aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/CBackend/CBackend.cpp
blob: 4d53b7adf658f2c9f687198dab194c670388f702 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
//
// This library implements the functionality defined in llvm/Assembly/CWriter.h
//
// TODO : Recursive types.
//
//===-----------------------------------------------------------------------==//

#include "llvm/Assembly/CWriter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Pass.h"
#include "llvm/SymbolTable.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <set>
using std::string;
using std::map;
using std::ostream;

namespace {
  class CWriter : public Pass, public InstVisitor<CWriter> {
    ostream &Out; 
    SlotCalculator *Table;
    const Module *TheModule;
    map<const Type *, string> TypeNames;
    std::set<const Value*> MangledGlobals;
    std::set<const StructType *> StructPrinted;

  public:
    CWriter(ostream &o) : Out(o) {}

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequired<FindUsedTypes>();
    }

    virtual bool run(Module &M) {
      // Initialize
      Table = new SlotCalculator(&M, false);
      TheModule = &M;

      // Ensure that all structure types have names...
      bool Changed = nameAllUsedStructureTypes(M);

      // Run...
      printModule(&M);

      // Free memory...
      delete Table;
      TypeNames.clear();
      MangledGlobals.clear();
      return false;
    }

    ostream &printType(const Type *Ty, const string &VariableName = "",
                       bool IgnoreName = false, bool namedContext = true);

    void writeOperand(Value *Operand);
    void writeOperandInternal(Value *Operand);

    string getValueName(const Value *V);

  private :
    bool nameAllUsedStructureTypes(Module &M);
    void parseStruct(const Type *Ty);
    void printModule(Module *M);
    void printSymbolTable(const SymbolTable &ST);
    void printGlobal(const GlobalVariable *GV);
    void printFunctionSignature(const Function *F, bool Prototype);

    void printFunction(Function *);

    void printConstant(Constant *CPV);
    void printConstantArray(ConstantArray *CPA);

    // isInlinableInst - Attempt to inline instructions into their uses to build
    // trees as much as possible.  To do this, we have to consistently decide
    // what is acceptable to inline, so that variable declarations don't get
    // printed and an extra copy of the expr is not emitted.
    //
    static bool isInlinableInst(const Instruction &I) {
      // Must be an expression, must be used exactly once.  If it is dead, we
      // emit it inline where it would go.
      if (I.getType() == Type::VoidTy || I.use_size() != 1 ||
          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I))
        return false;

      // Only inline instruction it it's use is in the same BB as the inst.
      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
    }

    // Instruction visitation functions
    friend class InstVisitor<CWriter>;

    void visitReturnInst(ReturnInst &I);
    void visitBranchInst(BranchInst &I);

    void visitPHINode(PHINode &I) {}
    void visitBinaryOperator(Instruction &I);

    void visitCastInst (CastInst &I);
    void visitCallInst (CallInst &I);
    void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }

    void visitMallocInst(MallocInst &I);
    void visitAllocaInst(AllocaInst &I);
    void visitFreeInst  (FreeInst   &I);
    void visitLoadInst  (LoadInst   &I);
    void visitStoreInst (StoreInst  &I);
    void visitGetElementPtrInst(GetElementPtrInst &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "C Writer does not know about " << I;
      abort();
    }

    void outputLValue(Instruction *I) {
      Out << "  " << getValueName(I) << " = ";
    }
    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
                            unsigned Indent);
    void printIndexingExpression(Value *Ptr, User::op_iterator I,
                                 User::op_iterator E);
  };
}

// We dont want identifier names with ., space, -  in them. 
// So we replace them with _
static string makeNameProper(string x) {
  string tmp;
  for (string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
    switch (*sI) {
    case '.': tmp += "d_"; break;
    case ' ': tmp += "s_"; break;
    case '-': tmp += "D_"; break;
    default:  tmp += *sI;
    }

  return tmp;
}

string CWriter::getValueName(const Value *V) {
  if (V->hasName()) {              // Print out the label if it exists...
    if (isa<GlobalValue>(V) &&     // Do not mangle globals...
        cast<GlobalValue>(V)->hasExternalLinkage() && // Unless it's internal or
        !MangledGlobals.count(V))  // Unless the name would collide if we don't
      return makeNameProper(V->getName());

    return "l" + utostr(V->getType()->getUniqueID()) + "_" +
           makeNameProper(V->getName());      
  }

  int Slot = Table->getValSlot(V);
  assert(Slot >= 0 && "Invalid value!");
  return "ltmp_" + itostr(Slot) + "_" + utostr(V->getType()->getUniqueID());
}

// A pointer type should not use parens around *'s alone, e.g., (**)
inline bool ptrTypeNameNeedsParens(const string &NameSoFar) {
  return (NameSoFar.find_last_not_of('*') != std::string::npos);
}

// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
ostream &CWriter::printType(const Type *Ty, const string &NameSoFar,
                            bool IgnoreName, bool namedContext) {
  if (Ty->isPrimitiveType())
    switch (Ty->getPrimitiveID()) {
    case Type::VoidTyID:   return Out << "void "               << NameSoFar;
    case Type::BoolTyID:   return Out << "bool "               << NameSoFar;
    case Type::UByteTyID:  return Out << "unsigned char "      << NameSoFar;
    case Type::SByteTyID:  return Out << "signed char "        << NameSoFar;
    case Type::UShortTyID: return Out << "unsigned short "     << NameSoFar;
    case Type::ShortTyID:  return Out << "short "              << NameSoFar;
    case Type::UIntTyID:   return Out << "unsigned "           << NameSoFar;
    case Type::IntTyID:    return Out << "int "                << NameSoFar;
    case Type::ULongTyID:  return Out << "unsigned long long " << NameSoFar;
    case Type::LongTyID:   return Out << "signed long long "   << NameSoFar;
    case Type::FloatTyID:  return Out << "float "              << NameSoFar;
    case Type::DoubleTyID: return Out << "double "             << NameSoFar;
    default :
      std::cerr << "Unknown primitive type: " << Ty << "\n";
      abort();
    }
  
  // Check to see if the type is named.
  if (!IgnoreName) {
    map<const Type *, string>::iterator I = TypeNames.find(Ty);
    if (I != TypeNames.end()) {
      return Out << I->second << " " << NameSoFar;
    }
  }  

  switch (Ty->getPrimitiveID()) {
  case Type::FunctionTyID: {
    const FunctionType *MTy = cast<FunctionType>(Ty);
    printType(MTy->getReturnType(), "");
    Out << " " << NameSoFar << " (";

    for (FunctionType::ParamTypes::const_iterator
           I = MTy->getParamTypes().begin(),
           E = MTy->getParamTypes().end(); I != E; ++I) {
      if (I != MTy->getParamTypes().begin())
        Out << ", ";
      printType(*I, "");
    }
    if (MTy->isVarArg()) {
      if (!MTy->getParamTypes().empty()) 
	Out << ", ";
      Out << "...";
    }
    return Out << ")";
  }
  case Type::StructTyID: {
    const StructType *STy = cast<StructType>(Ty);
    Out << NameSoFar + " {\n";
    unsigned Idx = 0;
    for (StructType::ElementTypes::const_iterator
           I = STy->getElementTypes().begin(),
           E = STy->getElementTypes().end(); I != E; ++I) {
      Out << "  ";
      printType(*I, "field" + utostr(Idx++));
      Out << ";\n";
    }
    return Out << "}";
  }  

  case Type::PointerTyID: {
    const PointerType *PTy = cast<PointerType>(Ty);
    std::string ptrName = "*" + NameSoFar;

    // Do not need parens around "* NameSoFar" if NameSoFar consists only
    // of zero or more '*' chars *and* this is not an unnamed pointer type
    // such as the result type in a cast statement.  Otherwise, enclose in ( ).
    if (ptrTypeNameNeedsParens(NameSoFar) || !namedContext)
      ptrName = "(" + ptrName + ")";    // 

    return printType(PTy->getElementType(), ptrName);
  }

  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    unsigned NumElements = ATy->getNumElements();
    return printType(ATy->getElementType(),
                     NameSoFar + "[" + utostr(NumElements) + "]");
  }
  default:
    assert(0 && "Unhandled case in getTypeProps!");
    abort();
  }

  return Out;
}

void CWriter::printConstantArray(ConstantArray *CPA) {

  // As a special case, print the array as a string if it is an array of
  // ubytes or an array of sbytes with positive values.
  // 
  const Type *ETy = CPA->getType()->getElementType();
  bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);

  // Make sure the last character is a null char, as automatically added by C
  if (CPA->getNumOperands() == 0 ||
      !cast<Constant>(*(CPA->op_end()-1))->isNullValue())
    isString = false;
  
  if (isString) {
    Out << "\"";
    // Do not include the last character, which we know is null
    for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
      unsigned char C = (ETy == Type::SByteTy) ?
        (unsigned char)cast<ConstantSInt>(CPA->getOperand(i))->getValue() :
        (unsigned char)cast<ConstantUInt>(CPA->getOperand(i))->getValue();
      
      if (isprint(C)) {
        Out << C;
      } else {
        switch (C) {
        case '\n': Out << "\\n"; break;
        case '\t': Out << "\\t"; break;
        case '\r': Out << "\\r"; break;
        case '\v': Out << "\\v"; break;
        case '\a': Out << "\\a"; break;
        default:
          Out << "\\x";
          Out << ( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
          Out << ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
          break;
        }
      }
    }
    Out << "\"";
  } else {
    Out << "{";
    if (CPA->getNumOperands()) {
      Out << " ";
      printConstant(cast<Constant>(CPA->getOperand(0)));
      for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
        Out << ", ";
        printConstant(cast<Constant>(CPA->getOperand(i)));
      }
    }
    Out << " }";
  }
}


// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV) {
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
    switch (CE->getOpcode()) {
    case Instruction::Cast:
      Out << "((";
      printType(CPV->getType());
      Out << ")";
      printConstant(cast<Constant>(CPV->getOperand(0)));
      Out << ")";
      return;

    case Instruction::GetElementPtr:
      Out << "&(";
      printIndexingExpression(CPV->getOperand(0),
                              CPV->op_begin()+1, CPV->op_end());
      Out << ")";
      return;
    case Instruction::Add:
      Out << "(";
      printConstant(cast<Constant>(CPV->getOperand(0)));
      Out << " + ";
      printConstant(cast<Constant>(CPV->getOperand(1)));
      Out << ")";
      return;
    case Instruction::Sub:
      Out << "(";
      printConstant(cast<Constant>(CPV->getOperand(0)));
      Out << " - ";
      printConstant(cast<Constant>(CPV->getOperand(1)));
      Out << ")";
      return;

    default:
      std::cerr << "CWriter Error: Unhandled constant expression: "
                << CE << "\n";
      abort();
    }
  }

  switch (CPV->getType()->getPrimitiveID()) {
  case Type::BoolTyID:
    Out << (CPV == ConstantBool::False ? "0" : "1"); break;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
    Out << cast<ConstantSInt>(CPV)->getValue(); break;
  case Type::LongTyID:
    Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;

  case Type::UByteTyID:
  case Type::UShortTyID:
    Out << cast<ConstantUInt>(CPV)->getValue(); break;
  case Type::UIntTyID:
    Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
  case Type::ULongTyID:
    Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;

  case Type::FloatTyID:
  case Type::DoubleTyID:
    Out << cast<ConstantFP>(CPV)->getValue(); break;

  case Type::ArrayTyID:
    printConstantArray(cast<ConstantArray>(CPV));
    break;

  case Type::StructTyID: {
    Out << "{";
    if (CPV->getNumOperands()) {
      Out << " ";
      printConstant(cast<Constant>(CPV->getOperand(0)));
      for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
        Out << ", ";
        printConstant(cast<Constant>(CPV->getOperand(i)));
      }
    }
    Out << " }";
    break;
  }

  case Type::PointerTyID:
    if (isa<ConstantPointerNull>(CPV)) {
      Out << "((";
      printType(CPV->getType(), "");
      Out << ")NULL)";
      break;
    } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
      writeOperand(CPR->getValue());
      break;
    }
    // FALL THROUGH
  default:
    std::cerr << "Unknown constant type: " << CPV << "\n";
    abort();
  }
}

void CWriter::writeOperandInternal(Value *Operand) {
  if (Instruction *I = dyn_cast<Instruction>(Operand))
    if (isInlinableInst(*I)) {
      // Should we inline this instruction to build a tree?
      Out << "(";
      visit(*I);
      Out << ")";    
      return;
    }
  
  if (Operand->hasName()) {   
    Out << getValueName(Operand);
  } else if (Constant *CPV = dyn_cast<Constant>(Operand)) {
    printConstant(CPV); 
  } else {
    int Slot = Table->getValSlot(Operand);
    assert(Slot >= 0 && "Malformed LLVM!");
    Out << "ltmp_" << Slot << "_" << Operand->getType()->getUniqueID();
  }
}

void CWriter::writeOperand(Value *Operand) {
  if (isa<GlobalVariable>(Operand))
    Out << "(&";  // Global variables are references as their addresses by llvm

  writeOperandInternal(Operand);

  if (isa<GlobalVariable>(Operand))
    Out << ")";
}

// nameAllUsedStructureTypes - If there are structure types in the module that
// are used but do not have names assigned to them in the symbol table yet then
// we assign them names now.
//
bool CWriter::nameAllUsedStructureTypes(Module &M) {
  // Get a set of types that are used by the program...
  std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();

  // Loop over the module symbol table, removing types from UT that are already
  // named.
  //
  SymbolTable *MST = M.getSymbolTableSure();
  if (MST->find(Type::TypeTy) != MST->end())
    for (SymbolTable::type_iterator I = MST->type_begin(Type::TypeTy),
           E = MST->type_end(Type::TypeTy); I != E; ++I)
      UT.erase(cast<Type>(I->second));

  // UT now contains types that are not named.  Loop over it, naming structure
  // types.
  //
  bool Changed = false;
  for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
       I != E; ++I)
    if (const StructType *ST = dyn_cast<StructType>(*I)) {
      ((Value*)ST)->setName("unnamed", MST);
      Changed = true;
    }
  return Changed;
}

void CWriter::printModule(Module *M) {
  // Calculate which global values have names that will collide when we throw
  // away type information.
  {  // Scope to delete the FoundNames set when we are done with it...
    std::set<string> FoundNames;
    for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
      if (I->hasName())                      // If the global has a name...
        if (FoundNames.count(I->getName()))  // And the name is already used
          MangledGlobals.insert(I);          // Mangle the name
        else
          FoundNames.insert(I->getName());   // Otherwise, keep track of name

    for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
      if (I->hasName())                      // If the global has a name...
        if (FoundNames.count(I->getName()))  // And the name is already used
          MangledGlobals.insert(I);          // Mangle the name
        else
          FoundNames.insert(I->getName());   // Otherwise, keep track of name
  }

  // printing stdlib inclusion
  // Out << "#include <stdlib.h>\n";

  // get declaration for alloca
  Out << "/* Provide Declarations */\n"
      << "#include <malloc.h>\n"
      << "#include <alloca.h>\n\n"

    // Provide a definition for null if one does not already exist,
    // and for `bool' if not compiling with a C++ compiler.
      << "#ifndef NULL\n#define NULL 0\n#endif\n\n"
      << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"

      << "\n\n/* Global Declarations */\n";

  // First output all the declarations for the program, because C requires
  // Functions & globals to be declared before they are used.
  //

  // Loop over the symbol table, emitting all named constants...
  if (M->hasSymbolTable())
    printSymbolTable(*M->getSymbolTable());

  // Global variable declarations...
  if (!M->gempty()) {
    Out << "\n/* Global Variable Declarations */\n";
    for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
      Out << (I->hasExternalLinkage() ? "extern " : "static ");
      printType(I->getType()->getElementType(), getValueName(I));
      Out << ";\n";
    }
  }

  // Function declarations
  if (!M->empty()) {
    Out << "\n/* Function Declarations */\n";
    for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
      printFunctionSignature(I, true);
      Out << ";\n";
    }
  }

  // Output the global variable contents...
  if (!M->gempty()) {
    Out << "\n\n/* Global Data */\n";
    for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
      if (I->hasInternalLinkage()) Out << "static ";
      printType(I->getType()->getElementType(), getValueName(I));
      
      if (I->hasInitializer()) {
        Out << " = " ;
        writeOperand(I->getInitializer());
      }
      Out << ";\n";
    }
  }

  // Output all of the functions...
  if (!M->empty()) {
    Out << "\n\n/* Function Bodies */\n";
    for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
      printFunction(I);
  }
}


// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
// Assuming that symbol table has only types and constants.
void CWriter::printSymbolTable(const SymbolTable &ST) {
  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
    
    for (; I != End; ++I){
      const Value *V = I->second;
      if (const Type *Ty = dyn_cast<Type>(V)) {
        if (const Type *STy = dyn_cast<StructType>(V)) {
	        string Name = "struct l_" + makeNameProper(I->first);
	        Out << Name << ";\n";
	        TypeNames.insert(std::make_pair(STy, Name));
	      }
	      else {
	        string Name = "l_" + makeNameProper(I->first);
	        Out << "typedef ";
	        printType(Ty, Name, true);
	        Out << ";\n";
	      }
      }
    }
  }

  Out << "\n";

  // Loop over all structures then push them into the stack so they are
  // printed in the correct order.
  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
    
    for (; I != End; ++I) {
      if (const StructType *STy = dyn_cast<StructType>(I->second))
	      parseStruct(STy);
    }
  }
}

// Push the struct onto the stack and recursively push all structs
// this one depends on.
void CWriter::parseStruct(const Type *Ty) {
  if (const StructType *STy = dyn_cast<StructType>(Ty)){
    //Check to see if we have already printed this struct
    if (StructPrinted.find(STy) == StructPrinted.end()){   
    	for (StructType::ElementTypes::const_iterator
            I = STy->getElementTypes().begin(),
            E = STy->getElementTypes().end(); I != E; ++I) {
        const Type *Ty1 = dyn_cast<Type>(I->get());
		  	if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
    	    parseStruct(Ty1);
    	}
    
      //Print struct
      StructPrinted.insert(STy);
      string Name = TypeNames[STy];  
      printType(STy, Name, true);
      Out << ";\n";
    }
  }
  // If it is an array check it's type and continue
  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
    const Type *Ty1 = ATy->getElementType();
    if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
      parseStruct(Ty1);
  }
}


void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
  if (F->hasInternalLinkage()) Out << "static ";
  
  // Loop over the arguments, printing them...
  const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
  
  // Print out the return type and name...
  printType(F->getReturnType());
  Out << getValueName(F) << "(";
    
  if (!F->isExternal()) {
    if (!F->aempty()) {
      string ArgName;
      if (F->abegin()->hasName() || !Prototype)
        ArgName = getValueName(F->abegin());

      printType(F->afront().getType(), ArgName);

      for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
           I != E; ++I) {
        Out << ", ";
        if (I->hasName() || !Prototype)
          ArgName = getValueName(I);
        else 
          ArgName = "";
        printType(I->getType(), ArgName);
      }
    }
  } else {
    // Loop over the arguments, printing them...
    for (FunctionType::ParamTypes::const_iterator I = 
	   FT->getParamTypes().begin(),
	   E = FT->getParamTypes().end(); I != E; ++I) {
      if (I != FT->getParamTypes().begin()) Out << ", ";
      printType(*I);
    }
  }

  // Finish printing arguments...
  if (FT->isVarArg()) {
    if (FT->getParamTypes().size()) Out << ", ";
    Out << "...";  // Output varargs portion of signature!
  }
  Out << ")";
}


void CWriter::printFunction(Function *F) {
  if (F->isExternal()) return;

  Table->incorporateFunction(F);

  printFunctionSignature(F, false);
  Out << " {\n";

  // print local variable information for the function
  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
    if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) {
      Out << "  ";
      printType((*I)->getType(), getValueName(*I));
      Out << ";\n";
    }
 
  // print the basic blocks
  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
    BasicBlock *Prev = BB->getPrev();

    // Don't print the label for the basic block if there are no uses, or if the
    // only terminator use is the precessor basic block's terminator.  We have
    // to scan the use list because PHI nodes use basic blocks too but do not
    // require a label to be generated.
    //
    bool NeedsLabel = false;
    for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end();
         UI != UE; ++UI)
      if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI))
        if (TI != Prev->getTerminator()) {
          NeedsLabel = true;
          break;        
        }

    if (NeedsLabel) Out << getValueName(BB) << ":\n";

    // Output all of the instructions in the basic block...
    for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){
      if (!isInlinableInst(*II) && !isa<PHINode>(*II)) {
        if (II->getType() != Type::VoidTy)
          outputLValue(II);
        else
          Out << "  ";
        visit(*II);
        Out << ";\n";
      }
    }

    // Don't emit prefix or suffix for the terminator...
    visit(*BB->getTerminator());
  }
  
  Out << "}\n\n";
  Table->purgeFunction();
}

// Specific Instruction type classes... note that all of the casts are
// neccesary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
  // Don't output a void return if this is the last basic block in the function
  if (I.getNumOperands() == 0 && 
      &*--I.getParent()->getParent()->end() == I.getParent() &&
      !I.getParent()->size() == 1) {
    return;
  }

  Out << "  return";
  if (I.getNumOperands()) {
    Out << " ";
    writeOperand(I.getOperand(0));
  }
  Out << ";\n";
}

static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) {
  // If PHI nodes need copies, we need the copy code...
  if (isa<PHINode>(To->front()) ||
      From->getNext() != To)      // Not directly successor, need goto
    return true;

  // Otherwise we don't need the code.
  return false;
}

void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
                                           unsigned Indent) {
  for (BasicBlock::iterator I = Succ->begin();
       PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
    //  now we have to do the printing
    Out << string(Indent, ' ');
    outputLValue(PN);
    writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB)));
    Out << ";   /* for PHI node */\n";
  }

  if (CurBB->getNext() != Succ) {
    Out << string(Indent, ' ') << "  goto ";
    writeOperand(Succ);
    Out << ";\n";
  }
}

// Brach instruction printing - Avoid printing out a brach to a basic block that
// immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
  if (I.isConditional()) {
    if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) {
      Out << "  if (";
      writeOperand(I.getCondition());
      Out << ") {\n";
      
      printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
      
      if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) {
        Out << "  } else {\n";
        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
      }
    } else {
      // First goto not neccesary, assume second one is...
      Out << "  if (!";
      writeOperand(I.getCondition());
      Out << ") {\n";

      printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
    }

    Out << "  }\n";
  } else {
    printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
  }
  Out << "\n";
}


void CWriter::visitBinaryOperator(Instruction &I) {
  // binary instructions, shift instructions, setCond instructions.
  if (isa<PointerType>(I.getType())) {
    Out << "(";
    printType(I.getType());
    Out << ")";
  }
      
  if (isa<PointerType>(I.getType())) Out << "(long long)";
  writeOperand(I.getOperand(0));

  switch (I.getOpcode()) {
  case Instruction::Add: Out << " + "; break;
  case Instruction::Sub: Out << " - "; break;
  case Instruction::Mul: Out << "*"; break;
  case Instruction::Div: Out << "/"; break;
  case Instruction::Rem: Out << "%"; break;
  case Instruction::And: Out << " & "; break;
  case Instruction::Or: Out << " | "; break;
  case Instruction::Xor: Out << " ^ "; break;
  case Instruction::SetEQ: Out << " == "; break;
  case Instruction::SetNE: Out << " != "; break;
  case Instruction::SetLE: Out << " <= "; break;
  case Instruction::SetGE: Out << " >= "; break;
  case Instruction::SetLT: Out << " < "; break;
  case Instruction::SetGT: Out << " > "; break;
  case Instruction::Shl : Out << " << "; break;
  case Instruction::Shr : Out << " >> "; break;
  default: std::cerr << "Invalid operator type!" << I; abort();
  }

  if (isa<PointerType>(I.getType())) Out << "(long long)";
  writeOperand(I.getOperand(1));
}

void CWriter::visitCastInst(CastInst &I) {
  Out << "(";
  printType(I.getType(), string(""),/*ignoreName*/false, /*namedContext*/false);
  Out << ")";
  writeOperand(I.getOperand(0));
}

void CWriter::visitCallInst(CallInst &I) {
  const PointerType  *PTy   = cast<PointerType>(I.getCalledValue()->getType());
  const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
  const Type         *RetTy = FTy->getReturnType();
  
  writeOperand(I.getOperand(0));
  Out << "(";

  if (I.getNumOperands() > 1) {
    writeOperand(I.getOperand(1));

    for (unsigned op = 2, Eop = I.getNumOperands(); op != Eop; ++op) {
      Out << ", ";
      writeOperand(I.getOperand(op));
    }
  }
  Out << ")";
}  

void CWriter::visitMallocInst(MallocInst &I) {
  Out << "(";
  printType(I.getType());
  Out << ")malloc(sizeof(";
  printType(I.getType()->getElementType());
  Out << ")";

  if (I.isArrayAllocation()) {
    Out << " * " ;
    writeOperand(I.getOperand(0));
  }
  Out << ")";
}

void CWriter::visitAllocaInst(AllocaInst &I) {
  Out << "(";
  printType(I.getType());
  Out << ") alloca(sizeof(";
  printType(I.getType()->getElementType());
  Out << ")";
  if (I.isArrayAllocation()) {
    Out << " * " ;
    writeOperand(I.getOperand(0));
  }
  Out << ")";
}

void CWriter::visitFreeInst(FreeInst &I) {
  Out << "free(";
  writeOperand(I.getOperand(0));
  Out << ")";
}

void CWriter::printIndexingExpression(Value *Ptr, User::op_iterator I,
                                      User::op_iterator E) {
  bool HasImplicitAddress = false;
  // If accessing a global value with no indexing, avoid *(&GV) syndrome
  if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
    HasImplicitAddress = true;
  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) {
    HasImplicitAddress = true;
    Ptr = CPR->getValue();         // Get to the global...
  }

  if (I == E) {
    if (!HasImplicitAddress)
      Out << "*";  // Implicit zero first argument: '*x' is equivalent to 'x[0]'

    writeOperandInternal(Ptr);
    return;
  }

  const Constant *CI = dyn_cast<Constant>(I->get());
  if (HasImplicitAddress && (!CI || !CI->isNullValue()))
    Out << "(&";

  writeOperandInternal(Ptr);

  if (HasImplicitAddress && (!CI || !CI->isNullValue()))
    Out << ")";

  // Print out the -> operator if possible...
  if (CI && CI->isNullValue() && I+1 != E) {
    if ((*(I+1))->getType() == Type::UByteTy) {
      Out << (HasImplicitAddress ? "." : "->");
      Out << "field" << cast<ConstantUInt>(*(I+1))->getValue();
      I += 2;
    } else {  // First array index of 0: Just skip it
      ++I;
    }
  }

  for (; I != E; ++I)
    if ((*I)->getType() == Type::LongTy) {
      Out << "[";
      writeOperand(*I);
      Out << "]";
    } else {
      Out << ".field" << cast<ConstantUInt>(*I)->getValue();
    }
}

void CWriter::visitLoadInst(LoadInst &I) {
  Out << "*";
  writeOperand(I.getOperand(0));
}

void CWriter::visitStoreInst(StoreInst &I) {
  Out << "*";
  writeOperand(I.getPointerOperand());
  Out << " = ";
  writeOperand(I.getOperand(0));
}

void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
  Out << "&";
  printIndexingExpression(I.getPointerOperand(), I.idx_begin(), I.idx_end());
}

//===----------------------------------------------------------------------===//
//                       External Interface declaration
//===----------------------------------------------------------------------===//

Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); }