1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
//===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the unwind opcode assmebler for ARM exception handling
// table.
//
//===----------------------------------------------------------------------===//
#include "ARMUnwindOpAsm.h"
#include "llvm/Support/ARMEHABI.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
using namespace llvm;
namespace {
/// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes
/// with MSB to LSB per uint32_t ordering. For example, the first byte will
/// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0,
/// 7, 6, 5, 4, 11, 10, 9, 8, and so on.
class UnwindOpcodeStreamer {
private:
SmallVectorImpl<uint8_t> &Vec;
size_t Pos;
public:
UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V), Pos(3) {
}
/// Emit the byte in MSB to LSB per uint32_t order.
inline void EmitByte(uint8_t elem) {
Vec[Pos] = elem;
Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u);
}
/// Emit the size prefix.
inline void EmitSize(size_t Size) {
size_t SizeInWords = (Size + 3) / 4;
assert(SizeInWords <= 0x100u &&
"Only 256 additional words are allowed for unwind opcodes");
EmitByte(static_cast<uint8_t>(SizeInWords - 1));
}
/// Emit the personality index prefix.
inline void EmitPersonalityIndex(unsigned PI) {
assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX &&
"Invalid personality prefix");
EmitByte(ARM::EHABI::EHT_COMPACT | PI);
}
/// Fill the rest of bytes with FINISH opcode.
inline void FillFinishOpcode() {
while (Pos < Vec.size())
EmitByte(ARM::EHABI::UNWIND_OPCODE_FINISH);
}
};
}
void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) {
if (RegSave == 0u)
return;
// One byte opcode to save register r14 and r11-r4
if (RegSave & (1u << 4)) {
// The one byte opcode will always save r4, thus we can't use the one byte
// opcode when r4 is not in .save directive.
// Compute the consecutive registers from r4 to r11.
uint32_t Range = 0;
uint32_t Mask = (1u << 4);
for (uint32_t Bit = (1u << 5); Bit < (1u << 12); Bit <<= 1) {
if ((RegSave & Bit) == 0u)
break;
++Range;
Mask |= Bit;
}
// Emit this opcode when the mask covers every registers.
uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask);
if (UnmaskedReg == 0u) {
// Pop r[4 : (4 + n)]
EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range);
RegSave &= 0x000fu;
} else if (UnmaskedReg == (1u << 14)) {
// Pop r[14] + r[4 : (4 + n)]
EmitInt8(ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range);
RegSave &= 0x000fu;
}
}
// Two bytes opcode to save register r15-r4
if ((RegSave & 0xfff0u) != 0)
EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4));
// Opcode to save register r3-r0
if ((RegSave & 0x000fu) != 0)
EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu));
}
/// Emit unwind opcodes for .vsave directives
void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) {
size_t i = 32;
while (i > 16) {
uint32_t Bit = 1u << (i - 1);
if ((VFPRegSave & Bit) == 0u) {
--i;
continue;
}
uint32_t Range = 0;
--i;
Bit >>= 1;
while (i > 16 && (VFPRegSave & Bit)) {
--i;
++Range;
Bit >>= 1;
}
EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 |
((i - 16) << 4) | Range);
}
while (i > 0) {
uint32_t Bit = 1u << (i - 1);
if ((VFPRegSave & Bit) == 0u) {
--i;
continue;
}
uint32_t Range = 0;
--i;
Bit >>= 1;
while (i > 0 && (VFPRegSave & Bit)) {
--i;
++Range;
Bit >>= 1;
}
EmitInt16(ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD | (i << 4) |
Range);
}
}
/// Emit unwind opcodes to copy address from source register to $sp.
void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) {
EmitInt8(ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg);
}
/// Emit unwind opcodes to add $sp with an offset.
void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) {
if (Offset > 0x200) {
uint8_t Buff[16];
Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128;
size_t ULEBSize = encodeULEB128((Offset - 0x204) >> 2, Buff + 1);
EmitBytes(Buff, ULEBSize + 1);
} else if (Offset > 0) {
if (Offset > 0x100) {
EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu);
Offset -= 0x100;
}
EmitInt8(ARM::EHABI::UNWIND_OPCODE_INC_VSP |
static_cast<uint8_t>((Offset - 4) >> 2));
} else if (Offset < 0) {
while (Offset < -0x100) {
EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu);
Offset += 0x100;
}
EmitInt8(ARM::EHABI::UNWIND_OPCODE_DEC_VSP |
static_cast<uint8_t>(((-Offset) - 4) >> 2));
}
}
void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex,
SmallVectorImpl<uint8_t> &Result) {
UnwindOpcodeStreamer OpStreamer(Result);
if (HasPersonality) {
// User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ]
PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
size_t TotalSize = Ops.size() + 1;
size_t RoundUpSize = (TotalSize + 3) / 4 * 4;
Result.resize(RoundUpSize);
OpStreamer.EmitSize(RoundUpSize);
} else {
// If no personalityindex is specified, select ane
if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX)
PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0
: ARM::EHABI::AEABI_UNWIND_CPP_PR1;
if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) {
// __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ]
assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0");
Result.resize(4);
OpStreamer.EmitPersonalityIndex(PersonalityIndex);
} else {
// __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ]
size_t TotalSize = Ops.size() + 2;
size_t RoundUpSize = (TotalSize + 3) / 4 * 4;
Result.resize(RoundUpSize);
OpStreamer.EmitPersonalityIndex(PersonalityIndex);
OpStreamer.EmitSize(RoundUpSize);
}
}
// Copy the unwind opcodes
for (size_t i = OpBegins.size() - 1; i > 0; --i)
for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j)
OpStreamer.EmitByte(Ops[j]);
// Emit the padding finish opcodes if the size is not multiple of 4.
OpStreamer.FillFinishOpcode();
// Reset the assembler state
Reset();
}
|