aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
blob: aeeb8cdf49a3c5cecc8678d187eb2c3d9f4e3bc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
//===- ARMDisassemblerCore.cpp - ARM disassembler helpers -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the ARM Disassembler.
// It contains code to represent the core concepts of Builder and DisassembleFP
// to solve the problem of disassembling an ARM instr.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "arm-disassembler"

#include "ARMDisassemblerCore.h"
#include "ARMAddressingModes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

//#define DEBUG(X) do { X; } while (0)

/// ARMGenInstrInfo.inc - ARMGenInstrInfo.inc contains the static const
/// TargetInstrDesc ARMInsts[] definition and the TargetOperandInfo[]'s
/// describing the operand info for each ARMInsts[i].
///
/// Together with an instruction's encoding format, we can take advantage of the
/// NumOperands and the OpInfo fields of the target instruction description in
/// the quest to build out the MCOperand list for an MCInst.
///
/// The general guideline is that with a known format, the number of dst and src
/// operands are well-known.  The dst is built first, followed by the src
/// operand(s).  The operands not yet used at this point are for the Implicit
/// Uses and Defs by this instr.  For the Uses part, the pred:$p operand is
/// defined with two components:
///
/// def pred { // Operand PredicateOperand
///   ValueType Type = OtherVT;
///   string PrintMethod = "printPredicateOperand";
///   string AsmOperandLowerMethod = ?;
///   dag MIOperandInfo = (ops i32imm, CCR);
///   AsmOperandClass ParserMatchClass = ImmAsmOperand;
///   dag DefaultOps = (ops (i32 14), (i32 zero_reg));
/// }
///
/// which is manifested by the TargetOperandInfo[] of:
///
/// { 0, 0|(1<<TOI::Predicate), 0 },
/// { ARM::CCRRegClassID, 0|(1<<TOI::Predicate), 0 }
///
/// So the first predicate MCOperand corresponds to the immediate part of the
/// ARM condition field (Inst{31-28}), and the second predicate MCOperand
/// corresponds to a register kind of ARM::CPSR.
///
/// For the Defs part, in the simple case of only cc_out:$s, we have:
///
/// def cc_out { // Operand OptionalDefOperand
///   ValueType Type = OtherVT;
///   string PrintMethod = "printSBitModifierOperand";
///   string AsmOperandLowerMethod = ?;
///   dag MIOperandInfo = (ops CCR);
///   AsmOperandClass ParserMatchClass = ImmAsmOperand;
///   dag DefaultOps = (ops (i32 zero_reg));
/// }
///
/// which is manifested by the one TargetOperandInfo of:
///
/// { ARM::CCRRegClassID, 0|(1<<TOI::OptionalDef), 0 }
///
/// And this maps to one MCOperand with the regsiter kind of ARM::CPSR.
#include "ARMGenInstrInfo.inc"

using namespace llvm;

const char *ARMUtils::OpcodeName(unsigned Opcode) {
  return ARMInsts[Opcode].Name;
}

// Return the register enum Based on RegClass and the raw register number.
// FIXME: Auto-gened?
static unsigned
getRegisterEnum(BO B, unsigned RegClassID, unsigned RawRegister) {
  // For this purpose, we can treat rGPR as if it were GPR.
  if (RegClassID == ARM::rGPRRegClassID) RegClassID = ARM::GPRRegClassID;

  // See also decodeNEONRd(), decodeNEONRn(), decodeNEONRm().
  unsigned RegNum =
    RegClassID == ARM::QPRRegClassID ? RawRegister >> 1 : RawRegister;

  switch (RegNum) {
  default:
    break;
  case 0:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R0;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D0;
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
    case ARM::QPR_VFP2RegClassID:
      return ARM::Q0;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S0;
    }
    break;
  case 1:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R1;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D1;
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
    case ARM::QPR_VFP2RegClassID:
      return ARM::Q1;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S1;
    }
    break;
  case 2:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R2;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D2;
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
    case ARM::QPR_VFP2RegClassID:
      return ARM::Q2;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S2;
    }
    break;
  case 3:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R3;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D3;
    case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
    case ARM::QPR_VFP2RegClassID:
      return ARM::Q3;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S3;
    }
    break;
  case 4:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R4;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D4;
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q4;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S4;
    }
    break;
  case 5:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R5;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D5;
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q5;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S5;
    }
    break;
  case 6:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R6;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D6;
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q6;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S6;
    }
    break;
  case 7:
    switch (RegClassID) {
    case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R7;
    case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
    case ARM::DPR_VFP2RegClassID:
      return ARM::D7;
    case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q7;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S7;
    }
    break;
  case 8:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::R8;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D8;
    case ARM::QPRRegClassID: return ARM::Q8;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S8;
    }
    break;
  case 9:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::R9;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D9;
    case ARM::QPRRegClassID: return ARM::Q9;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S9;
    }
    break;
  case 10:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::R10;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D10;
    case ARM::QPRRegClassID: return ARM::Q10;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S10;
    }
    break;
  case 11:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::R11;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D11;
    case ARM::QPRRegClassID: return ARM::Q11;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S11;
    }
    break;
  case 12:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::R12;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D12;
    case ARM::QPRRegClassID: return ARM::Q12;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S12;
    }
    break;
  case 13:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::SP;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D13;
    case ARM::QPRRegClassID: return ARM::Q13;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S13;
    }
    break;
  case 14:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::LR;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D14;
    case ARM::QPRRegClassID: return ARM::Q14;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S14;
    }
    break;
  case 15:
    switch (RegClassID) {
    case ARM::GPRRegClassID: return ARM::PC;
    case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D15;
    case ARM::QPRRegClassID: return ARM::Q15;
    case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S15;
    }
    break;
  case 16:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D16;
    case ARM::SPRRegClassID: return ARM::S16;
    }
    break;
  case 17:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D17;
    case ARM::SPRRegClassID: return ARM::S17;
    }
    break;
  case 18:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D18;
    case ARM::SPRRegClassID: return ARM::S18;
    }
    break;
  case 19:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D19;
    case ARM::SPRRegClassID: return ARM::S19;
    }
    break;
  case 20:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D20;
    case ARM::SPRRegClassID: return ARM::S20;
    }
    break;
  case 21:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D21;
    case ARM::SPRRegClassID: return ARM::S21;
    }
    break;
  case 22:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D22;
    case ARM::SPRRegClassID: return ARM::S22;
    }
    break;
  case 23:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D23;
    case ARM::SPRRegClassID: return ARM::S23;
    }
    break;
  case 24:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D24;
    case ARM::SPRRegClassID: return ARM::S24;
    }
    break;
  case 25:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D25;
    case ARM::SPRRegClassID: return ARM::S25;
    }
    break;
  case 26:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D26;
    case ARM::SPRRegClassID: return ARM::S26;
    }
    break;
  case 27:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D27;
    case ARM::SPRRegClassID: return ARM::S27;
    }
    break;
  case 28:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D28;
    case ARM::SPRRegClassID: return ARM::S28;
    }
    break;
  case 29:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D29;
    case ARM::SPRRegClassID: return ARM::S29;
    }
    break;
  case 30:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D30;
    case ARM::SPRRegClassID: return ARM::S30;
    }
    break;
  case 31:
    switch (RegClassID) {
    case ARM::DPRRegClassID: return ARM::D31;
    case ARM::SPRRegClassID: return ARM::S31;
    }
    break;
  }
  DEBUG(errs() << "Invalid (RegClassID, RawRegister) combination\n");
  // Encoding error.  Mark the builder with error code != 0.
  B->SetErr(-1);
  return 0;
}

///////////////////////////////
//                           //
//     Utility Functions     //
//                           //
///////////////////////////////

// Extract/Decode Rd: Inst{15-12}.
static inline unsigned decodeRd(uint32_t insn) {
  return (insn >> ARMII::RegRdShift) & ARMII::GPRRegMask;
}

// Extract/Decode Rn: Inst{19-16}.
static inline unsigned decodeRn(uint32_t insn) {
  return (insn >> ARMII::RegRnShift) & ARMII::GPRRegMask;
}

// Extract/Decode Rm: Inst{3-0}.
static inline unsigned decodeRm(uint32_t insn) {
  return (insn & ARMII::GPRRegMask);
}

// Extract/Decode Rs: Inst{11-8}.
static inline unsigned decodeRs(uint32_t insn) {
  return (insn >> ARMII::RegRsShift) & ARMII::GPRRegMask;
}

static inline unsigned getCondField(uint32_t insn) {
  return (insn >> ARMII::CondShift);
}

static inline unsigned getIBit(uint32_t insn) {
  return (insn >> ARMII::I_BitShift) & 1;
}

static inline unsigned getAM3IBit(uint32_t insn) {
  return (insn >> ARMII::AM3_I_BitShift) & 1;
}

static inline unsigned getPBit(uint32_t insn) {
  return (insn >> ARMII::P_BitShift) & 1;
}

static inline unsigned getUBit(uint32_t insn) {
  return (insn >> ARMII::U_BitShift) & 1;
}

static inline unsigned getPUBits(uint32_t insn) {
  return (insn >> ARMII::U_BitShift) & 3;
}

static inline unsigned getSBit(uint32_t insn) {
  return (insn >> ARMII::S_BitShift) & 1;
}

static inline unsigned getWBit(uint32_t insn) {
  return (insn >> ARMII::W_BitShift) & 1;
}

static inline unsigned getDBit(uint32_t insn) {
  return (insn >> ARMII::D_BitShift) & 1;
}

static inline unsigned getNBit(uint32_t insn) {
  return (insn >> ARMII::N_BitShift) & 1;
}

static inline unsigned getMBit(uint32_t insn) {
  return (insn >> ARMII::M_BitShift) & 1;
}

// See A8.4 Shifts applied to a register.
//     A8.4.2 Register controlled shifts.
//
// getShiftOpcForBits - getShiftOpcForBits translates from the ARM encoding bits
// into llvm enums for shift opcode.  The API clients should pass in the value
// encoded with two bits, so the assert stays to signal a wrong API usage.
//
// A8-12: DecodeRegShift()
static inline ARM_AM::ShiftOpc getShiftOpcForBits(unsigned bits) {
  switch (bits) {
  default: assert(0 && "No such value"); return ARM_AM::no_shift;
  case 0:  return ARM_AM::lsl;
  case 1:  return ARM_AM::lsr;
  case 2:  return ARM_AM::asr;
  case 3:  return ARM_AM::ror;
  }
}

// See A8.4 Shifts applied to a register.
//     A8.4.1 Constant shifts.
//
// getImmShiftSE - getImmShiftSE translates from the raw ShiftOpc and raw Imm5
// encodings into the intended ShiftOpc and shift amount.
//
// A8-11: DecodeImmShift()
static inline void getImmShiftSE(ARM_AM::ShiftOpc &ShOp, unsigned &ShImm) {
  if (ShImm != 0)
    return;
  switch (ShOp) {
  case ARM_AM::no_shift:
  case ARM_AM::rrx:
    break;
  case ARM_AM::lsl:
    ShOp = ARM_AM::no_shift;
    break;
  case ARM_AM::lsr:
  case ARM_AM::asr:
    ShImm = 32;
    break;
  case ARM_AM::ror:
    ShOp = ARM_AM::rrx;
    break;
  }
}

// getAMSubModeForBits - getAMSubModeForBits translates from the ARM encoding
// bits Inst{24-23} (P(24) and U(23)) into llvm enums for AMSubMode.  The API
// clients should pass in the value encoded with two bits, so the assert stays
// to signal a wrong API usage.
static inline ARM_AM::AMSubMode getAMSubModeForBits(unsigned bits) {
  switch (bits) {
  default: assert(0 && "No such value"); return ARM_AM::bad_am_submode;
  case 1:  return ARM_AM::ia;   // P=0 U=1
  case 3:  return ARM_AM::ib;   // P=1 U=1
  case 0:  return ARM_AM::da;   // P=0 U=0
  case 2:  return ARM_AM::db;   // P=1 U=0
  }
}

////////////////////////////////////////////
//                                        //
//    Disassemble function definitions    //
//                                        //
////////////////////////////////////////////

/// There is a separate Disassemble*Frm function entry for disassembly of an ARM
/// instr into a list of MCOperands in the appropriate order, with possible dst,
/// followed by possible src(s).
///
/// The processing of the predicate, and the 'S' modifier bit, if MI modifies
/// the CPSR, is factored into ARMBasicMCBuilder's method named
/// TryPredicateAndSBitModifier.

static bool DisassemblePseudo(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO) {

  assert(0 && "Unexpected pseudo instruction!");
  return false;
}

// Multiply Instructions.
// MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMMLA, SMMLS:
//     Rd{19-16} Rn{3-0} Rm{11-8} Ra{15-12}
//
// MUL, SMMUL, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT:
//     Rd{19-16} Rn{3-0} Rm{11-8}
//
// SMLAL, SMULL, UMAAL, UMLAL, UMULL, SMLALBB, SMLALBT, SMLALTB, SMLALTT:
//     RdLo{15-12} RdHi{19-16} Rn{3-0} Rm{11-8}
//
// The mapping of the multiply registers to the "regular" ARM registers, where
// there are convenience decoder functions, is:
//
// Inst{15-12} => Rd
// Inst{19-16} => Rn
// Inst{3-0} => Rm
// Inst{11-8} => Rs
static bool DisassembleMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  unsigned short NumDefs = TID.getNumDefs();
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  assert(NumDefs > 0 && "NumDefs should be greater than 0 for MulFrm");
  assert(NumOps >= 3
         && OpInfo[0].RegClass == ARM::GPRRegClassID
         && OpInfo[1].RegClass == ARM::GPRRegClassID
         && OpInfo[2].RegClass == ARM::GPRRegClassID
         && "Expect three register operands");

  // Instructions with two destination registers have RdLo{15-12} first.
  if (NumDefs == 2) {
    assert(NumOps >= 4 && OpInfo[3].RegClass == ARM::GPRRegClassID &&
           "Expect 4th register operand");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn))));
    ++OpIdx;
  }

  // The destination register: RdHi{19-16} or Rd{19-16}.
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));

  // The two src regsiters: Rn{3-0}, then Rm{11-8}.
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRm(insn))));
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRs(insn))));
  OpIdx += 3;

  // Many multiply instructions (e.g., MLA) have three src registers.
  // The third register operand is Ra{15-12}.
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn))));
    ++OpIdx;
  }

  return true;
}

// Helper routines for disassembly of coprocessor instructions.

static bool LdStCopOpcode(unsigned Opcode) {
  if ((Opcode >= ARM::LDC2L_OFFSET && Opcode <= ARM::LDC_PRE) ||
      (Opcode >= ARM::STC2L_OFFSET && Opcode <= ARM::STC_PRE))
    return true;
  return false;
}
static bool CoprocessorOpcode(unsigned Opcode) {
  if (LdStCopOpcode(Opcode))
    return true;

  switch (Opcode) {
  default:
    return false;
  case ARM::CDP:  case ARM::CDP2:
  case ARM::MCR:  case ARM::MCR2:  case ARM::MRC:  case ARM::MRC2:
  case ARM::MCRR: case ARM::MCRR2: case ARM::MRRC: case ARM::MRRC2:
    return true;
  }
}
static inline unsigned GetCoprocessor(uint32_t insn) {
  return slice(insn, 11, 8);
}
static inline unsigned GetCopOpc1(uint32_t insn, bool CDP) {
  return CDP ? slice(insn, 23, 20) : slice(insn, 23, 21);
}
static inline unsigned GetCopOpc2(uint32_t insn) {
  return slice(insn, 7, 5);
}
static inline unsigned GetCopOpc(uint32_t insn) {
  return slice(insn, 7, 4);
}
// Most of the operands are in immediate forms, except Rd and Rn, which are ARM
// core registers.
//
// CDP, CDP2:                cop opc1 CRd CRn CRm opc2
//
// MCR, MCR2, MRC, MRC2:     cop opc1 Rd CRn CRm opc2
//
// MCRR, MCRR2, MRRC, MRRc2: cop opc Rd Rn CRm
//
// LDC_OFFSET, LDC_PRE, LDC_POST: cop CRd Rn R0 [+/-]imm8:00
// and friends
// STC_OFFSET, STC_PRE, STC_POST: cop CRd Rn R0 [+/-]imm8:00
// and friends
//                                        <-- addrmode2 -->
//
// LDC_OPTION:                    cop CRd Rn imm8
// and friends
// STC_OPTION:                    cop CRd Rn imm8
// and friends
//
static bool DisassembleCoprocessor(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 5 && "Num of operands >= 5 for coprocessor instr");

  unsigned &OpIdx = NumOpsAdded;
  bool OneCopOpc = (Opcode == ARM::MCRR || Opcode == ARM::MCRR2 ||
                    Opcode == ARM::MRRC || Opcode == ARM::MRRC2);
  // CDP/CDP2 has no GPR operand; the opc1 operand is also wider (Inst{23-20}).
  bool NoGPR = (Opcode == ARM::CDP || Opcode == ARM::CDP2);
  bool LdStCop = LdStCopOpcode(Opcode);

  OpIdx = 0;

  MI.addOperand(MCOperand::CreateImm(GetCoprocessor(insn)));

  if (LdStCop) {
    // Unindex if P:W = 0b00 --> _OPTION variant
    unsigned PW = getPBit(insn) << 1 | getWBit(insn);

    MI.addOperand(MCOperand::CreateImm(decodeRd(insn)));

    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));

    if (PW) {
      MI.addOperand(MCOperand::CreateReg(0));
      ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
      unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, slice(insn, 7, 0) << 2,
                                          ARM_AM::no_shift);
      MI.addOperand(MCOperand::CreateImm(Offset));
      OpIdx = 5;
    } else {
      MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 0)));
      OpIdx = 4;
    }
  } else {
    MI.addOperand(MCOperand::CreateImm(OneCopOpc ? GetCopOpc(insn)
                                                 : GetCopOpc1(insn, NoGPR)));

    MI.addOperand(NoGPR ? MCOperand::CreateImm(decodeRd(insn))
                        : MCOperand::CreateReg(
                            getRegisterEnum(B, ARM::GPRRegClassID,
                                            decodeRd(insn))));

    MI.addOperand(OneCopOpc ? MCOperand::CreateReg(
                                getRegisterEnum(B, ARM::GPRRegClassID,
                                                decodeRn(insn)))
                            : MCOperand::CreateImm(decodeRn(insn)));

    MI.addOperand(MCOperand::CreateImm(decodeRm(insn)));

    OpIdx = 5;

    if (!OneCopOpc) {
      MI.addOperand(MCOperand::CreateImm(GetCopOpc2(insn)));
      ++OpIdx;
    }
  }

  return true;
}

// Branch Instructions.
// BLr9: SignExtend(Imm24:'00', 32)
// Bcc, BLr9_pred: SignExtend(Imm24:'00', 32) Pred0 Pred1
// SMC: ZeroExtend(imm4, 32)
// SVC: ZeroExtend(Imm24, 32)
//
// Various coprocessor instructions are assigned BrFrm arbitrarily.
// Delegates to DisassembleCoprocessor() helper function.
//
// MRS/MRSsys: Rd
// MSR/MSRsys: Rm mask=Inst{19-16}
// BXJ:        Rm
// MSRi/MSRsysi: so_imm
// SRSW/SRS: ldstm_mode:$amode mode_imm
// RFEW/RFE: ldstm_mode:$amode Rn
static bool DisassembleBrFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  if (CoprocessorOpcode(Opcode))
    return DisassembleCoprocessor(MI, Opcode, insn, NumOps, NumOpsAdded, B);

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  if (!OpInfo) return false;

  // MRS and MRSsys take one GPR reg Rd.
  if (Opcode == ARM::MRS || Opcode == ARM::MRSsys) {
    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn))));
    NumOpsAdded = 1;
    return true;
  }
  // BXJ takes one GPR reg Rm.
  if (Opcode == ARM::BXJ) {
    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    NumOpsAdded = 1;
    return true;
  }
  // MSR and MSRsys take one GPR reg Rm, followed by the mask.
  if (Opcode == ARM::MSR || Opcode == ARM::MSRsys) {
    assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
    NumOpsAdded = 2;
    return true;
  }
  // MSRi and MSRsysi take one so_imm operand, followed by the mask.
  if (Opcode == ARM::MSRi || Opcode == ARM::MSRsysi) {
    // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
    // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
    // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
    unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
    unsigned Imm = insn & 0xFF;
    MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
    NumOpsAdded = 2;
    return true;
  }
  if (Opcode == ARM::SRSW || Opcode == ARM::SRS ||
      Opcode == ARM::RFEW || Opcode == ARM::RFE) {
    ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode)));

    if (Opcode == ARM::SRSW || Opcode == ARM::SRS)
      MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
    else
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                         decodeRn(insn))));
    NumOpsAdded = 3;
    return true;
  }

  assert((Opcode == ARM::Bcc || Opcode == ARM::BLr9 || Opcode == ARM::BLr9_pred
          || Opcode == ARM::SMC || Opcode == ARM::SVC) &&
         "Unexpected Opcode");

  assert(NumOps >= 1 && OpInfo[0].RegClass < 0 && "Reg operand expected");

  int Imm32 = 0;
  if (Opcode == ARM::SMC) {
    // ZeroExtend(imm4, 32) where imm24 = Inst{3-0}.
    Imm32 = slice(insn, 3, 0);
  } else if (Opcode == ARM::SVC) {
    // ZeroExtend(imm24, 32) where imm24 = Inst{23-0}.
    Imm32 = slice(insn, 23, 0);
  } else {
    // SignExtend(imm24:'00', 32) where imm24 = Inst{23-0}.
    unsigned Imm26 = slice(insn, 23, 0) << 2;
    //Imm32 = signextend<signed int, 26>(Imm26);
    Imm32 = SignExtend32<26>(Imm26);

    // When executing an ARM instruction, PC reads as the address of the current
    // instruction plus 8.  The assembler subtracts 8 from the difference
    // between the branch instruction and the target address, disassembler has
    // to add 8 to compensate.
    Imm32 += 8;
  }

  MI.addOperand(MCOperand::CreateImm(Imm32));
  NumOpsAdded = 1;

  return true;
}

// Misc. Branch Instructions.
// BR_JTadd, BR_JTr, BR_JTm
// BLXr9, BXr9
// BRIND, BX_RET
static bool DisassembleBrMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  if (!OpInfo) return false;

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  // BX_RET has only two predicate operands, do an early return.
  if (Opcode == ARM::BX_RET)
    return true;

  // BLXr9 and BRIND take one GPR reg.
  if (Opcode == ARM::BLXr9 || Opcode == ARM::BRIND) {
    assert(NumOps >= 1 && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    OpIdx = 1;
    return true;
  }

  // BR_JTadd is an ADD with Rd = PC, (Rn, Rm) as the target and index regs.
  if (Opcode == ARM::BR_JTadd) {
    // InOperandList with GPR:$target and GPR:$idx regs.

    assert(NumOps == 4 && "Expect 4 operands");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));

    // Fill in the two remaining imm operands to signify build completion.
    MI.addOperand(MCOperand::CreateImm(0));
    MI.addOperand(MCOperand::CreateImm(0));

    OpIdx = 4;
    return true;
  }

  // BR_JTr is a MOV with Rd = PC, and Rm as the source register.
  if (Opcode == ARM::BR_JTr) {
    // InOperandList with GPR::$target reg.

    assert(NumOps == 3 && "Expect 3 operands");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));

    // Fill in the two remaining imm operands to signify build completion.
    MI.addOperand(MCOperand::CreateImm(0));
    MI.addOperand(MCOperand::CreateImm(0));

    OpIdx = 3;
    return true;
  }

  // BR_JTm is an LDR with Rt = PC.
  if (Opcode == ARM::BR_JTm) {
    // This is the reg/reg form, with base reg followed by +/- reg shop imm.
    // See also ARMAddressingModes.h (Addressing Mode #2).

    assert(NumOps == 5 && getIBit(insn) == 1 && "Expect 5 operands && I-bit=1");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));

    ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;

    // Disassemble the offset reg (Rm), shift type, and immediate shift length.
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    // Inst{6-5} encodes the shift opcode.
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
    // Inst{11-7} encodes the imm5 shift amount.
    unsigned ShImm = slice(insn, 11, 7);

    // A8.4.1.  Possible rrx or shift amount of 32...
    getImmShiftSE(ShOp, ShImm);
    MI.addOperand(MCOperand::CreateImm(
                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));

    // Fill in the two remaining imm operands to signify build completion.
    MI.addOperand(MCOperand::CreateImm(0));
    MI.addOperand(MCOperand::CreateImm(0));

    OpIdx = 5;
    return true;
  }

  return false;
}

static inline bool getBFCInvMask(uint32_t insn, uint32_t &mask) {
  uint32_t lsb = slice(insn, 11, 7);
  uint32_t msb = slice(insn, 20, 16);
  uint32_t Val = 0;
  if (msb < lsb) {
    DEBUG(errs() << "Encoding error: msb < lsb\n");
    return false;
  }

  for (uint32_t i = lsb; i <= msb; ++i)
    Val |= (1 << i);
  mask = ~Val;
  return true;
}

// A major complication is the fact that some of the saturating add/subtract
// operations have Rd Rm Rn, instead of the "normal" Rd Rn Rm.
// They are QADD, QDADD, QDSUB, and QSUB.
static bool DisassembleDPFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  unsigned short NumDefs = TID.getNumDefs();
  bool isUnary = isUnaryDP(TID.TSFlags);
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  // Disassemble register def if there is one.
  if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn))));
    ++OpIdx;
  }

  // Now disassemble the src operands.
  if (OpIdx >= NumOps)
    return false;

  // Special-case handling of BFC/BFI/SBFX/UBFX.
  if (Opcode == ARM::BFC || Opcode == ARM::BFI) {
    MI.addOperand(MCOperand::CreateReg(0));
    if (Opcode == ARM::BFI) {
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                         decodeRm(insn))));
      ++OpIdx;
    }
    uint32_t mask = 0;
    if (!getBFCInvMask(insn, mask))
      return false;

    MI.addOperand(MCOperand::CreateImm(mask));
    OpIdx += 2;
    return true;
  }
  if (Opcode == ARM::SBFX || Opcode == ARM::UBFX) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 7)));
    MI.addOperand(MCOperand::CreateImm(slice(insn, 20, 16) + 1));
    OpIdx += 3;
    return true;
  }

  bool RmRn = (Opcode == ARM::QADD || Opcode == ARM::QDADD ||
               Opcode == ARM::QDSUB || Opcode == ARM::QSUB);

  // BinaryDP has an Rn operand.
  if (!isUnary) {
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(
                    getRegisterEnum(B, ARM::GPRRegClassID,
                                    RmRn ? decodeRm(insn) : decodeRn(insn))));
    ++OpIdx;
  }

  // If this is a two-address operand, skip it, e.g., MOVCCr operand 1.
  if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
    MI.addOperand(MCOperand::CreateReg(0));
    ++OpIdx;
  }

  // Now disassemble operand 2.
  if (OpIdx >= NumOps)
    return false;

  if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
    // We have a reg/reg form.
    // Assert disabled because saturating operations, e.g., A8.6.127 QASX, are
    // routed here as well.
    // assert(getIBit(insn) == 0 && "I_Bit != '0' reg/reg form");
    MI.addOperand(MCOperand::CreateReg(
                    getRegisterEnum(B, ARM::GPRRegClassID,
                                    RmRn? decodeRn(insn) : decodeRm(insn))));
    ++OpIdx;
  } else if (Opcode == ARM::MOVi16 || Opcode == ARM::MOVTi16) {
    // We have an imm16 = imm4:imm12 (imm4=Inst{19:16}, imm12 = Inst{11:0}).
    assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
    unsigned Imm16 = slice(insn, 19, 16) << 12 | slice(insn, 11, 0);
    MI.addOperand(MCOperand::CreateImm(Imm16));
    ++OpIdx;
  } else {
    // We have a reg/imm form.
    // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
    // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
    // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
    assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
    unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
    unsigned Imm = insn & 0xFF;
    MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
    ++OpIdx;
  }

  return true;
}

static bool DisassembleDPSoRegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  unsigned short NumDefs = TID.getNumDefs();
  bool isUnary = isUnaryDP(TID.TSFlags);
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  // Disassemble register def if there is one.
  if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn))));
    ++OpIdx;
  }

  // Disassemble the src operands.
  if (OpIdx >= NumOps)
    return false;

  // BinaryDP has an Rn operand.
  if (!isUnary) {
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  // If this is a two-address operand, skip it, e.g., MOVCCs operand 1.
  if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
    MI.addOperand(MCOperand::CreateReg(0));
    ++OpIdx;
  }

  // Disassemble operand 2, which consists of three components.
  if (OpIdx + 2 >= NumOps)
    return false;

  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
         (OpInfo[OpIdx+1].RegClass == ARM::GPRRegClassID) &&
         (OpInfo[OpIdx+2].RegClass < 0) &&
         "Expect 3 reg operands");

  // Register-controlled shifts have Inst{7} = 0 and Inst{4} = 1.
  unsigned Rs = slice(insn, 4, 4);

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRm(insn))));
  if (Rs) {
    // Register-controlled shifts: [Rm, Rs, shift].
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRs(insn))));
    // Inst{6-5} encodes the shift opcode.
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, 0)));
  } else {
    // Constant shifts: [Rm, reg0, shift_imm].
    MI.addOperand(MCOperand::CreateReg(0)); // NoRegister
    // Inst{6-5} encodes the shift opcode.
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
    // Inst{11-7} encodes the imm5 shift amount.
    unsigned ShImm = slice(insn, 11, 7);

    // A8.4.1.  Possible rrx or shift amount of 32...
    getImmShiftSE(ShOp, ShImm);
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShImm)));
  }
  OpIdx += 3;

  return true;
}

static bool DisassembleLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, bool isStore, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  bool isPrePost = isPrePostLdSt(TID.TSFlags);
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  if (!OpInfo) return false;

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  assert(((!isStore && TID.getNumDefs() > 0) ||
          (isStore && (TID.getNumDefs() == 0 || isPrePost)))
         && "Invalid arguments");

  // Operand 0 of a pre- and post-indexed store is the address base writeback.
  if (isPrePost && isStore) {
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  // Disassemble the dst/src operand.
  if (OpIdx >= NumOps)
    return false;

  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
         "Reg operand expected");
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  ++OpIdx;

  // After dst of a pre- and post-indexed load is the address base writeback.
  if (isPrePost && !isStore) {
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  // Disassemble the base operand.
  if (OpIdx >= NumOps)
    return false;

  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
         "Reg operand expected");
  assert((!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1))
         && "Index mode or tied_to operand expected");
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));
  ++OpIdx;

  // For reg/reg form, base reg is followed by +/- reg shop imm.
  // For immediate form, it is followed by +/- imm12.
  // See also ARMAddressingModes.h (Addressing Mode #2).
  if (OpIdx + 1 >= NumOps)
    return false;

  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
         (OpInfo[OpIdx+1].RegClass < 0) &&
         "Expect 1 reg operand followed by 1 imm operand");

  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
  if (getIBit(insn) == 0) {
    MI.addOperand(MCOperand::CreateReg(0));

    // Disassemble the 12-bit immediate offset.
    unsigned Imm12 = slice(insn, 11, 0);
    unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, Imm12, ARM_AM::no_shift);
    MI.addOperand(MCOperand::CreateImm(Offset));
  } else {
    // Disassemble the offset reg (Rm), shift type, and immediate shift length.
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    // Inst{6-5} encodes the shift opcode.
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
    // Inst{11-7} encodes the imm5 shift amount.
    unsigned ShImm = slice(insn, 11, 7);

    // A8.4.1.  Possible rrx or shift amount of 32...
    getImmShiftSE(ShOp, ShImm);
    MI.addOperand(MCOperand::CreateImm(
                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
  }
  OpIdx += 2;

  return true;
}

static bool DisassembleLdFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
  return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false, B);
}

static bool DisassembleStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
  return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true, B);
}

static bool HasDualReg(unsigned Opcode) {
  switch (Opcode) {
  default:
    return false;
  case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST:
  case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST:
    return true;
  }  
}

static bool DisassembleLdStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, bool isStore, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  bool isPrePost = isPrePostLdSt(TID.TSFlags);
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  if (!OpInfo) return false;

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  assert(((!isStore && TID.getNumDefs() > 0) ||
          (isStore && (TID.getNumDefs() == 0 || isPrePost)))
         && "Invalid arguments");

  // Operand 0 of a pre- and post-indexed store is the address base writeback.
  if (isPrePost && isStore) {
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  bool DualReg = HasDualReg(Opcode);

  // Disassemble the dst/src operand.
  if (OpIdx >= NumOps)
    return false;

  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
         "Reg operand expected");
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  ++OpIdx;

  // Fill in LDRD and STRD's second operand.
  if (DualReg) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn) + 1)));
    ++OpIdx;
  }

  // After dst of a pre- and post-indexed load is the address base writeback.
  if (isPrePost && !isStore) {
    assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  // Disassemble the base operand.
  if (OpIdx >= NumOps)
    return false;

  assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
         "Reg operand expected");
  assert((!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1))
         && "Index mode or tied_to operand expected");
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));
  ++OpIdx;

  // For reg/reg form, base reg is followed by +/- reg.
  // For immediate form, it is followed by +/- imm8.
  // See also ARMAddressingModes.h (Addressing Mode #3).
  if (OpIdx + 1 >= NumOps)
    return false;

  assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
         (OpInfo[OpIdx+1].RegClass < 0) &&
         "Expect 1 reg operand followed by 1 imm operand");

  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
  if (getAM3IBit(insn) == 1) {
    MI.addOperand(MCOperand::CreateReg(0));

    // Disassemble the 8-bit immediate offset.
    unsigned Imm4H = (insn >> ARMII::ImmHiShift) & 0xF;
    unsigned Imm4L = insn & 0xF;
    unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, (Imm4H << 4) | Imm4L);
    MI.addOperand(MCOperand::CreateImm(Offset));
  } else {
    // Disassemble the offset reg (Rm).
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, 0);
    MI.addOperand(MCOperand::CreateImm(Offset));
  }
  OpIdx += 2;

  return true;
}

static bool DisassembleLdMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
  return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false,
                                B);
}

static bool DisassembleStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {
  return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true, B);
}

// The algorithm for disassembly of LdStMulFrm is different from others because
// it explicitly populates the two predicate operands after operand 0 (the base)
// and operand 1 (the AM4 mode imm).  After operand 3, we need to populate the
// reglist with each affected register encoded as an MCOperand.
static bool DisassembleLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 5 && "LdStMulFrm expects NumOps >= 5");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn));

  // Writeback to base, if necessary.
  if (Opcode == ARM::LDM_UPD || Opcode == ARM::STM_UPD) {
    MI.addOperand(MCOperand::CreateReg(Base));
    ++OpIdx;
  }

  MI.addOperand(MCOperand::CreateReg(Base));

  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode)));

  // Handling the two predicate operands before the reglist.
  int64_t CondVal = insn >> ARMII::CondShift;
  MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));

  OpIdx += 4;

  // Fill the variadic part of reglist.
  unsigned RegListBits = insn & ((1 << 16) - 1);
  for (unsigned i = 0; i < 16; ++i) {
    if ((RegListBits >> i) & 1) {
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                         i)));
      ++OpIdx;
    }
  }

  return true;
}

// LDREX, LDREXB, LDREXH: Rd Rn
// LDREXD:                Rd Rd+1 Rn
// STREX, STREXB, STREXH: Rd Rm Rn
// STREXD:                Rd Rm Rm+1 Rn
//
// SWP, SWPB:             Rd Rm Rn
static bool DisassembleLdStExFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  if (!OpInfo) return false;

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  assert(NumOps >= 2
         && OpInfo[0].RegClass == ARM::GPRRegClassID
         && OpInfo[1].RegClass == ARM::GPRRegClassID
         && "Expect 2 reg operands");

  bool isStore = slice(insn, 20, 20) == 0;
  bool isDW = (Opcode == ARM::LDREXD || Opcode == ARM::STREXD);

  // Add the destination operand.
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  ++OpIdx;

  // Store register Exclusive needs a source operand.
  if (isStore) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));
    ++OpIdx;

    if (isDW) {
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                         decodeRm(insn)+1)));
      ++OpIdx;
    }
  } else if (isDW) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRd(insn)+1)));
    ++OpIdx;
  }

  // Finally add the pointer operand.
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));
  ++OpIdx;

  return true;
}

// Misc. Arithmetic Instructions.
// CLZ: Rd Rm
// PKHBT, PKHTB: Rd Rn Rm , LSL/ASR #imm5
// RBIT, REV, REV16, REVSH: Rd Rm
static bool DisassembleArithMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  assert(NumOps >= 2
         && OpInfo[0].RegClass == ARM::GPRRegClassID
         && OpInfo[1].RegClass == ARM::GPRRegClassID
         && "Expect 2 reg operands");

  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  ++OpIdx;

  if (ThreeReg) {
    assert(NumOps >= 4 && "Expect >= 4 operands");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRm(insn))));
  ++OpIdx;

  // If there is still an operand info left which is an immediate operand, add
  // an additional imm5 LSL/ASR operand.
  if (ThreeReg && OpInfo[OpIdx].RegClass < 0
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
    // Extract the 5-bit immediate field Inst{11-7}.
    unsigned ShiftAmt = (insn >> ARMII::ShiftShift) & 0x1F;
    ARM_AM::ShiftOpc Opc = ARM_AM::no_shift;
    if (Opcode == ARM::PKHBT)
      Opc = ARM_AM::lsl;
    else if (Opcode == ARM::PKHBT)
      Opc = ARM_AM::asr;
    getImmShiftSE(Opc, ShiftAmt);
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(Opc, ShiftAmt)));
    ++OpIdx;
  }

  return true;
}

/// DisassembleSatFrm - Disassemble saturate instructions:
/// SSAT, SSAT16, USAT, and USAT16.
static bool DisassembleSatFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  NumOpsAdded = TID.getNumOperands() - 2; // ignore predicate operands

  // Disassemble register def.
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));

  unsigned Pos = slice(insn, 20, 16);
  if (Opcode == ARM::SSAT || Opcode == ARM::SSAT16)
    Pos += 1;
  MI.addOperand(MCOperand::CreateImm(Pos));

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRm(insn))));

  if (NumOpsAdded == 4) {
    ARM_AM::ShiftOpc Opc = (slice(insn, 6, 6) != 0 ? ARM_AM::asr : ARM_AM::lsl);
    // Inst{11-7} encodes the imm5 shift amount.
    unsigned ShAmt = slice(insn, 11, 7);
    if (ShAmt == 0) {
      // A8.6.183.  Possible ASR shift amount of 32...
      if (Opc == ARM_AM::asr)
        ShAmt = 32;
      else
        Opc = ARM_AM::no_shift;
    }
    MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(Opc, ShAmt)));
  }
  return true;
}

// Extend instructions.
// SXT* and UXT*: Rd [Rn] Rm [rot_imm].
// The 2nd operand register is Rn and the 3rd operand regsiter is Rm for the
// three register operand form.  Otherwise, Rn=0b1111 and only Rm is used.
static bool DisassembleExtFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  assert(NumOps >= 2
         && OpInfo[0].RegClass == ARM::GPRRegClassID
         && OpInfo[1].RegClass == ARM::GPRRegClassID
         && "Expect 2 reg operands");

  bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  ++OpIdx;

  if (ThreeReg) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRn(insn))));
    ++OpIdx;
  }

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRm(insn))));
  ++OpIdx;

  // If there is still an operand info left which is an immediate operand, add
  // an additional rotate immediate operand.
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass < 0
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
    // Extract the 2-bit rotate field Inst{11-10}.
    unsigned rot = (insn >> ARMII::ExtRotImmShift) & 3;
    // Rotation by 8, 16, or 24 bits.
    MI.addOperand(MCOperand::CreateImm(rot << 3));
    ++OpIdx;
  }

  return true;
}

/////////////////////////////////////
//                                 //
//    Utility Functions For VFP    //
//                                 //
/////////////////////////////////////

// Extract/Decode Dd/Sd:
//
// SP => d = UInt(Vd:D)
// DP => d = UInt(D:Vd)
static unsigned decodeVFPRd(uint32_t insn, bool isSPVFP) {
  return isSPVFP ? (decodeRd(insn) << 1 | getDBit(insn))
                 : (decodeRd(insn) | getDBit(insn) << 4);
}

// Extract/Decode Dn/Sn:
//
// SP => n = UInt(Vn:N)
// DP => n = UInt(N:Vn)
static unsigned decodeVFPRn(uint32_t insn, bool isSPVFP) {
  return isSPVFP ? (decodeRn(insn) << 1 | getNBit(insn))
                 : (decodeRn(insn) | getNBit(insn) << 4);
}

// Extract/Decode Dm/Sm:
//
// SP => m = UInt(Vm:M)
// DP => m = UInt(M:Vm)
static unsigned decodeVFPRm(uint32_t insn, bool isSPVFP) {
  return isSPVFP ? (decodeRm(insn) << 1 | getMBit(insn))
                 : (decodeRm(insn) | getMBit(insn) << 4);
}

// A7.5.1
static APInt VFPExpandImm(unsigned char byte, unsigned N) {
  assert(N == 32 || N == 64);

  uint64_t Result;
  unsigned bit6 = slice(byte, 6, 6);
  if (N == 32) {
    Result = slice(byte, 7, 7) << 31 | slice(byte, 5, 0) << 19;
    if (bit6)
      Result |= 0x1f << 25;
    else
      Result |= 0x1 << 30;
  } else {
    Result = (uint64_t)slice(byte, 7, 7) << 63 |
             (uint64_t)slice(byte, 5, 0) << 48;
    if (bit6)
      Result |= 0xffULL << 54;
    else
      Result |= 0x1ULL << 62;
  }
  return APInt(N, Result);
}

// VFP Unary Format Instructions:
//
// VCMP[E]ZD, VCMP[E]ZS: compares one floating-point register with zero
// VCVTDS, VCVTSD: converts between double-precision and single-precision
// The rest of the instructions have homogeneous [VFP]Rd and [VFP]Rm registers.
static bool DisassembleVFPUnaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 1 && "VFPUnaryFrm expects NumOps >= 1");

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  unsigned RegClass = OpInfo[OpIdx].RegClass;
  assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) &&
         "Reg operand expected");
  bool isSP = (RegClass == ARM::SPRRegClassID);

  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, RegClass, decodeVFPRd(insn, isSP))));
  ++OpIdx;

  // Early return for compare with zero instructions.
  if (Opcode == ARM::VCMPEZD || Opcode == ARM::VCMPEZS
      || Opcode == ARM::VCMPZD || Opcode == ARM::VCMPZS)
    return true;

  RegClass = OpInfo[OpIdx].RegClass;
  assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) &&
         "Reg operand expected");
  isSP = (RegClass == ARM::SPRRegClassID);

  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, RegClass, decodeVFPRm(insn, isSP))));
  ++OpIdx;

  return true;
}

// All the instructions have homogeneous [VFP]Rd, [VFP]Rn, and [VFP]Rm regs.
// Some of them have operand constraints which tie the first operand in the
// InOperandList to that of the dst.  As far as asm printing is concerned, this
// tied_to operand is simply skipped.
static bool DisassembleVFPBinaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 3 && "VFPBinaryFrm expects NumOps >= 3");

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  unsigned RegClass = OpInfo[OpIdx].RegClass;
  assert((RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID) &&
         "Reg operand expected");
  bool isSP = (RegClass == ARM::SPRRegClassID);

  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, RegClass, decodeVFPRd(insn, isSP))));
  ++OpIdx;

  // Skip tied_to operand constraint.
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
    assert(NumOps >= 4 && "Expect >=4 operands");
    MI.addOperand(MCOperand::CreateReg(0));
    ++OpIdx;
  }

  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, RegClass, decodeVFPRn(insn, isSP))));
  ++OpIdx;

  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, RegClass, decodeVFPRm(insn, isSP))));
  ++OpIdx;

  return true;
}

// A8.6.295 vcvt (floating-point <-> integer)
// Int to FP: VSITOD, VSITOS, VUITOD, VUITOS
// FP to Int: VTOSI[Z|R]D, VTOSI[Z|R]S, VTOUI[Z|R]D, VTOUI[Z|R]S
// 
// A8.6.297 vcvt (floating-point and fixed-point)
// Dd|Sd Dd|Sd(TIED_TO) #fbits(= 16|32 - UInt(imm4:i))
static bool DisassembleVFPConv1Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 2 && "VFPConv1Frm expects NumOps >= 2");

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  if (!OpInfo) return false;

  bool SP = slice(insn, 8, 8) == 0; // A8.6.295 & A8.6.297
  bool fixed_point = slice(insn, 17, 17) == 1; // A8.6.297
  unsigned RegClassID = SP ? ARM::SPRRegClassID : ARM::DPRRegClassID;

  if (fixed_point) {
    // A8.6.297
    assert(NumOps >= 3 && "Expect >= 3 operands");
    int size = slice(insn, 7, 7) == 0 ? 16 : 32;
    int fbits = size - (slice(insn,3,0) << 1 | slice(insn,5,5));
    MI.addOperand(MCOperand::CreateReg(
                    getRegisterEnum(B, RegClassID,
                                    decodeVFPRd(insn, SP))));

    assert(TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
           "Tied to operand expected");
    MI.addOperand(MI.getOperand(0));

    assert(OpInfo[2].RegClass < 0 && !OpInfo[2].isPredicate() &&
           !OpInfo[2].isOptionalDef() && "Imm operand expected");
    MI.addOperand(MCOperand::CreateImm(fbits));

    NumOpsAdded = 3;
  } else {
    // A8.6.295
    // The Rd (destination) and Rm (source) bits have different interpretations
    // depending on their single-precisonness.
    unsigned d, m;
    if (slice(insn, 18, 18) == 1) { // to_integer operation
      d = decodeVFPRd(insn, true /* Is Single Precision */);
      MI.addOperand(MCOperand::CreateReg(
                      getRegisterEnum(B, ARM::SPRRegClassID, d)));
      m = decodeVFPRm(insn, SP);
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, m)));
    } else {
      d = decodeVFPRd(insn, SP);
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, d)));
      m = decodeVFPRm(insn, true /* Is Single Precision */);
      MI.addOperand(MCOperand::CreateReg(
                      getRegisterEnum(B, ARM::SPRRegClassID, m)));
    }
    NumOpsAdded = 2;
  }

  return true;
}

// VMOVRS - A8.6.330
// Rt => Rd; Sn => UInt(Vn:N)
static bool DisassembleVFPConv2Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 2 && "VFPConv2Frm expects NumOps >= 2");

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
                                                     decodeVFPRn(insn, true))));
  NumOpsAdded = 2;
  return true;
}

// VMOVRRD - A8.6.332
// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
//
// VMOVRRS - A8.6.331
// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
static bool DisassembleVFPConv3Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 3 && "VFPConv3Frm expects NumOps >= 3");

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));
  OpIdx = 2;

  if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
    unsigned Sm = decodeVFPRm(insn, true);
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
                                                       Sm)));
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
                                                       Sm+1)));
    OpIdx += 2;
  } else {
    MI.addOperand(MCOperand::CreateReg(
                    getRegisterEnum(B, ARM::DPRRegClassID,
                                    decodeVFPRm(insn, false))));
    ++OpIdx;
  }
  return true;
}

// VMOVSR - A8.6.330
// Rt => Rd; Sn => UInt(Vn:N)
static bool DisassembleVFPConv4Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 2 && "VFPConv4Frm expects NumOps >= 2");

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
                                                     decodeVFPRn(insn, true))));
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  NumOpsAdded = 2;
  return true;
}

// VMOVDRR - A8.6.332
// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
//
// VMOVRRS - A8.6.331
// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
static bool DisassembleVFPConv5Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 3 && "VFPConv5Frm expects NumOps >= 3");

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
    unsigned Sm = decodeVFPRm(insn, true);
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
                                                       Sm)));
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::SPRRegClassID,
                                                       Sm+1)));
    OpIdx += 2;
  } else {
    MI.addOperand(MCOperand::CreateReg(
                    getRegisterEnum(B, ARM::DPRRegClassID,
                                    decodeVFPRm(insn, false))));
    ++OpIdx;
  }

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));
  OpIdx += 2;
  return true;
}

// VFP Load/Store Instructions.
// VLDRD, VLDRS, VSTRD, VSTRS
static bool DisassembleVFPLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 3 && "VFPLdStFrm expects NumOps >= 3");

  bool isSPVFP = (Opcode == ARM::VLDRS || Opcode == ARM::VSTRS);
  unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;

  // Extract Dd/Sd for operand 0.
  unsigned RegD = decodeVFPRd(insn, isSPVFP);

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID, RegD)));

  unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn));
  MI.addOperand(MCOperand::CreateReg(Base));

  // Next comes the AM5 Opcode.
  ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
  unsigned char Imm8 = insn & 0xFF;
  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(AddrOpcode, Imm8)));

  NumOpsAdded = 3;

  return true;
}

// VFP Load/Store Multiple Instructions.
// This is similar to the algorithm for LDM/STM in that operand 0 (the base) and
// operand 1 (the AM4 mode imm) is followed by two predicate operands.  It is
// followed by a reglist of either DPR(s) or SPR(s).
//
// VLDMD[_UPD], VLDMS[_UPD], VSTMD[_UPD], VSTMS[_UPD]
static bool DisassembleVFPLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  assert(NumOps >= 5 && "VFPLdStMulFrm expects NumOps >= 5");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  unsigned Base = getRegisterEnum(B, ARM::GPRRegClassID, decodeRn(insn));

  // Writeback to base, if necessary.
  if (Opcode == ARM::VLDMD_UPD || Opcode == ARM::VLDMS_UPD ||
      Opcode == ARM::VSTMD_UPD || Opcode == ARM::VSTMS_UPD) {
    MI.addOperand(MCOperand::CreateReg(Base));
    ++OpIdx;
  }

  MI.addOperand(MCOperand::CreateReg(Base));

  // Next comes the AM4 Opcode.
  ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
  // Must be either "ia" or "db" submode.
  if (SubMode != ARM_AM::ia && SubMode != ARM_AM::db) {
    DEBUG(errs() << "Illegal addressing mode 4 sub-mode!\n");
    return false;
  }
  MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode)));

  // Handling the two predicate operands before the reglist.
  int64_t CondVal = insn >> ARMII::CondShift;
  MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
  MI.addOperand(MCOperand::CreateReg(ARM::CPSR));

  OpIdx += 4;

  bool isSPVFP = (Opcode == ARM::VLDMS || Opcode == ARM::VLDMS_UPD ||
                  Opcode == ARM::VSTMS || Opcode == ARM::VSTMS_UPD);
  unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;

  // Extract Dd/Sd.
  unsigned RegD = decodeVFPRd(insn, isSPVFP);

  // Fill the variadic part of reglist.
  unsigned char Imm8 = insn & 0xFF;
  unsigned Regs = isSPVFP ? Imm8 : Imm8/2;
  for (unsigned i = 0; i < Regs; ++i) {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClassID,
                                                       RegD + i)));
    ++OpIdx;
  }

  return true;
}

// Misc. VFP Instructions.
// FMSTAT (vmrs with Rt=0b1111, i.e., to apsr_nzcv and no register operand)
// FCONSTD (DPR and a VFPf64Imm operand)
// FCONSTS (SPR and a VFPf32Imm operand)
// VMRS/VMSR (GPR operand)
static bool DisassembleVFPMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  if (Opcode == ARM::FMSTAT)
    return true;

  assert(NumOps >= 2 && "VFPMiscFrm expects >=2 operands");

  unsigned RegEnum = 0;
  switch (OpInfo[0].RegClass) {
  case ARM::DPRRegClassID:
    RegEnum = getRegisterEnum(B, ARM::DPRRegClassID, decodeVFPRd(insn, false));
    break;
  case ARM::SPRRegClassID:
    RegEnum = getRegisterEnum(B, ARM::SPRRegClassID, decodeVFPRd(insn, true));
    break;
  case ARM::GPRRegClassID:
    RegEnum = getRegisterEnum(B, ARM::GPRRegClassID, decodeRd(insn));
    break;
  default:
    assert(0 && "Invalid reg class id");
    return false;
  }

  MI.addOperand(MCOperand::CreateReg(RegEnum));
  ++OpIdx;

  // Extract/decode the f64/f32 immediate.
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass < 0
        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
    // The asm syntax specifies the floating point value, not the 8-bit literal.
    APInt immRaw = VFPExpandImm(slice(insn,19,16) << 4 | slice(insn, 3, 0),
                             Opcode == ARM::FCONSTD ? 64 : 32);
    APFloat immFP = APFloat(immRaw, true);
    double imm = Opcode == ARM::FCONSTD ? immFP.convertToDouble() :
      immFP.convertToFloat();
    MI.addOperand(MCOperand::CreateFPImm(imm));

    ++OpIdx;
  }

  return true;
}

// DisassembleThumbFrm() is defined in ThumbDisassemblerCore.h file.
#include "ThumbDisassemblerCore.h"

/////////////////////////////////////////////////////
//                                                 //
//     Utility Functions For ARM Advanced SIMD     //
//                                                 //
/////////////////////////////////////////////////////

// The following NEON namings are based on A8.6.266 VABA, VABAL.  Notice that
// A8.6.303 VDUP (ARM core register)'s D/Vd pair is the N/Vn pair of VABA/VABAL.

// A7.3 Register encoding

// Extract/Decode NEON D/Vd:
//
// Note that for quadword, Qd = UInt(D:Vd<3:1>) = Inst{22:15-13}, whereas for
// doubleword, Dd = UInt(D:Vd).  We compensate for this difference by
// handling it in the getRegisterEnum() utility function.
// D = Inst{22}, Vd = Inst{15-12}
static unsigned decodeNEONRd(uint32_t insn) {
  return ((insn >> ARMII::NEON_D_BitShift) & 1) << 4
    | ((insn >> ARMII::NEON_RegRdShift) & ARMII::NEONRegMask);
}

// Extract/Decode NEON N/Vn:
//
// Note that for quadword, Qn = UInt(N:Vn<3:1>) = Inst{7:19-17}, whereas for
// doubleword, Dn = UInt(N:Vn).  We compensate for this difference by
// handling it in the getRegisterEnum() utility function.
// N = Inst{7}, Vn = Inst{19-16}
static unsigned decodeNEONRn(uint32_t insn) {
  return ((insn >> ARMII::NEON_N_BitShift) & 1) << 4
    | ((insn >> ARMII::NEON_RegRnShift) & ARMII::NEONRegMask);
}

// Extract/Decode NEON M/Vm:
//
// Note that for quadword, Qm = UInt(M:Vm<3:1>) = Inst{5:3-1}, whereas for
// doubleword, Dm = UInt(M:Vm).  We compensate for this difference by
// handling it in the getRegisterEnum() utility function.
// M = Inst{5}, Vm = Inst{3-0}
static unsigned decodeNEONRm(uint32_t insn) {
  return ((insn >> ARMII::NEON_M_BitShift) & 1) << 4
    | ((insn >> ARMII::NEON_RegRmShift) & ARMII::NEONRegMask);
}

namespace {
enum ElemSize {
  ESizeNA = 0,
  ESize8 = 8,
  ESize16 = 16,
  ESize32 = 32,
  ESize64 = 64
};
} // End of unnamed namespace

// size        field -> Inst{11-10}
// index_align field -> Inst{7-4}
//
// The Lane Index interpretation depends on the Data Size:
//   8  (encoded as size = 0b00) -> Index = index_align[3:1]
//   16 (encoded as size = 0b01) -> Index = index_align[3:2]
//   32 (encoded as size = 0b10) -> Index = index_align[3]
//
// Ref: A8.6.317 VLD4 (single 4-element structure to one lane).
static unsigned decodeLaneIndex(uint32_t insn) {
  unsigned size = insn >> 10 & 3;
  assert((size == 0 || size == 1 || size == 2) &&
         "Encoding error: size should be either 0, 1, or 2");

  unsigned index_align = insn >> 4 & 0xF;
  return (index_align >> 1) >> size;
}

// imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4)
// op = Inst{5}, cmode = Inst{11-8}
// i = Inst{24} (ARM architecture)
// imm3 = Inst{18-16}, imm4 = Inst{3-0}
// Ref: Table A7-15 Modified immediate values for Advanced SIMD instructions.
static uint64_t decodeN1VImm(uint32_t insn, ElemSize esize) {
  unsigned char op = (insn >> 5) & 1;
  unsigned char cmode = (insn >> 8) & 0xF;
  unsigned char Imm8 = ((insn >> 24) & 1) << 7 |
                       ((insn >> 16) & 7) << 4 |
                       (insn & 0xF);
  return (op << 12) | (cmode << 8) | Imm8;
}

// A8.6.339 VMUL, VMULL (by scalar)
// ESize16 => m = Inst{2-0} (Vm<2:0>) D0-D7
// ESize32 => m = Inst{3-0} (Vm<3:0>) D0-D15
static unsigned decodeRestrictedDm(uint32_t insn, ElemSize esize) {
  switch (esize) {
  case ESize16:
    return insn & 7;
  case ESize32:
    return insn & 0xF;
  default:
    assert(0 && "Unreachable code!");
    return 0;
  }
}

// A8.6.339 VMUL, VMULL (by scalar)
// ESize16 => index = Inst{5:3} (M:Vm<3>) D0-D7
// ESize32 => index = Inst{5}   (M)       D0-D15
static unsigned decodeRestrictedDmIndex(uint32_t insn, ElemSize esize) {
  switch (esize) {
  case ESize16:
    return (((insn >> 5) & 1) << 1) | ((insn >> 3) & 1);
  case ESize32:
    return (insn >> 5) & 1;
  default:
    assert(0 && "Unreachable code!");
    return 0;
  }
}

// A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)
// (64 - <fbits>) is encoded as imm6, i.e., Inst{21-16}.
static unsigned decodeVCVTFractionBits(uint32_t insn) {
  return 64 - ((insn >> 16) & 0x3F);
}

// A8.6.302 VDUP (scalar)
// ESize8  => index = Inst{19-17}
// ESize16 => index = Inst{19-18}
// ESize32 => index = Inst{19}
static unsigned decodeNVLaneDupIndex(uint32_t insn, ElemSize esize) {
  switch (esize) {
  case ESize8:
    return (insn >> 17) & 7;
  case ESize16:
    return (insn >> 18) & 3;
  case ESize32:
    return (insn >> 19) & 1;
  default:
    assert(0 && "Unspecified element size!");
    return 0;
  }
}

// A8.6.328 VMOV (ARM core register to scalar)
// A8.6.329 VMOV (scalar to ARM core register)
// ESize8  => index = Inst{21:6-5}
// ESize16 => index = Inst{21:6}
// ESize32 => index = Inst{21}
static unsigned decodeNVLaneOpIndex(uint32_t insn, ElemSize esize) {
  switch (esize) {
  case ESize8:
    return ((insn >> 21) & 1) << 2 | ((insn >> 5) & 3);
  case ESize16:
    return ((insn >> 21) & 1) << 1 | ((insn >> 6) & 1);
  case ESize32:
    return ((insn >> 21) & 1);
  default:
    assert(0 && "Unspecified element size!");
    return 0;
  }
}

// Imm6 = Inst{21-16}, L = Inst{7}
//
// LeftShift == true (A8.6.367 VQSHL, A8.6.387 VSLI):
// case L:imm6 of
//   '0001xxx' => esize = 8; shift_amount = imm6 - 8
//   '001xxxx' => esize = 16; shift_amount = imm6 - 16
//   '01xxxxx' => esize = 32; shift_amount = imm6 - 32
//   '1xxxxxx' => esize = 64; shift_amount = imm6
//
// LeftShift == false (A8.6.376 VRSHR, A8.6.368 VQSHRN):
// case L:imm6 of
//   '0001xxx' => esize = 8; shift_amount = 16 - imm6
//   '001xxxx' => esize = 16; shift_amount = 32 - imm6
//   '01xxxxx' => esize = 32; shift_amount = 64 - imm6
//   '1xxxxxx' => esize = 64; shift_amount = 64 - imm6
//
static unsigned decodeNVSAmt(uint32_t insn, bool LeftShift) {
  ElemSize esize = ESizeNA;
  unsigned L = (insn >> 7) & 1;
  unsigned imm6 = (insn >> 16) & 0x3F;
  if (L == 0) {
    if (imm6 >> 3 == 1)
      esize = ESize8;
    else if (imm6 >> 4 == 1)
      esize = ESize16;
    else if (imm6 >> 5 == 1)
      esize = ESize32;
    else
      assert(0 && "Wrong encoding of Inst{7:21-16}!");
  } else
    esize = ESize64;

  if (LeftShift)
    return esize == ESize64 ? imm6 : (imm6 - esize);
  else
    return esize == ESize64 ? (esize - imm6) : (2*esize - imm6);
}

// A8.6.305 VEXT
// Imm4 = Inst{11-8}
static unsigned decodeN3VImm(uint32_t insn) {
  return (insn >> 8) & 0xF;
}

// VLD*
//   D[d] D[d2] ... Rn [TIED_TO Rn] align [Rm]
// VLD*LN*
//   D[d] D[d2] ... Rn [TIED_TO Rn] align [Rm] TIED_TO ... imm(idx)
// VST*
//   Rn [TIED_TO Rn] align [Rm] D[d] D[d2] ...
// VST*LN*
//   Rn [TIED_TO Rn] align [Rm] D[d] D[d2] ... [imm(idx)]
//
// Correctly set VLD*/VST*'s TIED_TO GPR, as the asm printer needs it.
static bool DisassembleNLdSt0(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, bool Store, bool DblSpaced,
    BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;

  // At least one DPR register plus addressing mode #6.
  assert(NumOps >= 3 && "Expect >= 3 operands");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  // We have homogeneous NEON registers for Load/Store.
  unsigned RegClass = 0;

  // Double-spaced registers have increments of 2.
  unsigned Inc = DblSpaced ? 2 : 1;

  unsigned Rn = decodeRn(insn);
  unsigned Rm = decodeRm(insn);
  unsigned Rd = decodeNEONRd(insn);

  // A7.7.1 Advanced SIMD addressing mode.
  bool WB = Rm != 15;

  // LLVM Addressing Mode #6.
  unsigned RmEnum = 0;
  if (WB && Rm != 13)
    RmEnum = getRegisterEnum(B, ARM::GPRRegClassID, Rm);

  if (Store) {
    // Consume possible WB, AddrMode6, possible increment reg, the DPR/QPR's,
    // then possible lane index.
    assert(OpIdx < NumOps && OpInfo[0].RegClass == ARM::GPRRegClassID &&
           "Reg operand expected");

    if (WB) {
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                         Rn)));
      ++OpIdx;
    }

    assert((OpIdx+1) < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           OpInfo[OpIdx + 1].RegClass < 0 && "Addrmode #6 Operands expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       Rn)));
    MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
    OpIdx += 2;

    if (WB) {
      MI.addOperand(MCOperand::CreateReg(RmEnum));
      ++OpIdx;
    }

    assert(OpIdx < NumOps &&
           (OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
            OpInfo[OpIdx].RegClass == ARM::QPRRegClassID) &&
           "Reg operand expected");

    RegClass = OpInfo[OpIdx].RegClass;
    while (OpIdx < NumOps && (unsigned)OpInfo[OpIdx].RegClass == RegClass) {
      MI.addOperand(MCOperand::CreateReg(
                      getRegisterEnum(B, RegClass, Rd)));
      Rd += Inc;
      ++OpIdx;
    }

    // Handle possible lane index.
    if (OpIdx < NumOps && OpInfo[OpIdx].RegClass < 0
        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
      MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
      ++OpIdx;
    }

  } else {
    // Consume the DPR/QPR's, possible WB, AddrMode6, possible incrment reg,
    // possible TIED_TO DPR/QPR's (ignored), then possible lane index.
    RegClass = OpInfo[0].RegClass;

    while (OpIdx < NumOps && (unsigned)OpInfo[OpIdx].RegClass == RegClass) {
      MI.addOperand(MCOperand::CreateReg(
                      getRegisterEnum(B, RegClass, Rd)));
      Rd += Inc;
      ++OpIdx;
    }

    if (WB) {
      MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                         Rn)));
      ++OpIdx;
    }

    assert((OpIdx+1) < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID &&
           OpInfo[OpIdx + 1].RegClass < 0 && "Addrmode #6 Operands expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       Rn)));
    MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
    OpIdx += 2;

    if (WB) {
      MI.addOperand(MCOperand::CreateReg(RmEnum));
      ++OpIdx;
    }

    while (OpIdx < NumOps && (unsigned)OpInfo[OpIdx].RegClass == RegClass) {
      assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1 &&
             "Tied to operand expected");
      MI.addOperand(MCOperand::CreateReg(0));
      ++OpIdx;
    }

    // Handle possible lane index.
    if (OpIdx < NumOps && OpInfo[OpIdx].RegClass < 0
        && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
      MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
      ++OpIdx;
    }
  }

  // Accessing registers past the end of the NEON register file is not
  // defined.
  if (Rd > 32)
    return false;

  return true;
}

// A7.7
// If L (Inst{21}) == 0, store instructions.
// Find out about double-spaced-ness of the Opcode and pass it on to
// DisassembleNLdSt0().
static bool DisassembleNLdSt(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const StringRef Name = ARMInsts[Opcode].Name;
  bool DblSpaced = false;

  if (Name.find("LN") != std::string::npos) {
    // To one lane instructions.
    // See, for example, 8.6.317 VLD4 (single 4-element structure to one lane).

    // <size> == 16 && Inst{5} == 1 --> DblSpaced = true
    if (Name.endswith("16") || Name.endswith("16_UPD"))
      DblSpaced = slice(insn, 5, 5) == 1;

    // <size> == 32 && Inst{6} == 1 --> DblSpaced = true
    if (Name.endswith("32") || Name.endswith("32_UPD"))
      DblSpaced = slice(insn, 6, 6) == 1;

  } else {
    // Multiple n-element structures with type encoded as Inst{11-8}.
    // See, for example, A8.6.316 VLD4 (multiple 4-element structures).

    // n == 2 && type == 0b1001 -> DblSpaced = true
    if (Name.startswith("VST2") || Name.startswith("VLD2"))
      DblSpaced = slice(insn, 11, 8) == 9;
    
    // n == 3 && type == 0b0101 -> DblSpaced = true
    if (Name.startswith("VST3") || Name.startswith("VLD3"))
      DblSpaced = slice(insn, 11, 8) == 5;
    
    // n == 4 && type == 0b0001 -> DblSpaced = true
    if (Name.startswith("VST4") || Name.startswith("VLD4"))
      DblSpaced = slice(insn, 11, 8) == 1;
    
  }
  return DisassembleNLdSt0(MI, Opcode, insn, NumOps, NumOpsAdded,
                           slice(insn, 21, 21) == 0, DblSpaced, B);
}

// VMOV (immediate)
//   Qd/Dd imm
static bool DisassembleN1RegModImmFrm(MCInst &MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;

  assert(NumOps >= 2 &&
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
         (OpInfo[1].RegClass < 0) &&
         "Expect 1 reg operand followed by 1 imm operand");

  // Qd/Dd = Inst{22:15-12} => NEON Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[0].RegClass,
                                                     decodeNEONRd(insn))));

  ElemSize esize = ESizeNA;
  switch (Opcode) {
  case ARM::VMOVv8i8:
  case ARM::VMOVv16i8:
    esize = ESize8;
    break;
  case ARM::VMOVv4i16:
  case ARM::VMOVv8i16:
  case ARM::VMVNv4i16:
  case ARM::VMVNv8i16:
    esize = ESize16;
    break;
  case ARM::VMOVv2i32:
  case ARM::VMOVv4i32:
  case ARM::VMVNv2i32:
  case ARM::VMVNv4i32:
    esize = ESize32;
    break;
  case ARM::VMOVv1i64:
  case ARM::VMOVv2i64:
    esize = ESize64;
    break;
  default:
    assert(0 && "Unreachable code!");
    return false;
  }

  // One register and a modified immediate value.
  // Add the imm operand.
  MI.addOperand(MCOperand::CreateImm(decodeN1VImm(insn, esize)));

  NumOpsAdded = 2;
  return true;
}

namespace {
enum N2VFlag {
  N2V_None,
  N2V_VectorDupLane,
  N2V_VectorConvert_Between_Float_Fixed
};
} // End of unnamed namespace

// Vector Convert [between floating-point and fixed-point]
//   Qd/Dd Qm/Dm [fbits]
//
// Vector Duplicate Lane (from scalar to all elements) Instructions.
// VDUPLN16d, VDUPLN16q, VDUPLN32d, VDUPLN32q, VDUPLN8d, VDUPLN8q:
//   Qd/Dd Dm index
//
// Vector Move Long:
//   Qd Dm
// 
// Vector Move Narrow:
//   Dd Qm
//
// Others
static bool DisassembleNVdVmOptImm(MCInst &MI, unsigned Opc, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, N2VFlag Flag, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opc];
  const TargetOperandInfo *OpInfo = TID.OpInfo;

  assert(NumOps >= 2 &&
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
         "Expect >= 2 operands and first 2 as reg operands");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  ElemSize esize = ESizeNA;
  if (Flag == N2V_VectorDupLane) {
    // VDUPLN has its index embedded.  Its size can be inferred from the Opcode.
    assert(Opc >= ARM::VDUPLN16d && Opc <= ARM::VDUPLN8q &&
           "Unexpected Opcode");
    esize = (Opc == ARM::VDUPLN8d || Opc == ARM::VDUPLN8q) ? ESize8
       : ((Opc == ARM::VDUPLN16d || Opc == ARM::VDUPLN16q) ? ESize16
                                                           : ESize32);
  }

  // Qd/Dd = Inst{22:15-12} => NEON Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
                                                     decodeNEONRd(insn))));
  ++OpIdx;

  // VPADAL...
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
    // TIED_TO operand.
    MI.addOperand(MCOperand::CreateReg(0));
    ++OpIdx;
  }

  // Dm = Inst{5:3-0} => NEON Rm
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
                                                     decodeNEONRm(insn))));
  ++OpIdx;

  // VZIP and others have two TIED_TO reg operands.
  int Idx;
  while (OpIdx < NumOps &&
         (Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
    // Add TIED_TO operand.
    MI.addOperand(MI.getOperand(Idx));
    ++OpIdx;
  }

  // Add the imm operand, if required.
  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass < 0
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {

    unsigned imm = 0xFFFFFFFF;

    if (Flag == N2V_VectorDupLane)
      imm = decodeNVLaneDupIndex(insn, esize);
    if (Flag == N2V_VectorConvert_Between_Float_Fixed)
      imm = decodeVCVTFractionBits(insn);

    assert(imm != 0xFFFFFFFF && "Internal error");
    MI.addOperand(MCOperand::CreateImm(imm));
    ++OpIdx;
  }

  return true;
}

static bool DisassembleN2RegFrm(MCInst &MI, unsigned Opc, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded,
                                N2V_None, B);
}
static bool DisassembleNVCVTFrm(MCInst &MI, unsigned Opc, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded,
                                N2V_VectorConvert_Between_Float_Fixed, B);
}
static bool DisassembleNVecDupLnFrm(MCInst &MI, unsigned Opc, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVmOptImm(MI, Opc, insn, NumOps, NumOpsAdded,
                                N2V_VectorDupLane, B);
}

// Vector Shift [Accumulate] Instructions.
// Qd/Dd [Qd/Dd (TIED_TO)] Qm/Dm ShiftAmt
//
// Vector Shift Left Long (with maximum shift count) Instructions.
// VSHLLi16, VSHLLi32, VSHLLi8: Qd Dm imm (== size)
//
static bool DisassembleNVectorShift(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, bool LeftShift, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;

  assert(NumOps >= 3 &&
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
         "Expect >= 3 operands and first 2 as reg operands");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  // Qd/Dd = Inst{22:15-12} => NEON Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
                                                     decodeNEONRd(insn))));
  ++OpIdx;

  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
    // TIED_TO operand.
    MI.addOperand(MCOperand::CreateReg(0));
    ++OpIdx;
  }

  assert((OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
          OpInfo[OpIdx].RegClass == ARM::QPRRegClassID) &&
         "Reg operand expected");

  // Qm/Dm = Inst{5:3-0} => NEON Rm
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
                                                     decodeNEONRm(insn))));
  ++OpIdx;

  assert(OpInfo[OpIdx].RegClass < 0 && "Imm operand expected");

  // Add the imm operand.
  
  // VSHLL has maximum shift count as the imm, inferred from its size.
  unsigned Imm;
  switch (Opcode) {
  default:
    Imm = decodeNVSAmt(insn, LeftShift);
    break;
  case ARM::VSHLLi8:
    Imm = 8;
    break;
  case ARM::VSHLLi16:
    Imm = 16;
    break;
  case ARM::VSHLLi32:
    Imm = 32;
    break;
  }
  MI.addOperand(MCOperand::CreateImm(Imm));
  ++OpIdx;

  return true;
}

// Left shift instructions.
static bool DisassembleN2RegVecShLFrm(MCInst &MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVectorShift(MI, Opcode, insn, NumOps, NumOpsAdded, true,
                                 B);
}
// Right shift instructions have different shift amount interpretation.
static bool DisassembleN2RegVecShRFrm(MCInst &MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVectorShift(MI, Opcode, insn, NumOps, NumOpsAdded, false,
                                 B);
}

namespace {
enum N3VFlag {
  N3V_None,
  N3V_VectorExtract,
  N3V_VectorShift,
  N3V_Multiply_By_Scalar
};
} // End of unnamed namespace

// NEON Three Register Instructions with Optional Immediate Operand
//
// Vector Extract Instructions.
// Qd/Dd Qn/Dn Qm/Dm imm4
//
// Vector Shift (Register) Instructions.
// Qd/Dd Qm/Dm Qn/Dn (notice the order of m, n)
//
// Vector Multiply [Accumulate/Subtract] [Long] By Scalar Instructions.
// Qd/Dd Qn/Dn RestrictedDm index
//
// Others
static bool DisassembleNVdVnVmOptImm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, N3VFlag Flag, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;

  // No checking for OpInfo[2] because of MOVDneon/MOVQ with only two regs.
  assert(NumOps >= 3 &&
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
         (OpInfo[1].RegClass == ARM::DPRRegClassID ||
          OpInfo[1].RegClass == ARM::QPRRegClassID) &&
         "Expect >= 3 operands and first 2 as reg operands");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  bool VdVnVm = Flag == N3V_VectorShift ? false : true;
  bool IsImm4 = Flag == N3V_VectorExtract ? true : false;
  bool IsDmRestricted = Flag == N3V_Multiply_By_Scalar ? true : false;
  ElemSize esize = ESizeNA;
  if (Flag == N3V_Multiply_By_Scalar) {
    unsigned size = (insn >> 20) & 3;
    if (size == 1) esize = ESize16;
    if (size == 2) esize = ESize32;
    assert (esize == ESize16 || esize == ESize32);
  }

  // Qd/Dd = Inst{22:15-12} => NEON Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, OpInfo[OpIdx].RegClass,
                                                     decodeNEONRd(insn))));
  ++OpIdx;

  // VABA, VABAL, VBSLd, VBSLq, ...
  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
    // TIED_TO operand.
    MI.addOperand(MCOperand::CreateReg(0));
    ++OpIdx;
  }

  // Dn = Inst{7:19-16} => NEON Rn
  // or
  // Dm = Inst{5:3-0} => NEON Rm
  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, OpInfo[OpIdx].RegClass,
                                  VdVnVm ? decodeNEONRn(insn)
                                         : decodeNEONRm(insn))));
  ++OpIdx;

  // Special case handling for VMOVDneon and VMOVQ because they are marked as
  // N3RegFrm.
  if (Opcode == ARM::VMOVDneon || Opcode == ARM::VMOVQ)
    return true;
  
  // Dm = Inst{5:3-0} => NEON Rm
  // or
  // Dm is restricted to D0-D7 if size is 16, D0-D15 otherwise
  // or
  // Dn = Inst{7:19-16} => NEON Rn
  unsigned m = VdVnVm ? (IsDmRestricted ? decodeRestrictedDm(insn, esize)
                                        : decodeNEONRm(insn))
                      : decodeNEONRn(insn);

  MI.addOperand(MCOperand::CreateReg(
                  getRegisterEnum(B, OpInfo[OpIdx].RegClass, m)));
  ++OpIdx;

  if (OpIdx < NumOps && OpInfo[OpIdx].RegClass < 0
      && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
    // Add the imm operand.
    unsigned Imm = 0;
    if (IsImm4)
      Imm = decodeN3VImm(insn);
    else if (IsDmRestricted)
      Imm = decodeRestrictedDmIndex(insn, esize);
    else {
      assert(0 && "Internal error: unreachable code!");
      return false;
    }

    MI.addOperand(MCOperand::CreateImm(Imm));
    ++OpIdx;
  }

  return true;
}

static bool DisassembleN3RegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
                                  N3V_None, B);
}
static bool DisassembleN3RegVecShFrm(MCInst &MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
                                  N3V_VectorShift, B);
}
static bool DisassembleNVecExtractFrm(MCInst &MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
                                  N3V_VectorExtract, B);
}
static bool DisassembleNVecMulScalarFrm(MCInst &MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  return DisassembleNVdVnVmOptImm(MI, Opcode, insn, NumOps, NumOpsAdded,
                                  N3V_Multiply_By_Scalar, B);
}

// Vector Table Lookup
//
// VTBL1, VTBX1: Dd [Dd(TIED_TO)] Dn Dm
// VTBL2, VTBX2: Dd [Dd(TIED_TO)] Dn Dn+1 Dm
// VTBL3, VTBX3: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dm
// VTBL4, VTBX4: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dn+3 Dm
static bool DisassembleNVTBLFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  if (!OpInfo) return false;

  assert(NumOps >= 3 &&
         OpInfo[0].RegClass == ARM::DPRRegClassID &&
         OpInfo[1].RegClass == ARM::DPRRegClassID &&
         OpInfo[2].RegClass == ARM::DPRRegClassID &&
         "Expect >= 3 operands and first 3 as reg operands");

  unsigned &OpIdx = NumOpsAdded;

  OpIdx = 0;

  unsigned Rn = decodeNEONRn(insn);

  // {Dn} encoded as len = 0b00
  // {Dn Dn+1} encoded as len = 0b01
  // {Dn Dn+1 Dn+2 } encoded as len = 0b10
  // {Dn Dn+1 Dn+2 Dn+3} encoded as len = 0b11
  unsigned Len = slice(insn, 9, 8) + 1;

  // Dd (the destination vector)
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
                                                     decodeNEONRd(insn))));
  ++OpIdx;

  // Process tied_to operand constraint.
  int Idx;
  if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
    MI.addOperand(MI.getOperand(Idx));
    ++OpIdx;
  }

  // Do the <list> now.
  for (unsigned i = 0; i < Len; ++i) {
    assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID &&
           "Reg operand expected");
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
                                                       Rn + i)));
    ++OpIdx;
  }

  // Dm (the index vector)
  assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID &&
         "Reg operand (index vector) expected");
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
                                                     decodeNEONRm(insn))));
  ++OpIdx;

  return true;
}

// Vector Get Lane (move scalar to ARM core register) Instructions.
// VGETLNi32, VGETLNs16, VGETLNs8, VGETLNu16, VGETLNu8: Rt Dn index
static bool DisassembleNGetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  if (!OpInfo) return false;

  assert(TID.getNumDefs() == 1 && NumOps >= 3 &&
         OpInfo[0].RegClass == ARM::GPRRegClassID &&
         OpInfo[1].RegClass == ARM::DPRRegClassID &&
         OpInfo[2].RegClass < 0 &&
         "Expect >= 3 operands with one dst operand");

  ElemSize esize =
    Opcode == ARM::VGETLNi32 ? ESize32
      : ((Opcode == ARM::VGETLNs16 || Opcode == ARM::VGETLNu16) ? ESize16
                                                                : ESize32);

  // Rt = Inst{15-12} => ARM Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));

  // Dn = Inst{7:19-16} => NEON Rn
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
                                                     decodeNEONRn(insn))));

  MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));

  NumOpsAdded = 3;
  return true;
}

// Vector Set Lane (move ARM core register to scalar) Instructions.
// VSETLNi16, VSETLNi32, VSETLNi8: Dd Dd (TIED_TO) Rt index
static bool DisassembleNSetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetInstrDesc &TID = ARMInsts[Opcode];
  const TargetOperandInfo *OpInfo = TID.OpInfo;
  if (!OpInfo) return false;

  assert(TID.getNumDefs() == 1 && NumOps >= 3 &&
         OpInfo[0].RegClass == ARM::DPRRegClassID &&
         OpInfo[1].RegClass == ARM::DPRRegClassID &&
         TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
         OpInfo[2].RegClass == ARM::GPRRegClassID &&
         OpInfo[3].RegClass < 0 &&
         "Expect >= 3 operands with one dst operand");

  ElemSize esize =
    Opcode == ARM::VSETLNi8 ? ESize8
                            : (Opcode == ARM::VSETLNi16 ? ESize16
                                                        : ESize32);

  // Dd = Inst{7:19-16} => NEON Rn
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::DPRRegClassID,
                                                     decodeNEONRn(insn))));

  // TIED_TO operand.
  MI.addOperand(MCOperand::CreateReg(0));

  // Rt = Inst{15-12} => ARM Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));

  MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));

  NumOpsAdded = 4;
  return true;
}

// Vector Duplicate Instructions (from ARM core register to all elements).
// VDUP8d, VDUP16d, VDUP32d, VDUP8q, VDUP16q, VDUP32q: Qd/Dd Rt
static bool DisassembleNDupFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;

  assert(NumOps >= 2 &&
         (OpInfo[0].RegClass == ARM::DPRRegClassID ||
          OpInfo[0].RegClass == ARM::QPRRegClassID) &&
         OpInfo[1].RegClass == ARM::GPRRegClassID &&
         "Expect >= 2 operands and first 2 as reg operand");

  unsigned RegClass = OpInfo[0].RegClass;

  // Qd/Dd = Inst{7:19-16} => NEON Rn
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, RegClass,
                                                     decodeNEONRn(insn))));

  // Rt = Inst{15-12} => ARM Rd
  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRd(insn))));

  NumOpsAdded = 2;
  return true;
}

// A8.6.41 DMB
// A8.6.42 DSB
// A8.6.49 ISB
static inline bool MemBarrierInstr(uint32_t insn) {
  unsigned op7_4 = slice(insn, 7, 4);
  if (slice(insn, 31, 8) == 0xf57ff0 && (op7_4 >= 4 && op7_4 <= 6))
    return true;

  return false;
}

static inline bool PreLoadOpcode(unsigned Opcode) {
  switch(Opcode) {
  case ARM::PLDi12:  case ARM::PLDrs:
  case ARM::PLDWi12: case ARM::PLDWrs:
  case ARM::PLIi12:  case ARM::PLIrs:
    return true;
  default:
    return false;
  }
}

static bool DisassemblePreLoadFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  // Preload Data/Instruction requires either 2 or 3 operands.
  // PLDi, PLDWi, PLIi:                addrmode_imm12
  // PLDr[a|m], PLDWr[a|m], PLIr[a|m]: ldst_so_reg

  MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                     decodeRn(insn))));

  if (Opcode == ARM::PLDi12 || Opcode == ARM::PLDWi12
      || Opcode == ARM::PLIi12) {
    unsigned Imm12 = slice(insn, 11, 0);
    bool Negative = getUBit(insn) == 0;
    // -0 is represented specially. All other values are as normal.
    if (Imm12 == 0 && Negative)
      Imm12 = INT32_MIN;
    MI.addOperand(MCOperand::CreateImm(Imm12));
    NumOpsAdded = 2;
  } else {
    MI.addOperand(MCOperand::CreateReg(getRegisterEnum(B, ARM::GPRRegClassID,
                                                       decodeRm(insn))));

    ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;

    // Inst{6-5} encodes the shift opcode.
    ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
    // Inst{11-7} encodes the imm5 shift amount.
    unsigned ShImm = slice(insn, 11, 7);

    // A8.4.1.  Possible rrx or shift amount of 32...
    getImmShiftSE(ShOp, ShImm);
    MI.addOperand(MCOperand::CreateImm(
                    ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
    NumOpsAdded = 3;
  }

  return true;
}

static bool DisassembleMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
    unsigned short NumOps, unsigned &NumOpsAdded, BO B) {

  if (MemBarrierInstr(insn)) {
    // DMBsy, DSBsy, and ISBsy instructions have zero operand and are taken care
    // of within the generic ARMBasicMCBuilder::BuildIt() method.
    //
    // Inst{3-0} encodes the memory barrier option for the variants.
    MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
    NumOpsAdded = 1;
    return true;
  }

  switch (Opcode) {
  case ARM::CLREX:
  case ARM::NOP:
  case ARM::TRAP:
  case ARM::YIELD:
  case ARM::WFE:
  case ARM::WFI:
  case ARM::SEV:
    return true;
  default:
    break;
  }

  if (Opcode == ARM::SETEND) {
    NumOpsAdded = 1;
    MI.addOperand(MCOperand::CreateImm(slice(insn, 9, 9)));
    return true;
  }

  // CPS has a singleton $opt operand that contains the following information:
  // opt{4-0} = mode from Inst{4-0}
  // opt{5} = changemode from Inst{17}
  // opt{8-6} = AIF from Inst{8-6}
  // opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable
  if (Opcode == ARM::CPS) {
    unsigned Option = slice(insn, 4, 0) | slice(insn, 17, 17) << 5 |
      slice(insn, 8, 6) << 6 | slice(insn, 19, 18) << 9;
    MI.addOperand(MCOperand::CreateImm(Option));
    NumOpsAdded = 1;
    return true;
  }

  // DBG has its option specified in Inst{3-0}.
  if (Opcode == ARM::DBG) {
    MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
    NumOpsAdded = 1;
    return true;
  }

  // BKPT takes an imm32 val equal to ZeroExtend(Inst{19-8:3-0}).
  if (Opcode == ARM::BKPT) {
    MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 8) << 4 |
                                       slice(insn, 3, 0)));
    NumOpsAdded = 1;
    return true;
  }

  if (PreLoadOpcode(Opcode))
    return DisassemblePreLoadFrm(MI, Opcode, insn, NumOps, NumOpsAdded, B);

  assert(0 && "Unexpected misc instruction!");
  return false;
}

/// FuncPtrs - FuncPtrs maps ARMFormat to its corresponding DisassembleFP.
/// We divide the disassembly task into different categories, with each one
/// corresponding to a specific instruction encoding format.  There could be
/// exceptions when handling a specific format, and that is why the Opcode is
/// also present in the function prototype.
static const DisassembleFP FuncPtrs[] = {
  &DisassemblePseudo,
  &DisassembleMulFrm,
  &DisassembleBrFrm,
  &DisassembleBrMiscFrm,
  &DisassembleDPFrm,
  &DisassembleDPSoRegFrm,
  &DisassembleLdFrm,
  &DisassembleStFrm,
  &DisassembleLdMiscFrm,
  &DisassembleStMiscFrm,
  &DisassembleLdStMulFrm,
  &DisassembleLdStExFrm,
  &DisassembleArithMiscFrm,
  &DisassembleSatFrm,
  &DisassembleExtFrm,
  &DisassembleVFPUnaryFrm,
  &DisassembleVFPBinaryFrm,
  &DisassembleVFPConv1Frm,
  &DisassembleVFPConv2Frm,
  &DisassembleVFPConv3Frm,
  &DisassembleVFPConv4Frm,
  &DisassembleVFPConv5Frm,
  &DisassembleVFPLdStFrm,
  &DisassembleVFPLdStMulFrm,
  &DisassembleVFPMiscFrm,
  &DisassembleThumbFrm,
  &DisassembleMiscFrm,
  &DisassembleNGetLnFrm,
  &DisassembleNSetLnFrm,
  &DisassembleNDupFrm,

  // VLD and VST (including one lane) Instructions.
  &DisassembleNLdSt,

  // A7.4.6 One register and a modified immediate value
  // 1-Register Instructions with imm.
  // LLVM only defines VMOVv instructions.
  &DisassembleN1RegModImmFrm,

  // 2-Register Instructions with no imm.
  &DisassembleN2RegFrm,

  // 2-Register Instructions with imm (vector convert float/fixed point).
  &DisassembleNVCVTFrm,

  // 2-Register Instructions with imm (vector dup lane).
  &DisassembleNVecDupLnFrm,

  // Vector Shift Left Instructions.
  &DisassembleN2RegVecShLFrm,

  // Vector Shift Righ Instructions, which has different interpretation of the
  // shift amount from the imm6 field.
  &DisassembleN2RegVecShRFrm,

  // 3-Register Data-Processing Instructions.
  &DisassembleN3RegFrm,

  // Vector Shift (Register) Instructions.
  // D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
  &DisassembleN3RegVecShFrm,

  // Vector Extract Instructions.
  &DisassembleNVecExtractFrm,

  // Vector [Saturating Rounding Doubling] Multiply [Accumulate/Subtract] [Long]
  // By Scalar Instructions.
  &DisassembleNVecMulScalarFrm,

  // Vector Table Lookup uses byte indexes in a control vector to look up byte
  // values in a table and generate a new vector.
  &DisassembleNVTBLFrm,

  NULL
};

/// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
/// The general idea is to set the Opcode for the MCInst, followed by adding
/// the appropriate MCOperands to the MCInst.  ARM Basic MC Builder delegates
/// to the Format-specific disassemble function for disassembly, followed by
/// TryPredicateAndSBitModifier() to do PredicateOperand and OptionalDefOperand
/// which follow the Dst/Src Operands.
bool ARMBasicMCBuilder::BuildIt(MCInst &MI, uint32_t insn) {
  // Stage 1 sets the Opcode.
  MI.setOpcode(Opcode);
  // If the number of operands is zero, we're done!
  if (NumOps == 0)
    return true;

  // Stage 2 calls the format-specific disassemble function to build the operand
  // list.
  if (Disasm == NULL)
    return false;
  unsigned NumOpsAdded = 0;
  bool OK = (*Disasm)(MI, Opcode, insn, NumOps, NumOpsAdded, this);

  if (!OK || this->Err != 0) return false;
  if (NumOpsAdded >= NumOps)
    return true;

  // Stage 3 deals with operands unaccounted for after stage 2 is finished.
  // FIXME: Should this be done selectively?
  return TryPredicateAndSBitModifier(MI, Opcode, insn, NumOps - NumOpsAdded);
}

// A8.3 Conditional execution
// A8.3.1 Pseudocode details of conditional execution
// Condition bits '111x' indicate the instruction is always executed.
static uint32_t CondCode(uint32_t CondField) {
  if (CondField == 0xF)
    return ARMCC::AL;
  return CondField;
}

/// DoPredicateOperands - DoPredicateOperands process the predicate operands
/// of some Thumb instructions which come before the reglist operands.  It
/// returns true if the two predicate operands have been processed.
bool ARMBasicMCBuilder::DoPredicateOperands(MCInst& MI, unsigned Opcode,
    uint32_t /* insn */, unsigned short NumOpsRemaining) {

  assert(NumOpsRemaining > 0 && "Invalid argument");

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  unsigned Idx = MI.getNumOperands();

  // First, we check whether this instr specifies the PredicateOperand through
  // a pair of TargetOperandInfos with isPredicate() property.
  if (NumOpsRemaining >= 2 &&
      OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
      OpInfo[Idx].RegClass < 0 &&
      OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
  {
    // If we are inside an IT block, get the IT condition bits maintained via
    // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
    // See also A2.5.2.
    if (InITBlock())
      MI.addOperand(MCOperand::CreateImm(GetITCond()));
    else
      MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
    MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
    return true;
  }

  return false;
}
  
/// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process
/// the possible Predicate and SBitModifier, to build the remaining MCOperand
/// constituents.
bool ARMBasicMCBuilder::TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
    uint32_t insn, unsigned short NumOpsRemaining) {

  assert(NumOpsRemaining > 0 && "Invalid argument");

  const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
  const std::string &Name = ARMInsts[Opcode].Name;
  unsigned Idx = MI.getNumOperands();

  // First, we check whether this instr specifies the PredicateOperand through
  // a pair of TargetOperandInfos with isPredicate() property.
  if (NumOpsRemaining >= 2 &&
      OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
      OpInfo[Idx].RegClass < 0 &&
      OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
  {
    // If we are inside an IT block, get the IT condition bits maintained via
    // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
    // See also A2.5.2.
    if (InITBlock())
      MI.addOperand(MCOperand::CreateImm(GetITCond()));
    else {
      if (Name.length() > 1 && Name[0] == 't') {
        // Thumb conditional branch instructions have their cond field embedded,
        // like ARM.
        //
        // A8.6.16 B
        if (Name == "t2Bcc")
          MI.addOperand(MCOperand::CreateImm(CondCode(slice(insn, 25, 22))));
        else if (Name == "tBcc")
          MI.addOperand(MCOperand::CreateImm(CondCode(slice(insn, 11, 8))));
        else
          MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
      } else {
        // ARM instructions get their condition field from Inst{31-28}.
        MI.addOperand(MCOperand::CreateImm(CondCode(getCondField(insn))));
      }
    }
    MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
    Idx += 2;
    NumOpsRemaining -= 2;
  }

  if (NumOpsRemaining == 0)
    return true;

  // Next, if OptionalDefOperand exists, we check whether the 'S' bit is set.
  if (OpInfo[Idx].isOptionalDef() && OpInfo[Idx].RegClass==ARM::CCRRegClassID) {
    MI.addOperand(MCOperand::CreateReg(getSBit(insn) == 1 ? ARM::CPSR : 0));
    --NumOpsRemaining;
  }

  if (NumOpsRemaining == 0)
    return true;
  else
    return false;
}

/// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
/// after BuildIt is finished.
bool ARMBasicMCBuilder::RunBuildAfterHook(bool Status, MCInst &MI,
    uint32_t insn) {

  if (!SP) return Status;

  if (Opcode == ARM::t2IT)
    Status = SP->InitIT(slice(insn, 7, 0)) ? Status : false;
  else if (InITBlock())
    SP->UpdateIT();

  return Status;
}

/// Opcode, Format, and NumOperands make up an ARM Basic MCBuilder.
ARMBasicMCBuilder::ARMBasicMCBuilder(unsigned opc, ARMFormat format,
                                     unsigned short num)
  : Opcode(opc), Format(format), NumOps(num), SP(0), Err(0) {
  unsigned Idx = (unsigned)format;
  assert(Idx < (array_lengthof(FuncPtrs) - 1) && "Unknown format");
  Disasm = FuncPtrs[Idx];
}

/// CreateMCBuilder - Return an ARMBasicMCBuilder that can build up the MC
/// infrastructure of an MCInst given the Opcode and Format of the instr.
/// Return NULL if it fails to create/return a proper builder.  API clients
/// are responsible for freeing up of the allocated memory.  Cacheing can be
/// performed by the API clients to improve performance.
ARMBasicMCBuilder *llvm::CreateMCBuilder(unsigned Opcode, ARMFormat Format) {
  // For "Unknown format", fail by returning a NULL pointer.
  if ((unsigned)Format >= (array_lengthof(FuncPtrs) - 1)) {
    DEBUG(errs() << "Unknown format\n");
    return 0;
  }

  return new ARMBasicMCBuilder(Opcode, Format,
                               ARMInsts[Opcode].getNumOperands());
}