1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
|
//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to C code, compilable by GCC and other C
// compilers.
//
//===----------------------------------------------------------------------===//
#include "CTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/InlineAsm.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Config/config.h"
#include <algorithm>
#include <sstream>
using namespace llvm;
/// CBackendTargetMachineModule - Note that this is used on hosts that
/// cannot link in a library unless there are references into the
/// library. In particular, it seems that it is not possible to get
/// things to work on Win32 without this. Though it is unused, do not
/// remove it.
extern "C" int CBackendTargetMachineModule;
int CBackendTargetMachineModule = 0;
// Register the target.
static RegisterTarget<CTargetMachine> X("c", "C backend");
// Force static initialization.
extern "C" void LLVMInitializeCBackendTarget() { }
namespace {
/// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
/// any unnamed structure types that are used by the program, and merges
/// external functions with the same name.
///
class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
public:
static char ID;
CBackendNameAllUsedStructsAndMergeFunctions()
: ModulePass(&ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<FindUsedTypes>();
}
virtual const char *getPassName() const {
return "C backend type canonicalizer";
}
virtual bool runOnModule(Module &M);
};
char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
/// CWriter - This class is the main chunk of code that converts an LLVM
/// module to a C translation unit.
class CWriter : public FunctionPass, public InstVisitor<CWriter> {
raw_ostream &Out;
IntrinsicLowering *IL;
Mangler *Mang;
LoopInfo *LI;
const Module *TheModule;
const TargetAsmInfo* TAsm;
const TargetData* TD;
std::map<const Type *, std::string> TypeNames;
std::map<const ConstantFP *, unsigned> FPConstantMap;
std::set<Function*> intrinsicPrototypesAlreadyGenerated;
std::set<const Argument*> ByValParams;
unsigned FPCounter;
unsigned OpaqueCounter;
DenseMap<const Value*, unsigned> AnonValueNumbers;
unsigned NextAnonValueNumber;
public:
static char ID;
explicit CWriter(raw_ostream &o)
: FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0),
TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
FPCounter = 0;
}
virtual const char *getPassName() const { return "C backend"; }
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
virtual bool doInitialization(Module &M);
bool runOnFunction(Function &F) {
// Do not codegen any 'available_externally' functions at all, they have
// definitions outside the translation unit.
if (F.hasAvailableExternallyLinkage())
return false;
LI = &getAnalysis<LoopInfo>();
// Get rid of intrinsics we can't handle.
lowerIntrinsics(F);
// Output all floating point constants that cannot be printed accurately.
printFloatingPointConstants(F);
printFunction(F);
return false;
}
virtual bool doFinalization(Module &M) {
// Free memory...
delete IL;
delete TD;
delete Mang;
FPConstantMap.clear();
TypeNames.clear();
ByValParams.clear();
intrinsicPrototypesAlreadyGenerated.clear();
return false;
}
raw_ostream &printType(raw_ostream &Out, const Type *Ty,
bool isSigned = false,
const std::string &VariableName = "",
bool IgnoreName = false,
const AttrListPtr &PAL = AttrListPtr());
std::ostream &printType(std::ostream &Out, const Type *Ty,
bool isSigned = false,
const std::string &VariableName = "",
bool IgnoreName = false,
const AttrListPtr &PAL = AttrListPtr());
raw_ostream &printSimpleType(raw_ostream &Out, const Type *Ty,
bool isSigned,
const std::string &NameSoFar = "");
std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
bool isSigned,
const std::string &NameSoFar = "");
void printStructReturnPointerFunctionType(raw_ostream &Out,
const AttrListPtr &PAL,
const PointerType *Ty);
/// writeOperandDeref - Print the result of dereferencing the specified
/// operand with '*'. This is equivalent to printing '*' then using
/// writeOperand, but avoids excess syntax in some cases.
void writeOperandDeref(Value *Operand) {
if (isAddressExposed(Operand)) {
// Already something with an address exposed.
writeOperandInternal(Operand);
} else {
Out << "*(";
writeOperand(Operand);
Out << ")";
}
}
void writeOperand(Value *Operand, bool Static = false);
void writeInstComputationInline(Instruction &I);
void writeOperandInternal(Value *Operand, bool Static = false);
void writeOperandWithCast(Value* Operand, unsigned Opcode);
void writeOperandWithCast(Value* Operand, const ICmpInst &I);
bool writeInstructionCast(const Instruction &I);
void writeMemoryAccess(Value *Operand, const Type *OperandType,
bool IsVolatile, unsigned Alignment);
private :
std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
void lowerIntrinsics(Function &F);
void printModule(Module *M);
void printModuleTypes(const TypeSymbolTable &ST);
void printContainedStructs(const Type *Ty, std::set<const Type *> &);
void printFloatingPointConstants(Function &F);
void printFloatingPointConstants(const Constant *C);
void printFunctionSignature(const Function *F, bool Prototype);
void printFunction(Function &);
void printBasicBlock(BasicBlock *BB);
void printLoop(Loop *L);
void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
void printConstant(Constant *CPV, bool Static);
void printConstantWithCast(Constant *CPV, unsigned Opcode);
bool printConstExprCast(const ConstantExpr *CE, bool Static);
void printConstantArray(ConstantArray *CPA, bool Static);
void printConstantVector(ConstantVector *CV, bool Static);
/// isAddressExposed - Return true if the specified value's name needs to
/// have its address taken in order to get a C value of the correct type.
/// This happens for global variables, byval parameters, and direct allocas.
bool isAddressExposed(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return ByValParams.count(A);
return isa<GlobalVariable>(V) || isDirectAlloca(V);
}
// isInlinableInst - Attempt to inline instructions into their uses to build
// trees as much as possible. To do this, we have to consistently decide
// what is acceptable to inline, so that variable declarations don't get
// printed and an extra copy of the expr is not emitted.
//
static bool isInlinableInst(const Instruction &I) {
// Always inline cmp instructions, even if they are shared by multiple
// expressions. GCC generates horrible code if we don't.
if (isa<CmpInst>(I))
return true;
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
isa<InsertValueInst>(I))
// Don't inline a load across a store or other bad things!
return false;
// Must not be used in inline asm, extractelement, or shufflevector.
if (I.hasOneUse()) {
const Instruction &User = cast<Instruction>(*I.use_back());
if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
isa<ShuffleVectorInst>(User))
return false;
}
// Only inline instruction it if it's use is in the same BB as the inst.
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
}
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
// variables which are accessed with the & operator. This causes GCC to
// generate significantly better code than to emit alloca calls directly.
//
static const AllocaInst *isDirectAlloca(const Value *V) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI) return false;
if (AI->isArrayAllocation())
return 0; // FIXME: we can also inline fixed size array allocas!
if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
return 0;
return AI;
}
// isInlineAsm - Check if the instruction is a call to an inline asm chunk
static bool isInlineAsm(const Instruction& I) {
if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
return true;
return false;
}
// Instruction visitation functions
friend class InstVisitor<CWriter>;
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitSwitchInst(SwitchInst &I);
void visitInvokeInst(InvokeInst &I) {
llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnwindInst(UnwindInst &I) {
llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnreachableInst(UnreachableInst &I);
void visitPHINode(PHINode &I);
void visitBinaryOperator(Instruction &I);
void visitICmpInst(ICmpInst &I);
void visitFCmpInst(FCmpInst &I);
void visitCastInst (CastInst &I);
void visitSelectInst(SelectInst &I);
void visitCallInst (CallInst &I);
void visitInlineAsm(CallInst &I);
bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
void visitMallocInst(MallocInst &I);
void visitAllocaInst(AllocaInst &I);
void visitFreeInst (FreeInst &I);
void visitLoadInst (LoadInst &I);
void visitStoreInst (StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitVAArgInst (VAArgInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitExtractElementInst(ExtractElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &SVI);
void visitInsertValueInst(InsertValueInst &I);
void visitExtractValueInst(ExtractValueInst &I);
void visitInstruction(Instruction &I) {
#ifndef NDEBUG
cerr << "C Writer does not know about " << I;
#endif
llvm_unreachable(0);
}
void outputLValue(Instruction *I) {
Out << " " << GetValueName(I) << " = ";
}
bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
void printPHICopiesForSuccessor(BasicBlock *CurBlock,
BasicBlock *Successor, unsigned Indent);
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
unsigned Indent);
void printGEPExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E, bool Static);
std::string GetValueName(const Value *Operand);
};
}
char CWriter::ID = 0;
/// This method inserts names for any unnamed structure types that are used by
/// the program, and removes names from structure types that are not used by the
/// program.
///
bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
// Get a set of types that are used by the program...
std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
// Loop over the module symbol table, removing types from UT that are
// already named, and removing names for types that are not used.
//
TypeSymbolTable &TST = M.getTypeSymbolTable();
for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
TI != TE; ) {
TypeSymbolTable::iterator I = TI++;
// If this isn't a struct or array type, remove it from our set of types
// to name. This simplifies emission later.
if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
!isa<ArrayType>(I->second)) {
TST.remove(I);
} else {
// If this is not used, remove it from the symbol table.
std::set<const Type *>::iterator UTI = UT.find(I->second);
if (UTI == UT.end())
TST.remove(I);
else
UT.erase(UTI); // Only keep one name for this type.
}
}
// UT now contains types that are not named. Loop over it, naming
// structure types.
//
bool Changed = false;
unsigned RenameCounter = 0;
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
I != E; ++I)
if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
++RenameCounter;
Changed = true;
}
// Loop over all external functions and globals. If we have two with
// identical names, merge them.
// FIXME: This code should disappear when we don't allow values with the same
// names when they have different types!
std::map<std::string, GlobalValue*> ExtSymbols;
for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
Function *GV = I++;
if (GV->isDeclaration() && GV->hasName()) {
std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
= ExtSymbols.insert(std::make_pair(GV->getName(), GV));
if (!X.second) {
// Found a conflict, replace this global with the previous one.
GlobalValue *OldGV = X.first->second;
GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
GV->eraseFromParent();
Changed = true;
}
}
}
// Do the same for globals.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E;) {
GlobalVariable *GV = I++;
if (GV->isDeclaration() && GV->hasName()) {
std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
= ExtSymbols.insert(std::make_pair(GV->getName(), GV));
if (!X.second) {
// Found a conflict, replace this global with the previous one.
GlobalValue *OldGV = X.first->second;
GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
GV->eraseFromParent();
Changed = true;
}
}
}
return Changed;
}
/// printStructReturnPointerFunctionType - This is like printType for a struct
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
/// print it as "Struct (*)(...)", for struct return functions.
void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
const AttrListPtr &PAL,
const PointerType *TheTy) {
const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
std::stringstream FunctionInnards;
FunctionInnards << " (*) (";
bool PrintedType = false;
FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
const Type *RetTy = cast<PointerType>(I->get())->getElementType();
unsigned Idx = 1;
for (++I, ++Idx; I != E; ++I, ++Idx) {
if (PrintedType)
FunctionInnards << ", ";
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(isa<PointerType>(ArgTy));
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
PrintedType = true;
}
if (FTy->isVarArg()) {
if (PrintedType)
FunctionInnards << ", ...";
} else if (!PrintedType) {
FunctionInnards << "void";
}
FunctionInnards << ')';
std::string tstr = FunctionInnards.str();
printType(Out, RetTy,
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
}
raw_ostream &
CWriter::printSimpleType(raw_ostream &Out, const Type *Ty, bool isSigned,
const std::string &NameSoFar) {
assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
"Invalid type for printSimpleType");
switch (Ty->getTypeID()) {
case Type::VoidTyID: return Out << "void " << NameSoFar;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return Out << "bool " << NameSoFar;
else if (NumBits <= 8)
return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
else if (NumBits <= 16)
return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
else if (NumBits <= 32)
return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
else if (NumBits <= 64)
return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
else {
assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
}
}
case Type::FloatTyID: return Out << "float " << NameSoFar;
case Type::DoubleTyID: return Out << "double " << NameSoFar;
// Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
// present matches host 'long double'.
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: return Out << "long double " << NameSoFar;
case Type::VectorTyID: {
const VectorType *VTy = cast<VectorType>(Ty);
return printSimpleType(Out, VTy->getElementType(), isSigned,
" __attribute__((vector_size(" +
utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
}
default:
#ifndef NDEBUG
cerr << "Unknown primitive type: " << *Ty << "\n";
#endif
llvm_unreachable(0);
}
}
std::ostream &
CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
const std::string &NameSoFar) {
assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
"Invalid type for printSimpleType");
switch (Ty->getTypeID()) {
case Type::VoidTyID: return Out << "void " << NameSoFar;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return Out << "bool " << NameSoFar;
else if (NumBits <= 8)
return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
else if (NumBits <= 16)
return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
else if (NumBits <= 32)
return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
else if (NumBits <= 64)
return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
else {
assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
}
}
case Type::FloatTyID: return Out << "float " << NameSoFar;
case Type::DoubleTyID: return Out << "double " << NameSoFar;
// Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
// present matches host 'long double'.
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: return Out << "long double " << NameSoFar;
case Type::VectorTyID: {
const VectorType *VTy = cast<VectorType>(Ty);
return printSimpleType(Out, VTy->getElementType(), isSigned,
" __attribute__((vector_size(" +
utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
}
default:
#ifndef NDEBUG
cerr << "Unknown primitive type: " << *Ty << "\n";
#endif
llvm_unreachable(0);
}
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
raw_ostream &CWriter::printType(raw_ostream &Out, const Type *Ty,
bool isSigned, const std::string &NameSoFar,
bool IgnoreName, const AttrListPtr &PAL) {
if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
printSimpleType(Out, Ty, isSigned, NameSoFar);
return Out;
}
// Check to see if the type is named.
if (!IgnoreName || isa<OpaqueType>(Ty)) {
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
}
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
std::stringstream FunctionInnards;
FunctionInnards << " (" << NameSoFar << ") (";
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(isa<PointerType>(ArgTy));
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
if (I != FTy->param_begin())
FunctionInnards << ", ";
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
++Idx;
}
if (FTy->isVarArg()) {
if (FTy->getNumParams())
FunctionInnards << ", ...";
} else if (!FTy->getNumParams()) {
FunctionInnards << "void";
}
FunctionInnards << ')';
std::string tstr = FunctionInnards.str();
printType(Out, FTy->getReturnType(),
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
return Out;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Out << NameSoFar + " {\n";
unsigned Idx = 0;
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
Out << " ";
printType(Out, *I, false, "field" + utostr(Idx++));
Out << ";\n";
}
Out << '}';
if (STy->isPacked())
Out << " __attribute__ ((packed))";
return Out;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
std::string ptrName = "*" + NameSoFar;
if (isa<ArrayType>(PTy->getElementType()) ||
isa<VectorType>(PTy->getElementType()))
ptrName = "(" + ptrName + ")";
if (!PAL.isEmpty())
// Must be a function ptr cast!
return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
return printType(Out, PTy->getElementType(), false, ptrName);
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
if (NumElements == 0) NumElements = 1;
// Arrays are wrapped in structs to allow them to have normal
// value semantics (avoiding the array "decay").
Out << NameSoFar << " { ";
printType(Out, ATy->getElementType(), false,
"array[" + utostr(NumElements) + "]");
return Out << "; }";
}
case Type::OpaqueTyID: {
std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
assert(TypeNames.find(Ty) == TypeNames.end());
TypeNames[Ty] = TyName;
return Out << TyName << ' ' << NameSoFar;
}
default:
llvm_unreachable("Unhandled case in getTypeProps!");
}
return Out;
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
bool isSigned, const std::string &NameSoFar,
bool IgnoreName, const AttrListPtr &PAL) {
if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
printSimpleType(Out, Ty, isSigned, NameSoFar);
return Out;
}
// Check to see if the type is named.
if (!IgnoreName || isa<OpaqueType>(Ty)) {
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
}
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
std::stringstream FunctionInnards;
FunctionInnards << " (" << NameSoFar << ") (";
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(isa<PointerType>(ArgTy));
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
if (I != FTy->param_begin())
FunctionInnards << ", ";
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
++Idx;
}
if (FTy->isVarArg()) {
if (FTy->getNumParams())
FunctionInnards << ", ...";
} else if (!FTy->getNumParams()) {
FunctionInnards << "void";
}
FunctionInnards << ')';
std::string tstr = FunctionInnards.str();
printType(Out, FTy->getReturnType(),
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
return Out;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Out << NameSoFar + " {\n";
unsigned Idx = 0;
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
Out << " ";
printType(Out, *I, false, "field" + utostr(Idx++));
Out << ";\n";
}
Out << '}';
if (STy->isPacked())
Out << " __attribute__ ((packed))";
return Out;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
std::string ptrName = "*" + NameSoFar;
if (isa<ArrayType>(PTy->getElementType()) ||
isa<VectorType>(PTy->getElementType()))
ptrName = "(" + ptrName + ")";
if (!PAL.isEmpty())
// Must be a function ptr cast!
return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
return printType(Out, PTy->getElementType(), false, ptrName);
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
if (NumElements == 0) NumElements = 1;
// Arrays are wrapped in structs to allow them to have normal
// value semantics (avoiding the array "decay").
Out << NameSoFar << " { ";
printType(Out, ATy->getElementType(), false,
"array[" + utostr(NumElements) + "]");
return Out << "; }";
}
case Type::OpaqueTyID: {
std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
assert(TypeNames.find(Ty) == TypeNames.end());
TypeNames[Ty] = TyName;
return Out << TyName << ' ' << NameSoFar;
}
default:
llvm_unreachable("Unhandled case in getTypeProps!");
}
return Out;
}
void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CPA->getType()->getElementType();
bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
// Make sure the last character is a null char, as automatically added by C
if (isString && (CPA->getNumOperands() == 0 ||
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
isString = false;
if (isString) {
Out << '\"';
// Keep track of whether the last number was a hexadecimal escape
bool LastWasHex = false;
// Do not include the last character, which we know is null
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
// Print it out literally if it is a printable character. The only thing
// to be careful about is when the last letter output was a hex escape
// code, in which case we have to be careful not to print out hex digits
// explicitly (the C compiler thinks it is a continuation of the previous
// character, sheesh...)
//
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
LastWasHex = false;
if (C == '"' || C == '\\')
Out << "\\" << (char)C;
else
Out << (char)C;
} else {
LastWasHex = false;
switch (C) {
case '\n': Out << "\\n"; break;
case '\t': Out << "\\t"; break;
case '\r': Out << "\\r"; break;
case '\v': Out << "\\v"; break;
case '\a': Out << "\\a"; break;
case '\"': Out << "\\\""; break;
case '\'': Out << "\\\'"; break;
default:
Out << "\\x";
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
LastWasHex = true;
break;
}
}
}
Out << '\"';
} else {
Out << '{';
if (CPA->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPA->getOperand(0)), Static);
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPA->getOperand(i)), Static);
}
}
Out << " }";
}
}
void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
Out << '{';
if (CP->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CP->getOperand(0)), Static);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CP->getOperand(i)), Static);
}
}
Out << " }";
}
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
// textually as a double (rather than as a reference to a stack-allocated
// variable). We decide this by converting CFP to a string and back into a
// double, and then checking whether the conversion results in a bit-equal
// double to the original value of CFP. This depends on us and the target C
// compiler agreeing on the conversion process (which is pretty likely since we
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
bool ignored;
// Do long doubles in hex for now.
if (CFP->getType() != Type::FloatTy && CFP->getType() != Type::DoubleTy)
return false;
APFloat APF = APFloat(CFP->getValueAPF()); // copy
if (CFP->getType() == Type::FloatTy)
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%a", APF.convertToDouble());
if (!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3))
return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
return false;
#else
std::string StrVal = ftostr(APF);
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
return false;
#endif
}
/// Print out the casting for a cast operation. This does the double casting
/// necessary for conversion to the destination type, if necessary.
/// @brief Print a cast
void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
// Print the destination type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::IntToPtr:
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
Out << '(';
printType(Out, DstTy);
Out << ')';
break;
case Instruction::ZExt:
case Instruction::PtrToInt:
case Instruction::FPToUI: // For these, make sure we get an unsigned dest
Out << '(';
printSimpleType(Out, DstTy, false);
Out << ')';
break;
case Instruction::SExt:
case Instruction::FPToSI: // For these, make sure we get a signed dest
Out << '(';
printSimpleType(Out, DstTy, true);
Out << ')';
break;
default:
llvm_unreachable("Invalid cast opcode");
}
// Print the source type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::ZExt:
Out << '(';
printSimpleType(Out, SrcTy, false);
Out << ')';
break;
case Instruction::SIToFP:
case Instruction::SExt:
Out << '(';
printSimpleType(Out, SrcTy, true);
Out << ')';
break;
case Instruction::IntToPtr:
case Instruction::PtrToInt:
// Avoid "cast to pointer from integer of different size" warnings
Out << "(unsigned long)";
break;
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::FPToSI:
case Instruction::FPToUI:
break; // These don't need a source cast.
default:
llvm_unreachable("Invalid cast opcode");
break;
}
}
// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV, bool Static) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Out << "(";
printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
if (CE->getOpcode() == Instruction::SExt &&
CE->getOperand(0)->getType() == Type::Int1Ty) {
// Make sure we really sext from bool here by subtracting from 0
Out << "0-";
}
printConstant(CE->getOperand(0), Static);
if (CE->getType() == Type::Int1Ty &&
(CE->getOpcode() == Instruction::Trunc ||
CE->getOpcode() == Instruction::FPToUI ||
CE->getOpcode() == Instruction::FPToSI ||
CE->getOpcode() == Instruction::PtrToInt)) {
// Make sure we really truncate to bool here by anding with 1
Out << "&1u";
}
Out << ')';
return;
case Instruction::GetElementPtr:
Out << "(";
printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
gep_type_end(CPV), Static);
Out << ")";
return;
case Instruction::Select:
Out << '(';
printConstant(CE->getOperand(0), Static);
Out << '?';
printConstant(CE->getOperand(1), Static);
Out << ':';
printConstant(CE->getOperand(2), Static);
Out << ')';
return;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
{
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE, Static);
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
switch (CE->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd: Out << " + "; break;
case Instruction::Sub:
case Instruction::FSub: Out << " - "; break;
case Instruction::Mul:
case Instruction::FMul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl: Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
case Instruction::ICmp:
switch (CE->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: Out << " < "; break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE: Out << " <= "; break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: Out << " > "; break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE: Out << " >= "; break;
default: llvm_unreachable("Illegal ICmp predicate");
}
break;
default: llvm_unreachable("Illegal opcode here!");
}
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
case Instruction::FCmp: {
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE, Static);
if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
Out << "0";
else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
Out << "1";
else {
const char* op = 0;
switch (CE->getPredicate()) {
default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
Out << ", ";
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
Out << ")";
}
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
default:
#ifndef NDEBUG
cerr << "CWriter Error: Unhandled constant expression: "
<< *CE << "\n";
#endif
llvm_unreachable(0);
}
} else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*UNDEF*/";
if (!isa<VectorType>(CPV->getType())) {
Out << "0)";
} else {
Out << "{})";
}
return;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
const Type* Ty = CI->getType();
if (Ty == Type::Int1Ty)
Out << (CI->getZExtValue() ? '1' : '0');
else if (Ty == Type::Int32Ty)
Out << CI->getZExtValue() << 'u';
else if (Ty->getPrimitiveSizeInBits() > 32)
Out << CI->getZExtValue() << "ull";
else {
Out << "((";
printSimpleType(Out, Ty, false) << ')';
if (CI->isMinValue(true))
Out << CI->getZExtValue() << 'u';
else
Out << CI->getSExtValue();
Out << ')';
}
return;
}
switch (CPV->getType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: {
ConstantFP *FPC = cast<ConstantFP>(CPV);
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
if (I != FPConstantMap.end()) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
FPC->getType() == Type::DoubleTy ? "double" :
"long double")
<< "*)&FPConstant" << I->second << ')';
} else {
double V;
if (FPC->getType() == Type::FloatTy)
V = FPC->getValueAPF().convertToFloat();
else if (FPC->getType() == Type::DoubleTy)
V = FPC->getValueAPF().convertToDouble();
else {
// Long double. Convert the number to double, discarding precision.
// This is not awesome, but it at least makes the CBE output somewhat
// useful.
APFloat Tmp = FPC->getValueAPF();
bool LosesInfo;
Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
V = Tmp.convertToDouble();
}
if (IsNAN(V)) {
// The value is NaN
// FIXME the actual NaN bits should be emitted.
// The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
// it's 0x7ff4.
const unsigned long QuietNaN = 0x7ff8UL;
//const unsigned long SignalNaN = 0x7ff4UL;
// We need to grab the first part of the FP #
char Buffer[100];
uint64_t ll = DoubleToBits(V);
sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
std::string Num(&Buffer[0], &Buffer[6]);
unsigned long Val = strtoul(Num.c_str(), 0, 16);
if (FPC->getType() == Type::FloatTy)
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
<< Buffer << "\") /*nan*/ ";
else
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
<< Buffer << "\") /*nan*/ ";
} else if (IsInf(V)) {
// The value is Inf
if (V < 0) Out << '-';
Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
<< " /*inf*/ ";
} else {
std::string Num;
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
// Print out the constant as a floating point number.
char Buffer[100];
sprintf(Buffer, "%a", V);
Num = Buffer;
#else
Num = ftostr(FPC->getValueAPF());
#endif
Out << Num;
}
}
break;
}
case Type::ArrayTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
Out << "{ "; // Arrays are wrapped in struct types.
if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
printConstantArray(CA, Static);
} else {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
const ArrayType *AT = cast<ArrayType>(CPV->getType());
Out << '{';
if (AT->getNumElements()) {
Out << ' ';
Constant *CZ = Context->getNullValue(AT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ, Static);
}
}
Out << " }";
}
Out << " }"; // Arrays are wrapped in struct types.
break;
case Type::VectorTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
printConstantVector(CV, Static);
} else {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
const VectorType *VT = cast<VectorType>(CPV->getType());
Out << "{ ";
Constant *CZ = Context->getNullValue(VT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ, Static);
}
Out << " }";
}
break;
case Type::StructTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
const StructType *ST = cast<StructType>(CPV->getType());
Out << '{';
if (ST->getNumElements()) {
Out << ' ';
printConstant(Context->getNullValue(ST->getElementType(0)), Static);
for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(Context->getNullValue(ST->getElementType(i)), Static);
}
}
Out << " }";
} else {
Out << '{';
if (CPV->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPV->getOperand(0)), Static);
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPV->getOperand(i)), Static);
}
}
Out << " }";
}
break;
case Type::PointerTyID:
if (isa<ConstantPointerNull>(CPV)) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*NULL*/0)";
break;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
writeOperand(GV, Static);
break;
}
// FALL THROUGH
default:
#ifndef NDEBUG
cerr << "Unknown constant type: " << *CPV << "\n";
#endif
llvm_unreachable(0);
}
}
// Some constant expressions need to be casted back to the original types
// because their operands were casted to the expected type. This function takes
// care of detecting that case and printing the cast for the ConstantExpr.
bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
bool NeedsExplicitCast = false;
const Type *Ty = CE->getOperand(0)->getType();
bool TypeIsSigned = false;
switch (CE->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv: NeedsExplicitCast = true; break;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
case Instruction::SExt:
Ty = CE->getType();
NeedsExplicitCast = true;
TypeIsSigned = true;
break;
case Instruction::ZExt:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Ty = CE->getType();
NeedsExplicitCast = true;
break;
default: break;
}
if (NeedsExplicitCast) {
Out << "((";
if (Ty->isInteger() && Ty != Type::Int1Ty)
printSimpleType(Out, Ty, TypeIsSigned);
else
printType(Out, Ty); // not integer, sign doesn't matter
Out << ")(";
}
return NeedsExplicitCast;
}
// Print a constant assuming that it is the operand for a given Opcode. The
// opcodes that care about sign need to cast their operands to the expected
// type before the operation proceeds. This function does the casting.
void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
// Extract the operand's type, we'll need it.
const Type* OpTy = CPV->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
bool typeIsSigned = false;
// Based on the Opcode for which this Constant is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true so it gets
// casted below.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem:
shouldCast = true;
break;
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem:
shouldCast = true;
typeIsSigned = true;
break;
}
// Write out the casted constant if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, typeIsSigned);
Out << ")";
printConstant(CPV, false);
Out << ")";
} else
printConstant(CPV, false);
}
std::string CWriter::GetValueName(const Value *Operand) {
// Mangle globals with the standard mangler interface for LLC compatibility.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
return Mang->getMangledName(GV);
std::string Name = Operand->getName();
if (Name.empty()) { // Assign unique names to local temporaries.
unsigned &No = AnonValueNumbers[Operand];
if (No == 0)
No = ++NextAnonValueNumber;
Name = "tmp__" + utostr(No);
}
std::string VarName;
VarName.reserve(Name.capacity());
for (std::string::iterator I = Name.begin(), E = Name.end();
I != E; ++I) {
char ch = *I;
if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
(ch >= '0' && ch <= '9') || ch == '_')) {
char buffer[5];
sprintf(buffer, "_%x_", ch);
VarName += buffer;
} else
VarName += ch;
}
return "llvm_cbe_" + VarName;
}
/// writeInstComputationInline - Emit the computation for the specified
/// instruction inline, with no destination provided.
void CWriter::writeInstComputationInline(Instruction &I) {
// We can't currently support integer types other than 1, 8, 16, 32, 64.
// Validate this.
const Type *Ty = I.getType();
if (Ty->isInteger() && (Ty!=Type::Int1Ty && Ty!=Type::Int8Ty &&
Ty!=Type::Int16Ty && Ty!=Type::Int32Ty && Ty!=Type::Int64Ty)) {
llvm_report_error("The C backend does not currently support integer "
"types of widths other than 1, 8, 16, 32, 64.\n"
"This is being tracked as PR 4158.");
}
// If this is a non-trivial bool computation, make sure to truncate down to
// a 1 bit value. This is important because we want "add i1 x, y" to return
// "0" when x and y are true, not "2" for example.
bool NeedBoolTrunc = false;
if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
NeedBoolTrunc = true;
if (NeedBoolTrunc)
Out << "((";
visit(I);
if (NeedBoolTrunc)
Out << ")&1)";
}
void CWriter::writeOperandInternal(Value *Operand, bool Static) {
if (Instruction *I = dyn_cast<Instruction>(Operand))
// Should we inline this instruction to build a tree?
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
Out << '(';
writeInstComputationInline(*I);
Out << ')';
return;
}
Constant* CPV = dyn_cast<Constant>(Operand);
if (CPV && !isa<GlobalValue>(CPV))
printConstant(CPV, Static);
else
Out << GetValueName(Operand);
}
void CWriter::writeOperand(Value *Operand, bool Static) {
bool isAddressImplicit = isAddressExposed(Operand);
if (isAddressImplicit)
Out << "(&"; // Global variables are referenced as their addresses by llvm
writeOperandInternal(Operand, Static);
if (isAddressImplicit)
Out << ')';
}
// Some instructions need to have their result value casted back to the
// original types because their operands were casted to the expected type.
// This function takes care of detecting that case and printing the cast
// for the Instruction.
bool CWriter::writeInstructionCast(const Instruction &I) {
const Type *Ty = I.getOperand(0)->getType();
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv:
Out << "((";
printSimpleType(Out, Ty, false);
Out << ")(";
return true;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv:
Out << "((";
printSimpleType(Out, Ty, true);
Out << ")(";
return true;
default: break;
}
return false;
}
// Write the operand with a cast to another type based on the Opcode being used.
// This will be used in cases where an instruction has specific type
// requirements (usually signedness) for its operands.
void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
// Extract the operand's type, we'll need it.
const Type* OpTy = Operand->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
// Indicate whether the cast should be to a signed type or not.
bool castIsSigned = false;
// Based on the Opcode for which this Operand is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem: // Cast to unsigned first
shouldCast = true;
castIsSigned = false;
break;
case Instruction::GetElementPtr:
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem: // Cast to signed first
shouldCast = true;
castIsSigned = true;
break;
}
// Write out the casted operand if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
} else
writeOperand(Operand);
}
// Write the operand with a cast to another type based on the icmp predicate
// being used.
void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
// This has to do a cast to ensure the operand has the right signedness.
// Also, if the operand is a pointer, we make sure to cast to an integer when
// doing the comparison both for signedness and so that the C compiler doesn't
// optimize things like "p < NULL" to false (p may contain an integer value
// f.e.).
bool shouldCast = Cmp.isRelational();
// Write out the casted operand if we should, otherwise just write the
// operand.
if (!shouldCast) {
writeOperand(Operand);
return;
}
// Should this be a signed comparison? If so, convert to signed.
bool castIsSigned = Cmp.isSignedPredicate();
// If the operand was a pointer, convert to a large integer type.
const Type* OpTy = Operand->getType();
if (isa<PointerType>(OpTy))
OpTy = TD->getIntPtrType();
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
}
// generateCompilerSpecificCode - This is where we add conditional compilation
// directives to cater to specific compilers as need be.
//
static void generateCompilerSpecificCode(raw_ostream& Out,
const TargetData *TD) {
// Alloca is hard to get, and we don't want to include stdlib.h here.
Out << "/* get a declaration for alloca */\n"
<< "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
<< "#define alloca(x) __builtin_alloca((x))\n"
<< "#define _alloca(x) __builtin_alloca((x))\n"
<< "#elif defined(__APPLE__)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#define longjmp _longjmp\n"
<< "#define setjmp _setjmp\n"
<< "#elif defined(__sun__)\n"
<< "#if defined(__sparcv9)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#else\n"
<< "extern void *__builtin_alloca(unsigned int);\n"
<< "#endif\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(_MSC_VER)\n"
<< "#define inline _inline\n"
<< "#define alloca(x) _alloca(x)\n"
<< "#else\n"
<< "#include <alloca.h>\n"
<< "#endif\n\n";
// We output GCC specific attributes to preserve 'linkonce'ness on globals.
// If we aren't being compiled with GCC, just drop these attributes.
Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
<< "#define __attribute__(X)\n"
<< "#endif\n\n";
// On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __EXTERNAL_WEAK__\n"
<< "#endif\n\n";
// For now, turn off the weak linkage attribute on Mac OS X. (See above.)
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#endif\n\n";
// Add hidden visibility support. FIXME: APPLE_CC?
Out << "#if defined(__GNUC__)\n"
<< "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
<< "#endif\n\n";
// Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
// From the GCC documentation:
//
// double __builtin_nan (const char *str)
//
// This is an implementation of the ISO C99 function nan.
//
// Since ISO C99 defines this function in terms of strtod, which we do
// not implement, a description of the parsing is in order. The string is
// parsed as by strtol; that is, the base is recognized by leading 0 or
// 0x prefixes. The number parsed is placed in the significand such that
// the least significant bit of the number is at the least significant
// bit of the significand. The number is truncated to fit the significand
// field provided. The significand is forced to be a quiet NaN.
//
// This function, if given a string literal, is evaluated early enough
// that it is considered a compile-time constant.
//
// float __builtin_nanf (const char *str)
//
// Similar to __builtin_nan, except the return type is float.
//
// double __builtin_inf (void)
//
// Similar to __builtin_huge_val, except a warning is generated if the
// target floating-point format does not support infinities. This
// function is suitable for implementing the ISO C99 macro INFINITY.
//
// float __builtin_inff (void)
//
// Similar to __builtin_inf, except the return type is float.
Out << "#ifdef __GNUC__\n"
<< "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
<< "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
<< "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
<< "#define LLVM_INF __builtin_inf() /* Double */\n"
<< "#define LLVM_INFF __builtin_inff() /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) "
"__builtin_prefetch(addr,rw,locality)\n"
<< "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
<< "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
<< "#define LLVM_ASM __asm__\n"
<< "#else\n"
<< "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_INF ((double)0.0) /* Double */\n"
<< "#define LLVM_INFF 0.0F /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
<< "#define __ATTRIBUTE_CTOR__\n"
<< "#define __ATTRIBUTE_DTOR__\n"
<< "#define LLVM_ASM(X)\n"
<< "#endif\n\n";
Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
<< "#define __builtin_stack_save() 0 /* not implemented */\n"
<< "#define __builtin_stack_restore(X) /* noop */\n"
<< "#endif\n\n";
// Output typedefs for 128-bit integers. If these are needed with a
// 32-bit target or with a C compiler that doesn't support mode(TI),
// more drastic measures will be needed.
Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
<< "typedef int __attribute__((mode(TI))) llvmInt128;\n"
<< "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
<< "#endif\n\n";
// Output target-specific code that should be inserted into main.
Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
}
/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
/// the StaticTors set.
static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
Constant *FP = CS->getOperand(1);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP))
StaticTors.insert(F);
}
}
enum SpecialGlobalClass {
NotSpecial = 0,
GlobalCtors, GlobalDtors,
NotPrinted
};
/// getGlobalVariableClass - If this is a global that is specially recognized
/// by LLVM, return a code that indicates how we should handle it.
static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
// If this is a global ctors/dtors list, handle it now.
if (GV->hasAppendingLinkage() && GV->use_empty()) {
if (GV->getName() == "llvm.global_ctors")
return GlobalCtors;
else if (GV->getName() == "llvm.global_dtors")
return GlobalDtors;
}
// Otherwise, it it is other metadata, don't print it. This catches things
// like debug information.
if (GV->getSection() == "llvm.metadata")
return NotPrinted;
return NotSpecial;
}
bool CWriter::doInitialization(Module &M) {
// Initialize
TheModule = &M;
TD = new TargetData(&M);
IL = new IntrinsicLowering(*TD);
IL->AddPrototypes(M);
// Ensure that all structure types have names...
Mang = new Mangler(M);
Mang->markCharUnacceptable('.');
// Keep track of which functions are static ctors/dtors so they can have
// an attribute added to their prototypes.
std::set<Function*> StaticCtors, StaticDtors;
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
switch (getGlobalVariableClass(I)) {
default: break;
case GlobalCtors:
FindStaticTors(I, StaticCtors);
break;
case GlobalDtors:
FindStaticTors(I, StaticDtors);
break;
}
}
// get declaration for alloca
Out << "/* Provide Declarations */\n";
Out << "#include <stdarg.h>\n"; // Varargs support
Out << "#include <setjmp.h>\n"; // Unwind support
generateCompilerSpecificCode(Out, TD);
// Provide a definition for `bool' if not compiling with a C++ compiler.
Out << "\n"
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
<< "\n\n/* Support for floating point constants */\n"
<< "typedef unsigned long long ConstantDoubleTy;\n"
<< "typedef unsigned int ConstantFloatTy;\n"
<< "typedef struct { unsigned long long f1; unsigned short f2; "
"unsigned short pad[3]; } ConstantFP80Ty;\n"
// This is used for both kinds of 128-bit long double; meaning differs.
<< "typedef struct { unsigned long long f1; unsigned long long f2; }"
" ConstantFP128Ty;\n"
<< "\n\n/* Global Declarations */\n";
// First output all the declarations for the program, because C requires
// Functions & globals to be declared before they are used.
//
// Loop over the symbol table, emitting all named constants...
printModuleTypes(M.getTypeSymbolTable());
// Global variable declarations...
if (!M.global_empty()) {
Out << "\n/* External Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
I->hasCommonLinkage())
Out << "extern ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else
continue; // Internal Global
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false, GetValueName(I));
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
Out << ";\n";
}
}
// Function declarations
Out << "\n/* Function Declarations */\n";
Out << "double fmod(double, double);\n"; // Support for FP rem
Out << "float fmodf(float, float);\n";
Out << "long double fmodl(long double, long double);\n";
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
// Don't print declarations for intrinsic functions.
if (!I->isIntrinsic() && I->getName() != "setjmp" &&
I->getName() != "longjmp" && I->getName() != "_setjmp") {
if (I->hasExternalWeakLinkage())
Out << "extern ";
printFunctionSignature(I, true);
if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (StaticCtors.count(I))
Out << " __ATTRIBUTE_CTOR__";
if (StaticDtors.count(I))
Out << " __ATTRIBUTE_DTOR__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
if (I->hasName() && I->getName()[0] == 1)
Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
Out << ";\n";
}
}
// Output the global variable declarations
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasLocalLinkage())
Out << "static ";
else
Out << "extern ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasCommonLinkage()) // FIXME is this right?
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
Out << ";\n";
}
}
// Output the global variable definitions and contents...
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasLocalLinkage())
Out << "static ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else if (I->hasDLLExportLinkage())
Out << "__declspec(dllexport) ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasCommonLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
// If the initializer is not null, emit the initializer. If it is null,
// we try to avoid emitting large amounts of zeros. The problem with
// this, however, occurs when the variable has weak linkage. In this
// case, the assembler will complain about the variable being both weak
// and common, so we disable this optimization.
// FIXME common linkage should avoid this problem.
if (!I->getInitializer()->isNullValue()) {
Out << " = " ;
writeOperand(I->getInitializer(), true);
} else if (I->hasWeakLinkage()) {
// We have to specify an initializer, but it doesn't have to be
// complete. If the value is an aggregate, print out { 0 }, and let
// the compiler figure out the rest of the zeros.
Out << " = " ;
if (isa<StructType>(I->getInitializer()->getType()) ||
isa<VectorType>(I->getInitializer()->getType())) {
Out << "{ 0 }";
} else if (isa<ArrayType>(I->getInitializer()->getType())) {
// As with structs and vectors, but with an extra set of braces
// because arrays are wrapped in structs.
Out << "{ { 0 } }";
} else {
// Just print it out normally.
writeOperand(I->getInitializer(), true);
}
}
Out << ";\n";
}
}
if (!M.empty())
Out << "\n\n/* Function Bodies */\n";
// Emit some helper functions for dealing with FCMP instruction's
// predicates
Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
Out << "return X == X && Y == Y; }\n";
Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
Out << "return X != X || Y != Y; }\n";
Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
Out << "return X != Y; }\n";
Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
Out << "return X == Y ; }\n";
Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
Out << "return X < Y ; }\n";
Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
Out << "return X > Y ; }\n";
Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
Out << "return X <= Y ; }\n";
Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
Out << "return X >= Y ; }\n";
return false;
}
/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Function &F) {
// Scan the module for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
I != E; ++I)
printFloatingPointConstants(*I);
Out << '\n';
}
void CWriter::printFloatingPointConstants(const Constant *C) {
// If this is a constant expression, recursively check for constant fp values.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
printFloatingPointConstants(CE->getOperand(i));
return;
}
// Otherwise, check for a FP constant that we need to print.
const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
if (FPC == 0 ||
// Do not put in FPConstantMap if safe.
isFPCSafeToPrint(FPC) ||
// Already printed this constant?
FPConstantMap.count(FPC))
return;
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy) {
double Val = FPC->getValueAPF().convertToDouble();
uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::FloatTy) {
float Val = FPC->getValueAPF().convertToFloat();
uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
getZExtValue();
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "U; /* " << Val << " */\n";
} else if (FPC->getType() == Type::X86_FP80Ty) {
// api needed to prevent premature destruction
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
<< " = { 0x" << utohexstr(p[0])
<< "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
<< "}; /* Long double constant */\n";
} else if (FPC->getType() == Type::PPC_FP128Ty) {
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
<< " = { 0x"
<< utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
<< "}; /* Long double constant */\n";
} else {
llvm_unreachable("Unknown float type!");
}
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit its declaration...
///
void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
Out << "/* Helper union for bitcasts */\n";
Out << "typedef union {\n";
Out << " unsigned int Int32;\n";
Out << " unsigned long long Int64;\n";
Out << " float Float;\n";
Out << " double Double;\n";
Out << "} llvmBitCastUnion;\n";
// We are only interested in the type plane of the symbol table.
TypeSymbolTable::const_iterator I = TST.begin();
TypeSymbolTable::const_iterator End = TST.end();
// If there are no type names, exit early.
if (I == End) return;
// Print out forward declarations for structure types before anything else!
Out << "/* Structure forward decls */\n";
for (; I != End; ++I) {
std::string Name = "struct l_" + Mang->makeNameProper(I->first);
Out << Name << ";\n";
TypeNames.insert(std::make_pair(I->second, Name));
}
Out << '\n';
// Now we can print out typedefs. Above, we guaranteed that this can only be
// for struct or opaque types.
Out << "/* Typedefs */\n";
for (I = TST.begin(); I != End; ++I) {
std::string Name = "l_" + Mang->makeNameProper(I->first);
Out << "typedef ";
printType(Out, I->second, false, Name);
Out << ";\n";
}
Out << '\n';
// Keep track of which structures have been printed so far...
std::set<const Type *> StructPrinted;
// Loop over all structures then push them into the stack so they are
// printed in the correct order.
//
Out << "/* Structure contents */\n";
for (I = TST.begin(); I != End; ++I)
if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
// Only print out used types!
printContainedStructs(I->second, StructPrinted);
}
// Push the struct onto the stack and recursively push all structs
// this one depends on.
//
// TODO: Make this work properly with vector types
//
void CWriter::printContainedStructs(const Type *Ty,
std::set<const Type*> &StructPrinted) {
// Don't walk through pointers.
if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
// Print all contained types first.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
printContainedStructs(*I, StructPrinted);
if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
// Check to see if we have already printed this struct.
if (StructPrinted.insert(Ty).second) {
// Print structure type out.
std::string Name = TypeNames[Ty];
printType(Out, Ty, false, Name, true);
Out << ";\n\n";
}
}
}
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F->hasStructRetAttr();
if (F->hasLocalLinkage()) Out << "static ";
if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Out << "__attribute__((stdcall)) ";
break;
case CallingConv::X86_FastCall:
Out << "__attribute__((fastcall)) ";
break;
}
// Loop over the arguments, printing them...
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
const AttrListPtr &PAL = F->getAttributes();
std::stringstream FunctionInnards;
// Print out the name...
FunctionInnards << GetValueName(F) << '(';
bool PrintedArg = false;
if (!F->isDeclaration()) {
if (!F->arg_empty()) {
Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
unsigned Idx = 1;
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
++Idx;
}
std::string ArgName;
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
if (I->hasName() || !Prototype)
ArgName = GetValueName(I);
else
ArgName = "";
const Type *ArgTy = I->getType();
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
ArgTy = cast<PointerType>(ArgTy)->getElementType();
ByValParams.insert(I);
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
ArgName);
PrintedArg = true;
++Idx;
}
}
} else {
// Loop over the arguments, printing them.
FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
unsigned Idx = 1;
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
++Idx;
}
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(isa<PointerType>(ArgTy));
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
PrintedArg = true;
++Idx;
}
}
// Finish printing arguments... if this is a vararg function, print the ...,
// unless there are no known types, in which case, we just emit ().
//
if (FT->isVarArg() && PrintedArg) {
if (PrintedArg) FunctionInnards << ", ";
FunctionInnards << "..."; // Output varargs portion of signature!
} else if (!FT->isVarArg() && !PrintedArg) {
FunctionInnards << "void"; // ret() -> ret(void) in C.
}
FunctionInnards << ')';
// Get the return tpe for the function.
const Type *RetTy;
if (!isStructReturn)
RetTy = F->getReturnType();
else {
// If this is a struct-return function, print the struct-return type.
RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
}
// Print out the return type and the signature built above.
printType(Out, RetTy,
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
FunctionInnards.str());
}
static inline bool isFPIntBitCast(const Instruction &I) {
if (!isa<BitCastInst>(I))
return false;
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DstTy = I.getType();
return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
(DstTy->isFloatingPoint() && SrcTy->isInteger());
}
void CWriter::printFunction(Function &F) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F.hasStructRetAttr();
printFunctionSignature(&F, false);
Out << " {\n";
// If this is a struct return function, handle the result with magic.
if (isStructReturn) {
const Type *StructTy =
cast<PointerType>(F.arg_begin()->getType())->getElementType();
Out << " ";
printType(Out, StructTy, false, "StructReturn");
Out << "; /* Struct return temporary */\n";
Out << " ";
printType(Out, F.arg_begin()->getType(), false,
GetValueName(F.arg_begin()));
Out << " = &StructReturn;\n";
}
bool PrintedVar = false;
// print local variable information for the function
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
if (const AllocaInst *AI = isDirectAlloca(&*I)) {
Out << " ";
printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
Out << "; /* Address-exposed local */\n";
PrintedVar = true;
} else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
Out << " ";
printType(Out, I->getType(), false, GetValueName(&*I));
Out << ";\n";
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, I->getType(), false,
GetValueName(&*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
PrintedVar = true;
}
// We need a temporary for the BitCast to use so it can pluck a value out
// of a union to do the BitCast. This is separate from the need for a
// variable to hold the result of the BitCast.
if (isFPIntBitCast(*I)) {
Out << " llvmBitCastUnion " << GetValueName(&*I)
<< "__BITCAST_TEMPORARY;\n";
PrintedVar = true;
}
}
if (PrintedVar)
Out << '\n';
if (F.hasExternalLinkage() && F.getName() == "main")
Out << " CODE_FOR_MAIN();\n";
// print the basic blocks
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (Loop *L = LI->getLoopFor(BB)) {
if (L->getHeader() == BB && L->getParentLoop() == 0)
printLoop(L);
} else {
printBasicBlock(BB);
}
}
Out << "}\n\n";
}
void CWriter::printLoop(Loop *L) {
Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
<< "' to make GCC happy */\n";
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
BasicBlock *BB = L->getBlocks()[i];
Loop *BBLoop = LI->getLoopFor(BB);
if (BBLoop == L)
printBasicBlock(BB);
else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
printLoop(BBLoop);
}
Out << " } while (1); /* end of syntactic loop '"
<< L->getHeader()->getName() << "' */\n";
}
void CWriter::printBasicBlock(BasicBlock *BB) {
// Don't print the label for the basic block if there are no uses, or if
// the only terminator use is the predecessor basic block's terminator.
// We have to scan the use list because PHI nodes use basic blocks too but
// do not require a label to be generated.
//
bool NeedsLabel = false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (isGotoCodeNecessary(*PI, BB)) {
NeedsLabel = true;
break;
}
if (NeedsLabel) Out << GetValueName(BB) << ":\n";
// Output all of the instructions in the basic block...
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
++II) {
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
outputLValue(II);
else
Out << " ";
writeInstComputationInline(*II);
Out << ";\n";
}
}
// Don't emit prefix or suffix for the terminator.
visit(*BB->getTerminator());
}
// Specific Instruction type classes... note that all of the casts are
// necessary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
// If this is a struct return function, return the temporary struct.
bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
if (isStructReturn) {
Out << " return StructReturn;\n";
return;
}
// Don't output a void return if this is the last basic block in the function
if (I.getNumOperands() == 0 &&
&*--I.getParent()->getParent()->end() == I.getParent() &&
!I.getParent()->size() == 1) {
return;
}
if (I.getNumOperands() > 1) {
Out << " {\n";
Out << " ";
printType(Out, I.getParent()->getParent()->getReturnType());
Out << " llvm_cbe_mrv_temp = {\n";
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Out << " ";
writeOperand(I.getOperand(i));
if (i != e - 1)
Out << ",";
Out << "\n";
}
Out << " };\n";
Out << " return llvm_cbe_mrv_temp;\n";
Out << " }\n";
return;
}
Out << " return";
if (I.getNumOperands()) {
Out << ' ';
writeOperand(I.getOperand(0));
}
Out << ";\n";
}
void CWriter::visitSwitchInst(SwitchInst &SI) {
Out << " switch (";
writeOperand(SI.getOperand(0));
Out << ") {\n default:\n";
printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
Out << ";\n";
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
Out << " case ";
writeOperand(SI.getOperand(i));
Out << ":\n";
BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
printBranchToBlock(SI.getParent(), Succ, 2);
if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
Out << " break;\n";
}
Out << " }\n";
}
void CWriter::visitUnreachableInst(UnreachableInst &I) {
Out << " /*UNREACHABLE*/;\n";
}
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
/// FIXME: This should be reenabled, but loop reordering safe!!
return true;
if (next(Function::iterator(From)) != Function::iterator(To))
return true; // Not the direct successor, we need a goto.
//isa<SwitchInst>(From->getTerminator())
if (LI->getLoopFor(From) != LI->getLoopFor(To))
return true;
return false;
}
void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
BasicBlock *Successor,
unsigned Indent) {
for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// Now we have to do the printing.
Value *IV = PN->getIncomingValueForBlock(CurBlock);
if (!isa<UndefValue>(IV)) {
Out << std::string(Indent, ' ');
Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
writeOperand(IV);
Out << "; /* for PHI node */\n";
}
}
}
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
unsigned Indent) {
if (isGotoCodeNecessary(CurBB, Succ)) {
Out << std::string(Indent, ' ') << " goto ";
writeOperand(Succ);
Out << ";\n";
}
}
// Branch instruction printing - Avoid printing out a branch to a basic block
// that immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
if (I.isConditional()) {
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
Out << " if (";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
Out << " } else {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
} else {
// First goto not necessary, assume second one is...
Out << " if (!";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
Out << " }\n";
} else {
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
}
Out << "\n";
}
// PHI nodes get copied into temporary values at the end of predecessor basic
// blocks. We now need to copy these temporary values into the REAL value for
// the PHI.
void CWriter::visitPHINode(PHINode &I) {
writeOperand(&I);
Out << "__PHI_TEMPORARY";
}
void CWriter::visitBinaryOperator(Instruction &I) {
// binary instructions, shift instructions, setCond instructions.
assert(!isa<PointerType>(I.getType()));
// We must cast the results of binary operations which might be promoted.
bool needsCast = false;
if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
|| (I.getType() == Type::FloatTy)) {
needsCast = true;
Out << "((";
printType(Out, I.getType(), false);
Out << ")(";
}
// If this is a negation operation, print it out as such. For FP, we don't
// want to print "-0.0 - X".
if (BinaryOperator::isNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (BinaryOperator::isFNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (I.getOpcode() == Instruction::FRem) {
// Output a call to fmod/fmodf instead of emitting a%b
if (I.getType() == Type::FloatTy)
Out << "fmodf(";
else if (I.getType() == Type::DoubleTy)
Out << "fmod(";
else // all 3 flavors of long double
Out << "fmodl(";
writeOperand(I.getOperand(0));
Out << ", ";
writeOperand(I.getOperand(1));
Out << ")";
} else {
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain instructions require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I.getOpcode());
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::FAdd: Out << " + "; break;
case Instruction::Sub:
case Instruction::FSub: Out << " - "; break;
case Instruction::Mul:
case Instruction::FMul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl : Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
default:
#ifndef NDEBUG
cerr << "Invalid operator type!" << I;
#endif
llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I.getOpcode());
if (NeedsClosingParens)
Out << "))";
}
if (needsCast) {
Out << "))";
}
}
void CWriter::visitICmpInst(ICmpInst &I) {
// We must cast the results of icmp which might be promoted.
bool needsCast = false;
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain icmp predicate require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I);
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE: Out << " <= "; break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE: Out << " >= "; break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT: Out << " < "; break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: Out << " > "; break;
default:
#ifndef NDEBUG
cerr << "Invalid icmp predicate!" << I;
#endif
llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I);
if (NeedsClosingParens)
Out << "))";
if (needsCast) {
Out << "))";
}
}
void CWriter::visitFCmpInst(FCmpInst &I) {
if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
Out << "0";
return;
}
if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
Out << "1";
return;
}
const char* op = 0;
switch (I.getPredicate()) {
default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
// Write the first operand
writeOperand(I.getOperand(0));
Out << ", ";
// Write the second operand
writeOperand(I.getOperand(1));
Out << ")";
}
static const char * getFloatBitCastField(const Type *Ty) {
switch (Ty->getTypeID()) {
default: llvm_unreachable("Invalid Type");
case Type::FloatTyID: return "Float";
case Type::DoubleTyID: return "Double";
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits <= 32)
return "Int32";
else
return "Int64";
}
}
}
void CWriter::visitCastInst(CastInst &I) {
const Type *DstTy = I.getType();
const Type *SrcTy = I.getOperand(0)->getType();
if (isFPIntBitCast(I)) {
Out << '(';
// These int<->float and long<->double casts need to be handled specially
Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
writeOperand(I.getOperand(0));
Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getType());
Out << ')';
return;
}
Out << '(';
printCast(I.getOpcode(), SrcTy, DstTy);
// Make a sext from i1 work by subtracting the i1 from 0 (an int).
if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
Out << "0-";
writeOperand(I.getOperand(0));
if (DstTy == Type::Int1Ty &&
(I.getOpcode() == Instruction::Trunc ||
I.getOpcode() == Instruction::FPToUI ||
I.getOpcode() == Instruction::FPToSI ||
I.getOpcode() == Instruction::PtrToInt)) {
// Make sure we really get a trunc to bool by anding the operand with 1
Out << "&1u";
}
Out << ')';
}
void CWriter::visitSelectInst(SelectInst &I) {
Out << "((";
writeOperand(I.getCondition());
Out << ") ? (";
writeOperand(I.getTrueValue());
Out << ") : (";
writeOperand(I.getFalseValue());
Out << "))";
}
void CWriter::lowerIntrinsics(Function &F) {
// This is used to keep track of intrinsics that get generated to a lowered
// function. We must generate the prototypes before the function body which
// will only be expanded on first use (by the loop below).
std::vector<Function*> prototypesToGen;
// Examine all the instructions in this function to find the intrinsics that
// need to be lowered.
for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
case Intrinsic::memory_barrier:
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
case Intrinsic::setjmp:
case Intrinsic::longjmp:
case Intrinsic::prefetch:
case Intrinsic::dbg_stoppoint:
case Intrinsic::powi:
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
case Intrinsic::x86_sse2_cmp_pd:
case Intrinsic::ppc_altivec_lvsl:
// We directly implement these intrinsics
break;
default:
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we handle it.
const char *BuiltinName = "";
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
// If we handle it, don't lower it.
if (BuiltinName[0]) break;
// All other intrinsic calls we must lower.
Instruction *Before = 0;
if (CI != &BB->front())
Before = prior(BasicBlock::iterator(CI));
IL->LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
// If the intrinsic got lowered to another call, and that call has
// a definition then we need to make sure its prototype is emitted
// before any calls to it.
if (CallInst *Call = dyn_cast<CallInst>(I))
if (Function *NewF = Call->getCalledFunction())
if (!NewF->isDeclaration())
prototypesToGen.push_back(NewF);
break;
}
// We may have collected some prototypes to emit in the loop above.
// Emit them now, before the function that uses them is emitted. But,
// be careful not to emit them twice.
std::vector<Function*>::iterator I = prototypesToGen.begin();
std::vector<Function*>::iterator E = prototypesToGen.end();
for ( ; I != E; ++I) {
if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
Out << '\n';
printFunctionSignature(*I, true);
Out << ";\n";
}
}
}
void CWriter::visitCallInst(CallInst &I) {
if (isa<InlineAsm>(I.getOperand(0)))
return visitInlineAsm(I);
bool WroteCallee = false;
// Handle intrinsic function calls first...
if (Function *F = I.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
if (visitBuiltinCall(I, ID, WroteCallee))
return;
Value *Callee = I.getCalledValue();
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
// If this is a call to a struct-return function, assign to the first
// parameter instead of passing it to the call.
const AttrListPtr &PAL = I.getAttributes();
bool hasByVal = I.hasByValArgument();
bool isStructRet = I.hasStructRetAttr();
if (isStructRet) {
writeOperandDeref(I.getOperand(1));
Out << " = ";
}
if (I.isTailCall()) Out << " /*tail*/ ";
if (!WroteCallee) {
// If this is an indirect call to a struct return function, we need to cast
// the pointer. Ditto for indirect calls with byval arguments.
bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
// GCC is a real PITA. It does not permit codegening casts of functions to
// function pointers if they are in a call (it generates a trap instruction
// instead!). We work around this by inserting a cast to void* in between
// the function and the function pointer cast. Unfortunately, we can't just
// form the constant expression here, because the folder will immediately
// nuke it.
//
// Note finally, that this is completely unsafe. ANSI C does not guarantee
// that void* and function pointers have the same size. :( To deal with this
// in the common case, we handle casts where the number of arguments passed
// match exactly.
//
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
if (CE->isCast())
if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
NeedsCast = true;
Callee = RF;
}
if (NeedsCast) {
// Ok, just cast the pointer type.
Out << "((";
if (isStructRet)
printStructReturnPointerFunctionType(Out, PAL,
cast<PointerType>(I.getCalledValue()->getType()));
else if (hasByVal)
printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
else
printType(Out, I.getCalledValue()->getType());
Out << ")(void*)";
}
writeOperand(Callee);
if (NeedsCast) Out << ')';
}
Out << '(';
unsigned NumDeclaredParams = FTy->getNumParams();
CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
unsigned ArgNo = 0;
if (isStructRet) { // Skip struct return argument.
++AI;
++ArgNo;
}
bool PrintedArg = false;
for (; AI != AE; ++AI, ++ArgNo) {
if (PrintedArg) Out << ", ";
if (ArgNo < NumDeclaredParams &&
(*AI)->getType() != FTy->getParamType(ArgNo)) {
Out << '(';
printType(Out, FTy->getParamType(ArgNo),
/*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
Out << ')';
}
// Check if the argument is expected to be passed by value.
if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
writeOperandDeref(*AI);
else
writeOperand(*AI);
PrintedArg = true;
}
Out << ')';
}
/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
/// if the entire call is handled, return false it it wasn't handled, and
/// optionally set 'WroteCallee' if the callee has already been printed out.
bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
bool &WroteCallee) {
switch (ID) {
default: {
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we emit it here.
const char *BuiltinName = "";
Function *F = I.getCalledFunction();
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
Out << BuiltinName;
WroteCallee = true;
return false;
}
case Intrinsic::memory_barrier:
Out << "__sync_synchronize()";
return true;
case Intrinsic::vastart:
Out << "0; ";
Out << "va_start(*(va_list*)";
writeOperand(I.getOperand(1));
Out << ", ";
// Output the last argument to the enclosing function.
if (I.getParent()->getParent()->arg_empty()) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "The C backend does not currently support zero "
<< "argument varargs functions, such as '"
<< I.getParent()->getParent()->getName() << "'!";
llvm_report_error(Msg.str());
}
writeOperand(--I.getParent()->getParent()->arg_end());
Out << ')';
return true;
case Intrinsic::vaend:
if (!isa<ConstantPointerNull>(I.getOperand(1))) {
Out << "0; va_end(*(va_list*)";
writeOperand(I.getOperand(1));
Out << ')';
} else {
Out << "va_end(*(va_list*)0)";
}
return true;
case Intrinsic::vacopy:
Out << "0; ";
Out << "va_copy(*(va_list*)";
writeOperand(I.getOperand(1));
Out << ", *(va_list*)";
writeOperand(I.getOperand(2));
Out << ')';
return true;
case Intrinsic::returnaddress:
Out << "__builtin_return_address(";
writeOperand(I.getOperand(1));
Out << ')';
return true;
case Intrinsic::frameaddress:
Out << "__builtin_frame_address(";
writeOperand(I.getOperand(1));
Out << ')';
return true;
case Intrinsic::powi:
Out << "__builtin_powi(";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ')';
return true;
case Intrinsic::setjmp:
Out << "setjmp(*(jmp_buf*)";
writeOperand(I.getOperand(1));
Out << ')';
return true;
case Intrinsic::longjmp:
Out << "longjmp(*(jmp_buf*)";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ')';
return true;
case Intrinsic::prefetch:
Out << "LLVM_PREFETCH((const void *)";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ", ";
writeOperand(I.getOperand(3));
Out << ")";
return true;
case Intrinsic::stacksave:
// Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
// to work around GCC bugs (see PR1809).
Out << "0; *((void**)&" << GetValueName(&I)
<< ") = __builtin_stack_save()";
return true;
case Intrinsic::dbg_stoppoint: {
// If we use writeOperand directly we get a "u" suffix which is rejected
// by gcc.
std::stringstream SPIStr;
DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
SPI.getDirectory()->print(SPIStr);
Out << "\n#line "
<< SPI.getLine()
<< " \"";
Out << SPIStr.str();
SPIStr.clear();
SPI.getFileName()->print(SPIStr);
Out << SPIStr.str() << "\"\n";
return true;
}
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
case Intrinsic::x86_sse2_cmp_pd:
Out << '(';
printType(Out, I.getType());
Out << ')';
// Multiple GCC builtins multiplex onto this intrinsic.
switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
case 0: Out << "__builtin_ia32_cmpeq"; break;
case 1: Out << "__builtin_ia32_cmplt"; break;
case 2: Out << "__builtin_ia32_cmple"; break;
case 3: Out << "__builtin_ia32_cmpunord"; break;
case 4: Out << "__builtin_ia32_cmpneq"; break;
case 5: Out << "__builtin_ia32_cmpnlt"; break;
case 6: Out << "__builtin_ia32_cmpnle"; break;
case 7: Out << "__builtin_ia32_cmpord"; break;
}
if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
Out << 'p';
else
Out << 's';
if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
Out << 's';
else
Out << 'd';
Out << "(";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ")";
return true;
case Intrinsic::ppc_altivec_lvsl:
Out << '(';
printType(Out, I.getType());
Out << ')';
Out << "__builtin_altivec_lvsl(0, (void*)";
writeOperand(I.getOperand(1));
Out << ")";
return true;
}
}
//This converts the llvm constraint string to something gcc is expecting.
//TODO: work out platform independent constraints and factor those out
// of the per target tables
// handle multiple constraint codes
std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
const char *const *table = 0;
//Grab the translation table from TargetAsmInfo if it exists
if (!TAsm) {
std::string E;
const TargetMachineRegistry::entry* Match =
TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
if (Match) {
//Per platform Target Machines don't exist, so create it
// this must be done only once
const TargetMachine* TM = Match->CtorFn(*TheModule, "");
TAsm = TM->getTargetAsmInfo();
}
}
if (TAsm)
table = TAsm->getAsmCBE();
//Search the translation table if it exists
for (int i = 0; table && table[i]; i += 2)
if (c.Codes[0] == table[i])
return table[i+1];
//default is identity
return c.Codes[0];
}
//TODO: import logic from AsmPrinter.cpp
static std::string gccifyAsm(std::string asmstr) {
for (std::string::size_type i = 0; i != asmstr.size(); ++i)
if (asmstr[i] == '\n')
asmstr.replace(i, 1, "\\n");
else if (asmstr[i] == '\t')
asmstr.replace(i, 1, "\\t");
else if (asmstr[i] == '$') {
if (asmstr[i + 1] == '{') {
std::string::size_type a = asmstr.find_first_of(':', i + 1);
std::string::size_type b = asmstr.find_first_of('}', i + 1);
std::string n = "%" +
asmstr.substr(a + 1, b - a - 1) +
asmstr.substr(i + 2, a - i - 2);
asmstr.replace(i, b - i + 1, n);
i += n.size() - 1;
} else
asmstr.replace(i, 1, "%");
}
else if (asmstr[i] == '%')//grr
{ asmstr.replace(i, 1, "%%"); ++i;}
return asmstr;
}
//TODO: assumptions about what consume arguments from the call are likely wrong
// handle communitivity
void CWriter::visitInlineAsm(CallInst &CI) {
InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
std::vector<std::pair<Value*, int> > ResultVals;
if (CI.getType() == Type::VoidTy)
;
else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
ResultVals.push_back(std::make_pair(&CI, (int)i));
} else {
ResultVals.push_back(std::make_pair(&CI, -1));
}
// Fix up the asm string for gcc and emit it.
Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
Out << " :";
unsigned ValueCount = 0;
bool IsFirst = true;
// Convert over all the output constraints.
for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isOutput) {
++ValueCount;
continue; // Ignore non-output constraints.
}
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
// Unpack the dest.
Value *DestVal;
int DestValNo = -1;
if (ValueCount < ResultVals.size()) {
DestVal = ResultVals[ValueCount].first;
DestValNo = ResultVals[ValueCount].second;
} else
DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
if (I->isEarlyClobber)
C = "&"+C;
Out << "\"=" << C << "\"(" << GetValueName(DestVal);
if (DestValNo != -1)
Out << ".field" << DestValNo; // Multiple retvals.
Out << ")";
++ValueCount;
}
// Convert over all the input constraints.
Out << "\n :";
IsFirst = true;
ValueCount = 0;
for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isInput) {
++ValueCount;
continue; // Ignore non-input constraints.
}
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
Out << "\"" << C << "\"(";
if (!I->isIndirect)
writeOperand(SrcVal);
else
writeOperandDeref(SrcVal);
Out << ")";
}
// Convert over the clobber constraints.
IsFirst = true;
ValueCount = 0;
for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isClobber)
continue; // Ignore non-input constraints.
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
Out << '\"' << C << '"';
}
Out << ")";
}
void CWriter::visitMallocInst(MallocInst &I) {
llvm_unreachable("lowerallocations pass didn't work!");
}
void CWriter::visitAllocaInst(AllocaInst &I) {
Out << '(';
printType(Out, I.getType());
Out << ") alloca(sizeof(";
printType(Out, I.getType()->getElementType());
Out << ')';
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ')';
}
void CWriter::visitFreeInst(FreeInst &I) {
llvm_unreachable("lowerallocations pass didn't work!");
}
void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E, bool Static) {
// If there are no indices, just print out the pointer.
if (I == E) {
writeOperand(Ptr);
return;
}
// Find out if the last index is into a vector. If so, we have to print this
// specially. Since vectors can't have elements of indexable type, only the
// last index could possibly be of a vector element.
const VectorType *LastIndexIsVector = 0;
{
for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
}
Out << "(";
// If the last index is into a vector, we can't print it as &a[i][j] because
// we can't index into a vector with j in GCC. Instead, emit this as
// (((float*)&a[i])+j)
if (LastIndexIsVector) {
Out << "((";
printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
Out << ")(";
}
Out << '&';
// If the first index is 0 (very typical) we can do a number of
// simplifications to clean up the code.
Value *FirstOp = I.getOperand();
if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
// First index isn't simple, print it the hard way.
writeOperand(Ptr);
} else {
++I; // Skip the zero index.
// Okay, emit the first operand. If Ptr is something that is already address
// exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
if (isAddressExposed(Ptr)) {
writeOperandInternal(Ptr, Static);
} else if (I != E && isa<StructType>(*I)) {
// If we didn't already emit the first operand, see if we can print it as
// P->f instead of "P[0].f"
writeOperand(Ptr);
Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
++I; // eat the struct index as well.
} else {
// Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
Out << "(*";
writeOperand(Ptr);
Out << ")";
}
}
for (; I != E; ++I) {
if (isa<StructType>(*I)) {
Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
} else if (isa<ArrayType>(*I)) {
Out << ".array[";
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << ']';
} else if (!isa<VectorType>(*I)) {
Out << '[';
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << ']';
} else {
// If the last index is into a vector, then print it out as "+j)". This
// works with the 'LastIndexIsVector' code above.
if (isa<Constant>(I.getOperand()) &&
cast<Constant>(I.getOperand())->isNullValue()) {
Out << "))"; // avoid "+0".
} else {
Out << ")+(";
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << "))";
}
}
}
Out << ")";
}
void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
bool IsVolatile, unsigned Alignment) {
bool IsUnaligned = Alignment &&
Alignment < TD->getABITypeAlignment(OperandType);
if (!IsUnaligned)
Out << '*';
if (IsVolatile || IsUnaligned) {
Out << "((";
if (IsUnaligned)
Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
if (IsUnaligned) {
Out << "; } ";
if (IsVolatile) Out << "volatile ";
Out << "*";
}
Out << ")";
}
writeOperand(Operand);
if (IsVolatile || IsUnaligned) {
Out << ')';
if (IsUnaligned)
Out << "->data";
}
}
void CWriter::visitLoadInst(LoadInst &I) {
writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
I.getAlignment());
}
void CWriter::visitStoreInst(StoreInst &I) {
writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
I.isVolatile(), I.getAlignment());
Out << " = ";
Value *Operand = I.getOperand(0);
Constant *BitMask = 0;
if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
if (!ITy->isPowerOf2ByteWidth())
// We have a bit width that doesn't match an even power-of-2 byte
// size. Consequently we must & the value with the type's bit mask
BitMask = ConstantInt::get(ITy, ITy->getBitMask());
if (BitMask)
Out << "((";
writeOperand(Operand);
if (BitMask) {
Out << ") & ";
printConstant(BitMask, false);
Out << ")";
}
}
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
gep_type_end(I), false);
}
void CWriter::visitVAArgInst(VAArgInst &I) {
Out << "va_arg(*(va_list*)";
writeOperand(I.getOperand(0));
Out << ", ";
printType(Out, I.getType());
Out << ");\n ";
}
void CWriter::visitInsertElementInst(InsertElementInst &I) {
const Type *EltTy = I.getType()->getElementType();
writeOperand(I.getOperand(0));
Out << ";\n ";
Out << "((";
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(&I) << "))[";
writeOperand(I.getOperand(2));
Out << "] = (";
writeOperand(I.getOperand(1));
Out << ")";
}
void CWriter::visitExtractElementInst(ExtractElementInst &I) {
// We know that our operand is not inlined.
Out << "((";
const Type *EltTy =
cast<VectorType>(I.getOperand(0)->getType())->getElementType();
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
writeOperand(I.getOperand(1));
Out << "]";
}
void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Out << "(";
printType(Out, SVI.getType());
Out << "){ ";
const VectorType *VT = SVI.getType();
unsigned NumElts = VT->getNumElements();
const Type *EltTy = VT->getElementType();
for (unsigned i = 0; i != NumElts; ++i) {
if (i) Out << ", ";
int SrcVal = SVI.getMaskValue(i);
if ((unsigned)SrcVal >= NumElts*2) {
Out << " 0/*undef*/ ";
} else {
Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
if (isa<Instruction>(Op)) {
// Do an extractelement of this value from the appropriate input.
Out << "((";
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(Op)
<< "))[" << (SrcVal & (NumElts-1)) << "]";
} else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
Out << "0";
} else {
printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
(NumElts-1)),
false);
}
}
}
Out << "}";
}
void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
// Start by copying the entire aggregate value into the result variable.
writeOperand(IVI.getOperand(0));
Out << ";\n ";
// Then do the insert to update the field.
Out << GetValueName(&IVI);
for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
i != e; ++i) {
const Type *IndexedTy =
ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
if (isa<ArrayType>(IndexedTy))
Out << ".array[" << *i << "]";
else
Out << ".field" << *i;
}
Out << " = ";
writeOperand(IVI.getOperand(1));
}
void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
Out << "(";
if (isa<UndefValue>(EVI.getOperand(0))) {
Out << "(";
printType(Out, EVI.getType());
Out << ") 0/*UNDEF*/";
} else {
Out << GetValueName(EVI.getOperand(0));
for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
i != e; ++i) {
const Type *IndexedTy =
ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
if (isa<ArrayType>(IndexedTy))
Out << ".array[" << *i << "]";
else
Out << ".field" << *i;
}
}
Out << ")";
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
raw_ostream &o,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel) {
if (FileType != TargetMachine::AssemblyFile) return true;
PM.add(createGCLoweringPass());
PM.add(createLowerAllocationsPass(true));
PM.add(createLowerInvokePass());
PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
PM.add(new CWriter(o));
PM.add(createGCInfoDeleter());
return false;
}
|