1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
//===-- AlphaISelDAGToDAG.cpp - Alpha pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Andrew Lenharth and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for Alpha,
// converting from a legalized dag to a Alpha dag.
//
//===----------------------------------------------------------------------===//
#include "Alpha.h"
#include "AlphaTargetMachine.h"
#include "AlphaISelLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <queue>
#include <set>
using namespace llvm;
namespace {
//===--------------------------------------------------------------------===//
/// AlphaDAGToDAGISel - Alpha specific code to select Alpha machine
/// instructions for SelectionDAG operations.
class AlphaDAGToDAGISel : public SelectionDAGISel {
AlphaTargetLowering AlphaLowering;
static const int64_t IMM_LOW = -32768;
static const int64_t IMM_HIGH = 32767;
static const int64_t IMM_MULT = 65536;
static const int64_t IMM_FULLHIGH = IMM_HIGH + IMM_HIGH * IMM_MULT;
static const int64_t IMM_FULLLOW = IMM_LOW + IMM_LOW * IMM_MULT;
static int64_t get_ldah16(int64_t x) {
int64_t y = x / IMM_MULT;
if (x % IMM_MULT > IMM_HIGH)
++y;
return y;
}
static int64_t get_lda16(int64_t x) {
return x - get_ldah16(x) * IMM_MULT;
}
/// get_zapImm - Return a zap mask if X is a valid immediate for a zapnot
/// instruction (if not, return 0). Note that this code accepts partial
/// zap masks. For example (and LHS, 1) is a valid zap, as long we know
/// that the bits 1-7 of LHS are already zero. If LHS is non-null, we are
/// in checking mode. If LHS is null, we assume that the mask has already
/// been validated before.
uint64_t get_zapImm(SDOperand LHS, uint64_t Constant) {
uint64_t BitsToCheck = 0;
unsigned Result = 0;
for (unsigned i = 0; i != 8; ++i) {
if (((Constant >> 8*i) & 0xFF) == 0) {
// nothing to do.
} else {
Result |= 1 << i;
if (((Constant >> 8*i) & 0xFF) == 0xFF) {
// If the entire byte is set, zapnot the byte.
} else if (LHS.Val == 0) {
// Otherwise, if the mask was previously validated, we know its okay
// to zapnot this entire byte even though all the bits aren't set.
} else {
// Otherwise we don't know that the it's okay to zapnot this entire
// byte. Only do this iff we can prove that the missing bits are
// already null, so the bytezap doesn't need to really null them.
BitsToCheck |= ~Constant & (0xFF << 8*i);
}
}
}
// If there are missing bits in a byte (for example, X & 0xEF00), check to
// see if the missing bits (0x1000) are already known zero if not, the zap
// isn't okay to do, as it won't clear all the required bits.
if (BitsToCheck &&
!getTargetLowering().MaskedValueIsZero(LHS, BitsToCheck))
return 0;
return Result;
}
static uint64_t get_zapImm(uint64_t x) {
unsigned build = 0;
for(int i = 0; i != 8; ++i) {
if ((x & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((x & 0x00FF) != 0)
return 0;
x >>= 8;
}
return build;
}
static uint64_t getNearPower2(uint64_t x) {
if (!x) return 0;
unsigned at = CountLeadingZeros_64(x);
uint64_t complow = 1 << (63 - at);
uint64_t comphigh = 1 << (64 - at);
//cerr << x << ":" << complow << ":" << comphigh << "\n";
if (abs(complow - x) <= abs(comphigh - x))
return complow;
else
return comphigh;
}
static bool chkRemNearPower2(uint64_t x, uint64_t r, bool swap) {
uint64_t y = getNearPower2(x);
if (swap)
return (y - x) == r;
else
return (x - y) == r;
}
static bool isFPZ(SDOperand N) {
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
return (CN && (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)));
}
static bool isFPZn(SDOperand N) {
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
return (CN && CN->isExactlyValue(-0.0));
}
static bool isFPZp(SDOperand N) {
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
return (CN && CN->isExactlyValue(+0.0));
}
public:
AlphaDAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(AlphaLowering),
AlphaLowering(*(AlphaTargetLowering*)(TM.getTargetLowering()))
{}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDOperand getI64Imm(int64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *Select(SDOperand Op);
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
virtual const char *getPassName() const {
return "Alpha DAG->DAG Pattern Instruction Selection";
}
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
char ConstraintCode,
std::vector<SDOperand> &OutOps,
SelectionDAG &DAG) {
SDOperand Op0;
switch (ConstraintCode) {
default: return true;
case 'm': // memory
Op0 = Op;
AddToISelQueue(Op0);
break;
}
OutOps.push_back(Op0);
return false;
}
// Include the pieces autogenerated from the target description.
#include "AlphaGenDAGISel.inc"
private:
SDOperand getGlobalBaseReg();
SDOperand getGlobalRetAddr();
void SelectCALL(SDOperand Op);
};
}
/// getGlobalBaseReg - Output the instructions required to put the
/// GOT address into a register.
///
SDOperand AlphaDAGToDAGISel::getGlobalBaseReg() {
MachineFunction* MF = BB->getParent();
unsigned GP = 0;
for(MachineFunction::livein_iterator ii = MF->livein_begin(),
ee = MF->livein_end(); ii != ee; ++ii)
if (ii->first == Alpha::R29) {
GP = ii->second;
break;
}
assert(GP && "GOT PTR not in liveins");
return CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
GP, MVT::i64);
}
/// getRASaveReg - Grab the return address
///
SDOperand AlphaDAGToDAGISel::getGlobalRetAddr() {
MachineFunction* MF = BB->getParent();
unsigned RA = 0;
for(MachineFunction::livein_iterator ii = MF->livein_begin(),
ee = MF->livein_end(); ii != ee; ++ii)
if (ii->first == Alpha::R26) {
RA = ii->second;
break;
}
assert(RA && "RA PTR not in liveins");
return CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
RA, MVT::i64);
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void AlphaDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Select target instructions for the DAG.
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *AlphaDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
N->getOpcode() < AlphaISD::FIRST_NUMBER) {
return NULL; // Already selected.
}
switch (N->getOpcode()) {
default: break;
case AlphaISD::CALL:
SelectCALL(Op);
return NULL;
case ISD::FrameIndex: {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
return CurDAG->SelectNodeTo(N, Alpha::LDA, MVT::i64,
CurDAG->getTargetFrameIndex(FI, MVT::i32),
getI64Imm(0));
}
case ISD::GLOBAL_OFFSET_TABLE: {
SDOperand Result = getGlobalBaseReg();
ReplaceUses(Op, Result);
return NULL;
}
case AlphaISD::GlobalRetAddr: {
SDOperand Result = getGlobalRetAddr();
ReplaceUses(Op, Result);
return NULL;
}
case AlphaISD::DivCall: {
SDOperand Chain = CurDAG->getEntryNode();
SDOperand N0 = Op.getOperand(0);
SDOperand N1 = Op.getOperand(1);
SDOperand N2 = Op.getOperand(2);
AddToISelQueue(N0);
AddToISelQueue(N1);
AddToISelQueue(N2);
Chain = CurDAG->getCopyToReg(Chain, Alpha::R24, N1,
SDOperand(0,0));
Chain = CurDAG->getCopyToReg(Chain, Alpha::R25, N2,
Chain.getValue(1));
Chain = CurDAG->getCopyToReg(Chain, Alpha::R27, N0,
Chain.getValue(1));
SDNode *CNode =
CurDAG->getTargetNode(Alpha::JSRs, MVT::Other, MVT::Flag,
Chain, Chain.getValue(1));
Chain = CurDAG->getCopyFromReg(Chain, Alpha::R27, MVT::i64,
SDOperand(CNode, 1));
return CurDAG->SelectNodeTo(N, Alpha::BISr, MVT::i64, Chain, Chain);
}
case ISD::READCYCLECOUNTER: {
SDOperand Chain = N->getOperand(0);
AddToISelQueue(Chain); //Select chain
return CurDAG->getTargetNode(Alpha::RPCC, MVT::i64, MVT::Other,
Chain);
}
case ISD::Constant: {
uint64_t uval = cast<ConstantSDNode>(N)->getValue();
if (uval == 0) {
SDOperand Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
Alpha::R31, MVT::i64);
ReplaceUses(Op, Result);
return NULL;
}
int64_t val = (int64_t)uval;
int32_t val32 = (int32_t)val;
if (val <= IMM_HIGH + IMM_HIGH * IMM_MULT &&
val >= IMM_LOW + IMM_LOW * IMM_MULT)
break; //(LDAH (LDA))
if ((uval >> 32) == 0 && //empty upper bits
val32 <= IMM_HIGH + IMM_HIGH * IMM_MULT)
// val32 >= IMM_LOW + IMM_LOW * IMM_MULT) //always true
break; //(zext (LDAH (LDA)))
//Else use the constant pool
ConstantInt *C = ConstantInt::get(Type::Int64Ty, uval);
SDOperand CPI = CurDAG->getTargetConstantPool(C, MVT::i64);
SDNode *Tmp = CurDAG->getTargetNode(Alpha::LDAHr, MVT::i64, CPI,
getGlobalBaseReg());
return CurDAG->SelectNodeTo(N, Alpha::LDQr, MVT::i64, MVT::Other,
CPI, SDOperand(Tmp, 0), CurDAG->getEntryNode());
}
case ISD::TargetConstantFP: {
ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
bool isDouble = N->getValueType(0) == MVT::f64;
MVT::ValueType T = isDouble ? MVT::f64 : MVT::f32;
if (CN->isExactlyValue(+0.0)) {
return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYST : Alpha::CPYSS,
T, CurDAG->getRegister(Alpha::F31, T),
CurDAG->getRegister(Alpha::F31, T));
} else if ( CN->isExactlyValue(-0.0)) {
return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYSNT : Alpha::CPYSNS,
T, CurDAG->getRegister(Alpha::F31, T),
CurDAG->getRegister(Alpha::F31, T));
} else {
abort();
}
break;
}
case ISD::SETCC:
if (MVT::isFloatingPoint(N->getOperand(0).Val->getValueType(0))) {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
unsigned Opc = Alpha::WTF;
bool rev = false;
bool inv = false;
switch(CC) {
default: DEBUG(N->dump()); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: case ISD::SETOEQ: case ISD::SETUEQ:
Opc = Alpha::CMPTEQ; break;
case ISD::SETLT: case ISD::SETOLT: case ISD::SETULT:
Opc = Alpha::CMPTLT; break;
case ISD::SETLE: case ISD::SETOLE: case ISD::SETULE:
Opc = Alpha::CMPTLE; break;
case ISD::SETGT: case ISD::SETOGT: case ISD::SETUGT:
Opc = Alpha::CMPTLT; rev = true; break;
case ISD::SETGE: case ISD::SETOGE: case ISD::SETUGE:
Opc = Alpha::CMPTLE; rev = true; break;
case ISD::SETNE: case ISD::SETONE: case ISD::SETUNE:
Opc = Alpha::CMPTEQ; inv = true; break;
case ISD::SETO:
Opc = Alpha::CMPTUN; inv = true; break;
case ISD::SETUO:
Opc = Alpha::CMPTUN; break;
};
SDOperand tmp1 = N->getOperand(rev?1:0);
SDOperand tmp2 = N->getOperand(rev?0:1);
AddToISelQueue(tmp1);
AddToISelQueue(tmp2);
SDNode *cmp = CurDAG->getTargetNode(Opc, MVT::f64, tmp1, tmp2);
if (inv)
cmp = CurDAG->getTargetNode(Alpha::CMPTEQ, MVT::f64, SDOperand(cmp, 0),
CurDAG->getRegister(Alpha::F31, MVT::f64));
switch(CC) {
case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE:
case ISD::SETUNE: case ISD::SETUGT: case ISD::SETUGE:
{
SDNode* cmp2 = CurDAG->getTargetNode(Alpha::CMPTUN, MVT::f64,
tmp1, tmp2);
cmp = CurDAG->getTargetNode(Alpha::ADDT, MVT::f64,
SDOperand(cmp2, 0), SDOperand(cmp, 0));
break;
}
default: break;
}
SDNode* LD = CurDAG->getTargetNode(Alpha::FTOIT, MVT::i64, SDOperand(cmp, 0));
return CurDAG->getTargetNode(Alpha::CMPULT, MVT::i64,
CurDAG->getRegister(Alpha::R31, MVT::i64),
SDOperand(LD,0));
}
break;
case ISD::SELECT:
if (MVT::isFloatingPoint(N->getValueType(0)) &&
(N->getOperand(0).getOpcode() != ISD::SETCC ||
!MVT::isFloatingPoint(N->getOperand(0).getOperand(1).getValueType()))) {
//This should be the condition not covered by the Patterns
//FIXME: Don't have SelectCode die, but rather return something testable
// so that things like this can be caught in fall though code
//move int to fp
bool isDouble = N->getValueType(0) == MVT::f64;
SDOperand cond = N->getOperand(0);
SDOperand TV = N->getOperand(1);
SDOperand FV = N->getOperand(2);
AddToISelQueue(cond);
AddToISelQueue(TV);
AddToISelQueue(FV);
SDNode* LD = CurDAG->getTargetNode(Alpha::ITOFT, MVT::f64, cond);
return CurDAG->getTargetNode(isDouble?Alpha::FCMOVNET:Alpha::FCMOVNES,
MVT::f64, FV, TV, SDOperand(LD,0));
}
break;
case ISD::AND: {
ConstantSDNode* SC = NULL;
ConstantSDNode* MC = NULL;
if (N->getOperand(0).getOpcode() == ISD::SRL &&
(MC = dyn_cast<ConstantSDNode>(N->getOperand(1))) &&
(SC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1)))) {
uint64_t sval = SC->getValue();
uint64_t mval = MC->getValue();
// If the result is a zap, let the autogened stuff handle it.
if (get_zapImm(N->getOperand(0), mval))
break;
// given mask X, and shift S, we want to see if there is any zap in the
// mask if we play around with the botton S bits
uint64_t dontcare = (~0ULL) >> (64 - sval);
uint64_t mask = mval << sval;
if (get_zapImm(mask | dontcare))
mask = mask | dontcare;
if (get_zapImm(mask)) {
AddToISelQueue(N->getOperand(0).getOperand(0));
SDOperand Z =
SDOperand(CurDAG->getTargetNode(Alpha::ZAPNOTi, MVT::i64,
N->getOperand(0).getOperand(0),
getI64Imm(get_zapImm(mask))), 0);
return CurDAG->getTargetNode(Alpha::SRLr, MVT::i64, Z,
getI64Imm(sval));
}
}
break;
}
}
return SelectCode(Op);
}
void AlphaDAGToDAGISel::SelectCALL(SDOperand Op) {
//TODO: add flag stuff to prevent nondeturministic breakage!
SDNode *N = Op.Val;
SDOperand Chain = N->getOperand(0);
SDOperand Addr = N->getOperand(1);
SDOperand InFlag(0,0); // Null incoming flag value.
AddToISelQueue(Chain);
std::vector<SDOperand> CallOperands;
std::vector<MVT::ValueType> TypeOperands;
//grab the arguments
for(int i = 2, e = N->getNumOperands(); i < e; ++i) {
TypeOperands.push_back(N->getOperand(i).getValueType());
AddToISelQueue(N->getOperand(i));
CallOperands.push_back(N->getOperand(i));
}
int count = N->getNumOperands() - 2;
static const unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
Alpha::R19, Alpha::R20, Alpha::R21};
static const unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
Alpha::F19, Alpha::F20, Alpha::F21};
for (int i = 6; i < count; ++i) {
unsigned Opc = Alpha::WTF;
if (MVT::isInteger(TypeOperands[i])) {
Opc = Alpha::STQ;
} else if (TypeOperands[i] == MVT::f32) {
Opc = Alpha::STS;
} else if (TypeOperands[i] == MVT::f64) {
Opc = Alpha::STT;
} else
assert(0 && "Unknown operand");
SDOperand Ops[] = { CallOperands[i], getI64Imm((i - 6) * 8),
CurDAG->getCopyFromReg(Chain, Alpha::R30, MVT::i64),
Chain };
Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Ops, 4), 0);
}
for (int i = 0; i < std::min(6, count); ++i) {
if (MVT::isInteger(TypeOperands[i])) {
Chain = CurDAG->getCopyToReg(Chain, args_int[i], CallOperands[i], InFlag);
InFlag = Chain.getValue(1);
} else if (TypeOperands[i] == MVT::f32 || TypeOperands[i] == MVT::f64) {
Chain = CurDAG->getCopyToReg(Chain, args_float[i], CallOperands[i], InFlag);
InFlag = Chain.getValue(1);
} else
assert(0 && "Unknown operand");
}
// Finally, once everything is in registers to pass to the call, emit the
// call itself.
if (Addr.getOpcode() == AlphaISD::GPRelLo) {
SDOperand GOT = getGlobalBaseReg();
Chain = CurDAG->getCopyToReg(Chain, Alpha::R29, GOT, InFlag);
InFlag = Chain.getValue(1);
Chain = SDOperand(CurDAG->getTargetNode(Alpha::BSR, MVT::Other, MVT::Flag,
Addr.getOperand(0), Chain, InFlag), 0);
} else {
AddToISelQueue(Addr);
Chain = CurDAG->getCopyToReg(Chain, Alpha::R27, Addr, InFlag);
InFlag = Chain.getValue(1);
Chain = SDOperand(CurDAG->getTargetNode(Alpha::JSR, MVT::Other, MVT::Flag,
Chain, InFlag), 0);
}
InFlag = Chain.getValue(1);
std::vector<SDOperand> CallResults;
switch (N->getValueType(0)) {
default: assert(0 && "Unexpected ret value!");
case MVT::Other: break;
case MVT::i64:
Chain = CurDAG->getCopyFromReg(Chain, Alpha::R0, MVT::i64, InFlag).getValue(1);
CallResults.push_back(Chain.getValue(0));
break;
case MVT::f32:
Chain = CurDAG->getCopyFromReg(Chain, Alpha::F0, MVT::f32, InFlag).getValue(1);
CallResults.push_back(Chain.getValue(0));
break;
case MVT::f64:
Chain = CurDAG->getCopyFromReg(Chain, Alpha::F0, MVT::f64, InFlag).getValue(1);
CallResults.push_back(Chain.getValue(0));
break;
}
CallResults.push_back(Chain);
for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
ReplaceUses(Op.getValue(i), CallResults[i]);
}
/// createAlphaISelDag - This pass converts a legalized DAG into a
/// Alpha-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createAlphaISelDag(TargetMachine &TM) {
return new AlphaDAGToDAGISel(TM);
}
|