aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Alpha/AlphaInstrInfo.td
blob: c32728c00758c598db0f3f25eb057b693c024317 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//

include "AlphaInstrFormats.td"

//********************
//Paterns for matching
//********************

def immUExt8  : PatLeaf<(imm), [{
  // immUExt8 predicate - True if the immediate fits in a 8-bit zero extended
  // field.  Used by instructions like 'addi'.
  return (unsigned long)N->getValue() == (unsigned char)N->getValue();
}]>;
def immSExt16  : PatLeaf<(imm), [{
  // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
  // field.  Used by instructions like 'lda'.
  return (int)N->getValue() == (short)N->getValue();
}]>;

def iZAPX : SDNodeXForm<imm, [{
  // Transformation function: get the imm to ZAPi
  uint64_t UImm = (uint64_t)N->getValue();
  unsigned int build = 0;
  for(int i = 0; i < 8; ++i)
  {
    if ((UImm & 0x00FF) == 0x00FF)
      build |= 1 << i;
    else if ((UImm & 0x00FF) != 0)
    { build = 0; break; }
    UImm >>= 8;
  }
  return getI64Imm(build);
}]>;
def immZAP  : PatLeaf<(imm), [{
  // immZAP predicate - True if the immediate fits is suitable for use in a
  // ZAP instruction
  uint64_t UImm = (uint64_t)N->getValue();
  unsigned int build = 0;
  for(int i = 0; i < 8; ++i)
  {
    if ((UImm & 0x00FF) == 0x00FF)
      build |= 1 << i;
    else if ((UImm & 0x00FF) != 0)
    { build = 0; break; }
    UImm >>= 8;
  }
  return build != 0;
}], iZAPX>;


def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>;
def add4  : PatFrag<(ops node:$op1, node:$op2),
                    (add (shl node:$op1, 2), node:$op2)>;
def sub4  : PatFrag<(ops node:$op1, node:$op2),
                    (sub (shl node:$op1, 2), node:$op2)>;
def add8  : PatFrag<(ops node:$op1, node:$op2),
                    (add (shl node:$op1, 3), node:$op2)>;
def sub8  : PatFrag<(ops node:$op1, node:$op2),
                    (sub (shl node:$op1, 3), node:$op2)>;

  // //#define FP    $15
  // //#define RA    $26
  // //#define PV    $27
  // //#define GP    $29
  // //#define SP    $30

def PHI : PseudoInstAlpha<(ops variable_ops), "#phi">;
def IDEF : PseudoInstAlpha<(ops GPRC:$RA), "#idef $RA">;
def WTF : PseudoInstAlpha<(ops variable_ops), "#wtf">;
def ADJUSTSTACKUP : PseudoInstAlpha<(ops variable_ops), "ADJUP">;
def ADJUSTSTACKDOWN : PseudoInstAlpha<(ops variable_ops), "ADJDOWN">;
def ALTENT : PseudoInstAlpha<(ops s64imm:$TARGET), "$TARGET:\n">;
def PCLABEL : PseudoInstAlpha<(ops s64imm:$num), "PCMARKER_$num:\n">;
def MEMLABEL : PseudoInstAlpha<(ops s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m),
         "LSMARKER$$$i$$$j$$$k$$$m:\n">;

//*****************
//These are shortcuts, the assembler expands them
//*****************
//AT = R28
//T0-T7 = R1 - R8
//T8-T11 = R22-R25

//An even better improvement on the Int = SetCC(FP):  SelectCC!
//These are evil because they hide control flow in a MBB
//really the ISel should emit multiple MBB
let isTwoAddress = 1 in {
//Conditional move of an int based on a FP CC
  def CMOVEQ_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND),
                                  "fbne $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
  def CMOVEQi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, FPRC:$RCOND),
                                  "fbne $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n">;

  def CMOVNE_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND),
                                  "fbeq $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
  def CMOVNEi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, FPRC:$RCOND),
                                  "fbeq $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n">;
//Conditional move of an FP based on a Int CC
  def FCMOVEQ_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND),
                                  "bne $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
  def FCMOVNE_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND),
                                  "beq $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n">;
}

//***********************
//Real instructions
//***********************

//Operation Form:

//conditional moves, int
def CMOVEQ   : OForm4<  0x11, 0x24, "cmoveq $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND =  zero
def CMOVEQi  : OForm4L< 0x11, 0x24, "cmoveq $RCOND,$L,$RDEST">; //CMOVE if RCOND =  zero
def CMOVGE   : OForm4<  0x11, 0x46, "cmovge $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND >= zero
def CMOVGEi  : OForm4L< 0x11, 0x46, "cmovge $RCOND,$L,$RDEST">; //CMOVE if RCOND >= zero
def CMOVGT   : OForm4<  0x11, 0x66, "cmovgt $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND > zero
def CMOVGTi  : OForm4L< 0x11, 0x66, "cmovgt $RCOND,$L,$RDEST">; //CMOVE if RCOND > zero
def CMOVLBC  : OForm4<  0x11, 0x16, "cmovlbc $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND low bit clear
def CMOVLBCi : OForm4L< 0x11, 0x16, "cmovlbc $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit clear
def CMOVLBS  : OForm4<  0x11, 0x14, "cmovlbs $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND low bit set
def CMOVLBSi : OForm4L< 0x11, 0x14, "cmovlbs $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit set
def CMOVLE   : OForm4<  0x11, 0x64, "cmovle $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND <= zero
def CMOVLEi  : OForm4L< 0x11, 0x64, "cmovle $RCOND,$L,$RDEST">; //CMOVE if RCOND <= zero
def CMOVLT   : OForm4<  0x11, 0x44, "cmovlt $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND < zero
def CMOVLTi  : OForm4L< 0x11, 0x44, "cmovlt $RCOND,$L,$RDEST">; //CMOVE if RCOND < zero
def CMOVNE   : OForm4<  0x11, 0x26, "cmovne $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND != zero
def CMOVNEi  : OForm4L< 0x11, 0x26, "cmovne $RCOND,$L,$RDEST">; //CMOVE if RCOND != zero

//conditional moves, fp
def FCMOVEQ : FPFormCM<0x17, 0x02A, "fcmoveq $RCOND,$RSRC,$RDEST">; //FCMOVE if = zero
def FCMOVGE : FPFormCM<0x17, 0x02D, "fcmovge $RCOND,$RSRC,$RDEST">; //FCMOVE if >= zero
def FCMOVGT : FPFormCM<0x17, 0x02F, "fcmovgt $RCOND,$RSRC,$RDEST">; //FCMOVE if > zero
def FCMOVLE : FPFormCM<0x17, 0x02E, "fcmovle $RCOND,$RSRC,$RDEST">; //FCMOVE if <= zero
def FCMOVLT : FPFormCM<0x17, 0x02C, "fcmovlt $RCOND,$RSRC,$RDEST">; // FCMOVE if < zero
def FCMOVNE : FPFormCM<0x17, 0x02B, "fcmovne $RCOND,$RSRC,$RDEST">; //FCMOVE if != zero


def ADDL     : OForm< 0x10, 0x00, "addl $RA,$RB,$RC",
                      [(set GPRC:$RC, (intop (add GPRC:$RA, GPRC:$RB)))]>;
def ADDLi    : OFormL<0x10, 0x00, "addl $RA,$L,$RC",
                      [(set GPRC:$RC, (intop (add GPRC:$RA, immUExt8:$L)))]>;
def ADDQ     : OForm< 0x10, 0x20, "addq $RA,$RB,$RC",
                      [(set GPRC:$RC, (add GPRC:$RA, GPRC:$RB))]>;
def ADDQi    : OFormL<0x10, 0x20, "addq $RA,$L,$RC",
                      [(set GPRC:$RC, (add GPRC:$RA, immUExt8:$L))]>;
//def AMASK    : OForm< 0x11, 0x61, "AMASK $RA,$RB,$RC", []>; //Architecture mask
//def AMASKi   : OFormL<0x11, 0x61, "AMASK $RA,$L,$RC", []>; //Architecture mask
def AND      : OForm< 0x11, 0x00, "and $RA,$RB,$RC",
                      [(set GPRC:$RC, (and GPRC:$RA, GPRC:$RB))]>;
def ANDi     : OFormL<0x11, 0x00, "and $RA,$L,$RC",
                      [(set GPRC:$RC, (and GPRC:$RA, immUExt8:$L))]>;
def BIC      : OForm< 0x11, 0x08, "bic $RA,$RB,$RC",
                      [(set GPRC:$RC, (and GPRC:$RA, (not GPRC:$RB)))]>;
def BICi     : OFormL<0x11, 0x08, "bic $RA,$L,$RC", []>;
//                      [(set GPRC:$RC, (and GPRC:$RA, (not immUExt8:$L)))]>; //FIXME?
def BIS      : OForm< 0x11, 0x20, "bis $RA,$RB,$RC",
                      [(set GPRC:$RC, (or GPRC:$RA, GPRC:$RB))]>;
def BISi     : OFormL<0x11, 0x20, "bis $RA,$L,$RC",
                      [(set GPRC:$RC, (or GPRC:$RA, immUExt8:$L))]>;
def CTLZ     : OForm2<0x1C, 0x32, "CTLZ $RB,$RC", 
                      [(set GPRC:$RC, (ctlz GPRC:$RB))]>;
def CTPOP    : OForm2<0x1C, 0x30, "CTPOP $RB,$RC", 
                      [(set GPRC:$RC, (ctpop GPRC:$RB))]>;
def CTTZ     : OForm2<0x1C, 0x33, "CTTZ $RB,$RC", 
                      [(set GPRC:$RC, (cttz GPRC:$RB))]>;
def EQV      : OForm< 0x11, 0x48, "eqv $RA,$RB,$RC",
                      [(set GPRC:$RC, (xor GPRC:$RA, (not GPRC:$RB)))]>;
def EQVi     : OFormL<0x11, 0x48, "eqv $RA,$L,$RC", []>;
//                      [(set GPRC:$RC, (xor GPRC:$RA, (not immUExt8:$L)))]>;
//def EXTBL    : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC", []>; //Extract byte low
//def EXTBLi   : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low
//def EXTLH    : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high
//def EXTLHi   : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high
//def EXTLL    : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC", []>; //Extract longword low
//def EXTLLi   : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low
//def EXTQH    : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high
//def EXTQHi   : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high
//def EXTQ     : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low
//def EXTQi    : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low
//def EXTWH    : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high
//def EXTWHi   : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high
//def EXTWL    : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC", []>; //Extract word low
//def EXTWLi   : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low
//def IMPLVER  : OForm< 0x11, 0x6C, "IMPLVER $RA,$RB,$RC", []>; //Implementation version
//def IMPLVERi : OFormL<0x11, 0x6C, "IMPLVER $RA,$L,$RC", []>; //Implementation version
//def INSBL    : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low
//def INSBLi   : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low
//def INSLH    : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high
//def INSLHi   : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high
//def INSLL    : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low
//def INSLLi   : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low
//def INSQH    : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high
//def INSQHi   : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high
//def INSQL    : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low
//def INSQLi   : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low
//def INSWH    : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high
//def INSWHi   : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high
//def INSWL    : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low
//def INSWLi   : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low
//def MSKBL    : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low
//def MSKBLi   : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low
//def MSKLH    : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high
//def MSKLHi   : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high
//def MSKLL    : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low
//def MSKLLi   : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low
//def MSKQH    : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high
//def MSKQHi   : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high
//def MSKQL    : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low
//def MSKQLi   : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low
//def MSKWH    : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high
//def MSKWHi   : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high
//def MSKWL    : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low
//def MSKWLi   : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low

def MULL     : OForm< 0x13, 0x00, "mull $RA,$RB,$RC",
                      [(set GPRC:$RC, (intop (mul GPRC:$RA, GPRC:$RB)))]>;
def MULLi    : OFormL<0x13, 0x00, "mull $RA,$L,$RC",
                      [(set GPRC:$RC, (intop (mul GPRC:$RA, immUExt8:$L)))]>;
def MULQ     : OForm< 0x13, 0x20, "mulq $RA,$RB,$RC",
                      [(set GPRC:$RC, (mul GPRC:$RA, GPRC:$RB))]>;
def MULQi    : OFormL<0x13, 0x20, "mulq $RA,$L,$RC",
                      [(set GPRC:$RC, (mul GPRC:$RA, immUExt8:$L))]>;
def ORNOT    : OForm< 0x11, 0x28, "ornot $RA,$RB,$RC",
                      [(set GPRC:$RC, (or GPRC:$RA, (not GPRC:$RB)))]>;
def ORNOTi   : OFormL<0x11, 0x28, "ornot $RA,$L,$RC", []>;
//                      [(set GPRC:$RC, (or GPRC:$RA, (not immUExt8:$L)))]>;
def S4ADDL   : OForm< 0x10, 0x02, "s4addl $RA,$RB,$RC", 
                      [(set GPRC:$RC, (intop (add4 GPRC:$RA, GPRC:$RB)))]>;
def S4ADDLi  : OFormL<0x10, 0x02, "s4addl $RA,$L,$RC", 
                      [(set GPRC:$RC, (intop (add4 GPRC:$RA, immUExt8:$L)))]>;
def S4ADDQ   : OForm< 0x10, 0x22, "s4addq $RA,$RB,$RC", 
                      [(set GPRC:$RC, (add4 GPRC:$RA, GPRC:$RB))]>;
def S4ADDQi  : OFormL<0x10, 0x22, "s4addq $RA,$L,$RC", 
                      [(set GPRC:$RC, (add4 GPRC:$RA, immUExt8:$L))]>;
def S4SUBL   : OForm< 0x10, 0x0B, "s4subl $RA,$RB,$RC",
                      [(set GPRC:$RC, (intop (sub4 GPRC:$RA, GPRC:$RB)))]>;
def S4SUBLi  : OFormL<0x10, 0x0B, "s4subl $RA,$L,$RC",
                      [(set GPRC:$RC, (intop (sub4 GPRC:$RA, immUExt8:$L)))]>;
def S4SUBQ   : OForm< 0x10, 0x2B, "s4subq $RA,$RB,$RC", 
                      [(set GPRC:$RC, (sub4 GPRC:$RA, GPRC:$RB))]>;
def S4SUBQi  : OFormL<0x10, 0x2B, "s4subq $RA,$L,$RC", 
                      [(set GPRC:$RC, (sub4 GPRC:$RA, immUExt8:$L))]>;
def S8ADDL   : OForm< 0x10, 0x12, "s8addl $RA,$RB,$RC", 
                      [(set GPRC:$RC, (intop (add8 GPRC:$RA, GPRC:$RB)))]>;
def S8ADDLi  : OFormL<0x10, 0x12, "s8addl $RA,$L,$RC", 
                      [(set GPRC:$RC, (intop (add8 GPRC:$RA, immUExt8:$L)))]>;
def S8ADDQ   : OForm< 0x10, 0x32, "s8addq $RA,$RB,$RC", 
                      [(set GPRC:$RC, (add8 GPRC:$RA, GPRC:$RB))]>;
def S8ADDQi  : OFormL<0x10, 0x32, "s8addq $RA,$L,$RC", 
                      [(set GPRC:$RC, (add8 GPRC:$RA, immUExt8:$L))]>;
def S8SUBL   : OForm< 0x10, 0x1B, "s8subl $RA,$RB,$RC", 
                      [(set GPRC:$RC, (intop (sub8 GPRC:$RA, GPRC:$RB)))]>;
def S8SUBLi  : OFormL<0x10, 0x1B, "s8subl $RA,$L,$RC", 
                      [(set GPRC:$RC, (intop (sub8 GPRC:$RA, immUExt8:$L)))]>;
def S8SUBQ   : OForm< 0x10, 0x3B, "s8subq $RA,$RB,$RC", 
                      [(set GPRC:$RC, (sub8 GPRC:$RA, GPRC:$RB))]>;
def S8SUBQi  : OFormL<0x10, 0x3B, "s8subq $RA,$L,$RC", 
                      [(set GPRC:$RC, (sub8 GPRC:$RA, immUExt8:$L))]>;
def SEXTB    : OForm2<0x1C, 0x00, "sextb $RB,$RC", 
                      [(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))]>;
def SEXTW    : OForm2<0x1C, 0x01, "sextw $RB,$RC", 
                      [(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))]>;
def SL       : OForm< 0x12, 0x39, "sll $RA,$RB,$RC",
                      [(set GPRC:$RC, (shl GPRC:$RA, GPRC:$RB))]>;
def SLi      : OFormL<0x12, 0x39, "sll $RA,$L,$RC",
                      [(set GPRC:$RC, (shl GPRC:$RA, immUExt8:$L))]>;
def SRA      : OForm< 0x12, 0x3C, "sra $RA,$RB,$RC",
                      [(set GPRC:$RC, (sra GPRC:$RA, GPRC:$RB))]>;
def SRAi     : OFormL<0x12, 0x3C, "sra $RA,$L,$RC",
                      [(set GPRC:$RC, (sra GPRC:$RA, immUExt8:$L))]>;
def SRL      : OForm< 0x12, 0x34, "srl $RA,$RB,$RC",
                      [(set GPRC:$RC, (srl GPRC:$RA, GPRC:$RB))]>;
def SRLi     : OFormL<0x12, 0x34, "srl $RA,$L,$RC",
                      [(set GPRC:$RC, (srl GPRC:$RA, immUExt8:$L))]>;
def SUBL     : OForm< 0x10, 0x09, "subl $RA,$RB,$RC",
                      [(set GPRC:$RC, (intop (sub GPRC:$RA, GPRC:$RB)))]>;
def SUBLi    : OFormL<0x10, 0x09, "subl $RA,$L,$RC",
                      [(set GPRC:$RC, (intop (sub GPRC:$RA, immUExt8:$L)))]>;
def SUBQ     : OForm< 0x10, 0x29, "subq $RA,$RB,$RC",
                      [(set GPRC:$RC, (sub GPRC:$RA, GPRC:$RB))]>;
def SUBQi    : OFormL<0x10, 0x29, "subq $RA,$L,$RC",
                      [(set GPRC:$RC, (sub GPRC:$RA, immUExt8:$L))]>;
def UMULH    : OForm< 0x13, 0x30, "umulh $RA,$RB,$RC",
                      [(set GPRC:$RC, (mulhu GPRC:$RA, GPRC:$RB))]>;                     
def UMULHi   : OFormL<0x13, 0x30, "umulh $RA,$L,$RC", 
                      [(set GPRC:$RC, (mulhu GPRC:$RA, immUExt8:$L))]>;
def XOR      : OForm< 0x11, 0x40, "xor $RA,$RB,$RC",
                      [(set GPRC:$RC, (xor GPRC:$RA, GPRC:$RB))]>;
def XORi     : OFormL<0x11, 0x40, "xor $RA,$L,$RC",
                      [(set GPRC:$RC, (xor GPRC:$RA, immUExt8:$L))]>;
//FIXME: what to do about zap? the cases it catches are very complex
def ZAP      : OForm< 0x12, 0x30, "zap $RA,$RB,$RC", []>; //Zero bytes
//ZAPi is useless give ZAPNOTi
def ZAPi     : OFormL<0x12, 0x30, "zap $RA,$L,$RC", []>; //Zero bytes
//FIXME: what to do about zapnot? see ZAP :)
def ZAPNOT   : OForm< 0x12, 0x31, "zapnot $RA,$RB,$RC", []>; //Zero bytes not
def ZAPNOTi  : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC", 
                      [(set GPRC:$RC, (and GPRC:$RA, immZAP:$L))]>; 

//Comparison, int
def CMPBGE   : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC", []>; //Compare byte
def CMPBGEi  : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC", []>; //Compare byte
def CMPEQ    : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC", []>; //Compare signed quadword equal
def CMPEQi   : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC", []>; //Compare signed quadword equal
def CMPLE    : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC", []>; //Compare signed quadword less than or equal
def CMPLEi   : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC", []>; //Compare signed quadword less than or equal
def CMPLT    : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC", []>; //Compare signed quadword less than
def CMPLTi   : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC", []>; //Compare signed quadword less than
def CMPULE   : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC", []>; //Compare unsigned quadword less than or equal
def CMPULEi  : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC", []>; //Compare unsigned quadword less than or equal
def CMPULT   : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC", []>; //Compare unsigned quadword less than
def CMPULTi  : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC", []>; //Compare unsigned quadword less than

//Comparison, FP
def CMPTEQ : FPForm<0x16, 0x5A5, "cmpteq/su $RA,$RB,$RC">;  //Compare T_floating equal
def CMPTLE : FPForm<0x16, 0x5A7, "cmptle/su $RA,$RB,$RC">;  //Compare T_floating less than or equal
def CMPTLT : FPForm<0x16, 0x5A6, "cmptlt/su $RA,$RB,$RC">;  //Compare T_floating less than
def CMPTUN : FPForm<0x16, 0x5A4, "cmptun/su $RA,$RB,$RC">;  //Compare T_floating unordered

//There are in the Multimedia extentions, so let's not use them yet
//def MAXSB8  : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum
//def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum
//def MAXUB8  : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum
//def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum
//def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum
//def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum
//def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum
//def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum
//def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error
//def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes
//def PKWB  : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes
//def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords
//def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words

//End operate

let isReturn = 1, isTerminator = 1 in 
  def RET : MbrForm< 0x1A, 0x02, (ops GPRC:$RD, GPRC:$RS, s64imm:$DISP), "ret $RD,($RS),$DISP">; //Return from subroutine
//DAG Version:
let isReturn = 1, isTerminator = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in 
  def RETDAG : MbrForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1">; //Return from subroutine

def JMP : MbrForm< 0x1A, 0x00, (ops GPRC:$RD, GPRC:$RS, GPRC:$DISP), "jmp $RD,($RS),$DISP">; //Jump
let isCall = 1,
    Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
            R20, R21, R22, R23, R24, R25, R27, R28, R29,
            F0, F1,
            F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
            F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in {
    def JSR : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to subroutine
    def BSR : BForm<0x34, "bsr $RA,$DISP">; //Branch to subroutine
}
let isCall = 1,
    Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
            R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
            F0, F1,
            F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
            F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R27, R29] in {
    def JSRDAG : MbrForm< 0x1A, 0x01, (ops ), "jsr $$26,($$27),0">; //Jump to subroutine
}
let isCall = 1, Defs = [R24, R25, R27, R28], Uses = [R24, R25] in
  def JSRs : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to div or rem

def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP">; //Jump to subroutine return
def BR : BForm<0x30, "br $RA,$DISP">; //Branch

def BR_DAG : BFormD<0x30, "br $$31,$DISP">; //Branch

//Stores, int
def STB : MForm<0x0E, "stb $RA,$DISP($RB)">; // Store byte
def STW : MForm<0x0D, "stw $RA,$DISP($RB)">; // Store word
def STL : MForm<0x2C, "stl $RA,$DISP($RB)">; // Store longword
def STQ : MForm<0x2D, "stq $RA,$DISP($RB)">; //Store quadword

//Loads, int
def LDL : MForm<0x28,  "ldl $RA,$DISP($RB)">; // Load sign-extended longword
def LDQ : MForm<0x29,  "ldq $RA,$DISP($RB)">; //Load quadword
def LDBU : MForm<0x0A, "ldbu $RA,$DISP($RB)">; //Load zero-extended byte
def LDWU : MForm<0x0C, "ldwu $RA,$DISP($RB)">; //Load zero-extended word

//Stores, float
def STS : MForm<0x26, "sts $RA,$DISP($RB)">; //Store S_floating
def STT : MForm<0x27, "stt $RA,$DISP($RB)">; //Store T_floating

//Loads, float
def LDS : MForm<0x22, "lds $RA,$DISP($RB)">; //Load S_floating
def LDT : MForm<0x23, "ldt $RA,$DISP($RB)">; //Load T_floating

//Load address
def LDA : MForm<0x08,  "lda $RA,$DISP($RB)">;  //Load address
def LDAH : MForm<0x09, "ldah $RA,$DISP($RB)">;  //Load address high


//Loads, int, Rellocated Low form
def LDLr : MForm<0x28,  "ldl $RA,$DISP($RB)\t\t!gprellow">; // Load sign-extended longword
def LDQr : MForm<0x29,  "ldq $RA,$DISP($RB)\t\t!gprellow">; //Load quadword
def LDBUr : MForm<0x0A, "ldbu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended byte
def LDWUr : MForm<0x0C, "ldwu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended word

//Loads, float, Rellocated Low form
def LDSr : MForm<0x22, "lds $RA,$DISP($RB)\t\t!gprellow">; //Load S_floating
def LDTr : MForm<0x23, "ldt $RA,$DISP($RB)\t\t!gprellow">; //Load T_floating

//Load address, rellocated low and high form
def LDAr : MForm<0x08,  "lda $RA,$DISP($RB)\t\t!gprellow">;  //Load address
def LDAHr : MForm<0x09, "ldah $RA,$DISP($RB)\t\t!gprelhigh">;  //Load address high

//load address, rellocated gpdist form
def LDAg : MgForm<0x08,  "lda $RA,0($RB)\t\t!gpdisp!$NUM">;  //Load address
def LDAHg : MgForm<0x09, "ldah $RA,0($RB)\t\t!gpdisp!$NUM">;  //Load address


//Load quad, rellocated literal form
def LDQl : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!literal">; //Load quadword

//Stores, int
def STBr : MForm<0x0E, "stb $RA,$DISP($RB)\t\t!gprellow">; // Store byte
def STWr : MForm<0x0D, "stw $RA,$DISP($RB)\t\t!gprellow">; // Store word
def STLr : MForm<0x2C, "stl $RA,$DISP($RB)\t\t!gprellow">; // Store longword
def STQr : MForm<0x2D, "stq $RA,$DISP($RB)\t\t!gprellow">; //Store quadword

//Stores, float
def STSr : MForm<0x26, "sts $RA,$DISP($RB)\t\t!gprellow">; //Store S_floating
def STTr : MForm<0x27, "stt $RA,$DISP($RB)\t\t!gprellow">; //Store T_floating


//Branches, int
def BEQ : BForm<0x39,  "beq $RA,$DISP">; //Branch if = zero
def BGE : BForm<0x3E,  "bge $RA,$DISP">; //Branch if >= zero
def BGT : BForm<0x3F,  "bgt $RA,$DISP">; //Branch if > zero
def BLBC : BForm<0x38, "blbc $RA,$DISP">; //Branch if low bit clear
def BLBS : BForm<0x3C, "blbs $RA,$DISP">; //Branch if low bit set
def BLE : BForm<0x3B,  "ble $RA,$DISP">; //Branch if <= zero
def BLT : BForm<0x3A,  "blt $RA,$DISP">; //Branch if < zero
def BNE : BForm<0x3D,  "bne $RA,$DISP">; //Branch if != zero

//Branches, float
def FBEQ : FBForm<0x31, "fbeq $RA,$DISP">; //Floating branch if =  zero
def FBGE : FBForm<0x36, "fbge $RA,$DISP">; //Floating branch if >= zero
def FBGT : FBForm<0x37, "fbgt $RA,$DISP">; //Floating branch if > zero
def FBLE : FBForm<0x33, "fble $RA,$DISP">; //Floating branch if <= zero
def FBLT : FBForm<0x32, "fblt $RA,$DISP">; //Floating branch if < zero
def FBNE : FBForm<0x35, "fbne $RA,$DISP">; //Floating branch if != zero

//Funky Floating point ops
def CPYS  : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC">;  //Copy sign
def CPYSE : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC">; //Copy sign and exponent
def CPYSN : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC">; //Copy sign negate

//Basic Floating point ops
def ADDS  : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC">;  //Add S_floating
def ADDT  : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC">;  //Add T_floating
def SUBS  : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC">;  //Subtract S_floating
def SUBT  : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC">;  //Subtract T_floating
def DIVS  : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC">;  //Divide S_floating
def DIVT  : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC">;  //Divide T_floating
def MULS  : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC">;  //Multiply S_floating
def MULT  : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC">;  //Multiply T_floating
def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RA,$RB,$RC">;  //Square root S_floating
def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RA,$RB,$RC">;  //Square root T_floating

//INT reg to FP reg and back again
//not supported on 21164
def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC">; //Floating to integer move, S_floating
def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC">; //Floating to integer move, T_floating
def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC">; //Integer to floating move, S_floating
def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC">; //Integer to floating move, T_floating

//CVTLQ F-P 17.010 Convert longword to quadword
//CVTQL F-P 17.030 Convert quadword to longword
//These use SW completion, may not have function code for that set right (matters for JIT)
def CVTQS : FPForm<0x16, 0x7BC, "cvtqs/sui $RB,$RC">; //Convert quadword to S_floating
def CVTQT : FPForm<0x16, 0x7BE, "cvtqt/sui $RB,$RC">; //Convert quadword to T_floating
def CVTST : FPForm<0x16, 0x6AC, "cvtst/s $RB,$RC">; //Convert S_floating to T_floating
def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC">; //Convert T_floating to quadword
def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC">; //Convert T_floating to S_floating

//S_floating : IEEE Single
//T_floating : IEEE Double

//Mnemonic Format Opcode Description

//CALL_PAL Pcd 00 Trap to PALcode
//ECB Mfc 18.E800 Evict cache block
//EXCB Mfc 18.0400 Exception barrier
//FETCH Mfc 18.8000 Prefetch data
//FETCH_M Mfc 18.A000 Prefetch data, modify intent

//LDL_L Mem 2A Load sign-extended longword locked
//LDQ_L Mem 2B Load quadword locked
//LDQ_U Mem 0B Load unaligned quadword
//MB Mfc 18.4000 Memory barrier
//RPCC Mfc 18.C000 Read process cycle counter

//STL_C Mem 2E Store longword conditional
//STQ_C Mem 2F Store quadword conditional
//STQ_U Mem 0F Store unaligned quadword

//TRAPB Mfc 18.0000 Trap barrier
//WH64 Mfc 18.F800 Write hint  64 bytes
//WMB Mfc 18.4400 Write memory barrier


//MF_FPCR F-P 17.025 Move from FPCR
//MT_FPCR F-P 17.024 Move to FPCR

def : Pat<(i64 immSExt16:$imm),
          (LDA immSExt16:$imm, R31)>;