 16-bit thumb arithmetic instructions either require or preclude the 'S'
// suffix depending on whether they're in an IT block or not.
unsigned Opc = Inst.getOpcode();
const MCInstrDesc &MCID = getInstDesc(Opc);
if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
assert(MCID.hasOptionalDef() &&
"optionally flag setting instruction missing optional def operand");
assert(MCID.NumOperands == Inst.getNumOperands() &&
"operand count mismatch!");
// Find the optional-def operand (cc_out).
unsigned OpNo;
for (OpNo = 0;
!MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
++OpNo)
;
// If we're parsing Thumb1, reject it completely.
if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
return Match_MnemonicFail;
// If we're parsing Thumb2, which form is legal depends on whether we're
// in an IT block.
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
!inITBlock())
return Match_RequiresITBlock;
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
inITBlock())
return Match_RequiresNotITBlock;
}
// Some high-register supporting Thumb1 encodings only allow both registers
// to be from r0-r7 when in Thumb2.
else if (Opc == ARM::tADDhirr && isThumbOne() &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg()))
return Match_RequiresThumb2;
// Others only require ARMv6 or later.
else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()))
return Match_RequiresV6;
return Match_Success;
}
bool ARMAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out) {
MCInst Inst;
unsigned ErrorInfo;
unsigned MatchResult;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
switch (MatchResult) {
default: break;
case Match_Success:
// Context sensitive operand constraints aren't handled by the matcher,
// so check them here.
if (validateInstruction(Inst, Operands)) {
// Still progress the IT block, otherwise one wrong condition causes
// nasty cascading errors.
forwardITPosition();
return true;
}
// Some instructions need post-processing to, for example, tweak which
// encoding is selected.
processInstruction(Inst, Operands);
// Only move forward at the very end so that everything in validate
// and process gets a consistent answer about whether we're in an IT
// block.
forwardITPosition();
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
case Match_ConversionFail:
// The converter function will have already emited a diagnostic.
return true;
case Match_RequiresNotITBlock:
return Error(IDLoc, "flag setting instruction only valid outside IT block");
case Match_RequiresITBlock:
return Error(IDLoc, "instruction only valid inside IT block");
case Match_RequiresV6:
return Error(IDLoc, "instruction variant requires ARMv6 or later");
case Match_RequiresThumb2:
return Error(IDLoc, "instruction variant requires Thumb2");
}
llvm_unreachable("Implement any new match types added!");
return true;
}
/// parseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return parseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".thumb")
return parseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
return parseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
return parseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
return parseDirectiveSyntax(DirectiveID.getLoc());
return true;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: set thumb mode
// TODO: tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// parseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
bool isMachO = MAI.hasSubsectionsViaSymbols();
StringRef Name;
// Darwin asm has function name after .thumb_func direction
// ELF doesn't
if (isMachO) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
return Error(L, "unexpected token in .thumb_func directive");
Name = Tok.getString();
Parser.Lex(); // Consume the identifier token.
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// FIXME: assuming function name will be the line following .thumb_func
if (!isMachO) {
Name = Parser.getTok().getString();
}
// Mark symbol as a thumb symbol.
MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
getParser().getStreamer().EmitThumbFunc(Func);
return false;
}
/// parseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(L, "unexpected token in .syntax directive");
StringRef Mode = Tok.getString();
if (Mode == "unified" || Mode == "UNIFIED")
Parser.Lex();
else if (Mode == "divided" || Mode == "DIVIDED")
return Error(L, "'.syntax divided' arm asssembly not supported");
else
return Error(L, "unrecognized syntax mode in .syntax directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// parseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = Parser.getTok().getIntVal();
if (Val == 16)
Parser.Lex();
else if (Val == 32)
Parser.Lex();
else
return Error(L, "invalid operand to .code directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
if (Val == 16) {
if (!isThumb())
SwitchMode();
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
} else {
if (isThumb())
SwitchMode();
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
}
return false;
}
extern "C" void LLVMInitializeARMAsmLexer();
/// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
LLVMInitializeARMAsmLexer();
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"
|