1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
|
//===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for the Cell SPU,
// converting from a legalized dag to a SPU-target dag.
//
//===----------------------------------------------------------------------===//
#include "SPU.h"
#include "SPUTargetMachine.h"
#include "SPUISelLowering.h"
#include "SPUHazardRecognizers.h"
#include "SPUFrameInfo.h"
#include "SPURegisterNames.h"
#include "SPUTargetMachine.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI64IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getSExtValue());
}
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI32IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getSExtValue());
}
//! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
bool
isI32IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant(CN->getSExtValue());
}
//! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getSExtValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(SDNode *N)
{
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
return (CN != 0 && isI16IntS10Immediate(CN));
}
//! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
bool
isI16IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant((short) CN->getZExtValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntU10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntU10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for signed 16-bit values
/*!
\arg CN The constant SelectionDAG node holding the value
\arg Imm The returned 16-bit value, if returning true
This predicate tests the value in \a CN to see whether it can be
represented as a 16-bit, sign-extended quantity. Returns true if
this is the case.
*/
bool
isIntS16Immediate(ConstantSDNode *CN, short &Imm)
{
EVT vt = CN->getValueType(0);
Imm = (short) CN->getZExtValue();
if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) {
return true;
} else if (vt == MVT::i32) {
int32_t i_val = (int32_t) CN->getZExtValue();
short s_val = (short) i_val;
return i_val == s_val;
} else {
int64_t i_val = (int64_t) CN->getZExtValue();
short s_val = (short) i_val;
return i_val == s_val;
}
return false;
}
//! SDNode predicate for signed 16-bit values.
bool
isIntS16Immediate(SDNode *N, short &Imm)
{
return (N->getOpcode() == ISD::Constant
&& isIntS16Immediate(cast<ConstantSDNode>(N), Imm));
}
//! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
static bool
isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
{
EVT vt = FPN->getValueType(0);
if (vt == MVT::f32) {
int val = FloatToBits(FPN->getValueAPF().convertToFloat());
int sval = (int) ((val << 16) >> 16);
Imm = (short) val;
return val == sval;
}
return false;
}
bool
isHighLow(const SDValue &Op)
{
return (Op.getOpcode() == SPUISD::IndirectAddr
&& ((Op.getOperand(0).getOpcode() == SPUISD::Hi
&& Op.getOperand(1).getOpcode() == SPUISD::Lo)
|| (Op.getOperand(0).getOpcode() == SPUISD::Lo
&& Op.getOperand(1).getOpcode() == SPUISD::Hi)));
}
//===------------------------------------------------------------------===//
//! EVT to "useful stuff" mapping structure:
struct valtype_map_s {
EVT VT;
unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
bool ldresult_imm; /// LDRESULT instruction requires immediate?
unsigned lrinst; /// LR instruction
};
const valtype_map_s valtype_map[] = {
{ MVT::i8, SPU::ORBIr8, true, SPU::LRr8 },
{ MVT::i16, SPU::ORHIr16, true, SPU::LRr16 },
{ MVT::i32, SPU::ORIr32, true, SPU::LRr32 },
{ MVT::i64, SPU::ORr64, false, SPU::LRr64 },
{ MVT::f32, SPU::ORf32, false, SPU::LRf32 },
{ MVT::f64, SPU::ORf64, false, SPU::LRf64 },
// vector types... (sigh!)
{ MVT::v16i8, 0, false, SPU::LRv16i8 },
{ MVT::v8i16, 0, false, SPU::LRv8i16 },
{ MVT::v4i32, 0, false, SPU::LRv4i32 },
{ MVT::v2i64, 0, false, SPU::LRv2i64 },
{ MVT::v4f32, 0, false, SPU::LRv4f32 },
{ MVT::v2f64, 0, false, SPU::LRv2f64 }
};
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
const valtype_map_s *getValueTypeMapEntry(EVT VT)
{
const valtype_map_s *retval = 0;
for (size_t i = 0; i < n_valtype_map; ++i) {
if (valtype_map[i].VT == VT) {
retval = valtype_map + i;
break;
}
}
#ifndef NDEBUG
if (retval == 0) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
<< VT.getEVTString();
llvm_report_error(Msg.str());
}
#endif
return retval;
}
//! Generate the carry-generate shuffle mask.
SDValue getCarryGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
SmallVector<SDValue, 16 > ShufBytes;
// Create the shuffle mask for "rotating" the borrow up one register slot
// once the borrow is generated.
ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
&ShufBytes[0], ShufBytes.size());
}
//! Generate the borrow-generate shuffle mask
SDValue getBorrowGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
SmallVector<SDValue, 16 > ShufBytes;
// Create the shuffle mask for "rotating" the borrow up one register slot
// once the borrow is generated.
ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
&ShufBytes[0], ShufBytes.size());
}
//===------------------------------------------------------------------===//
/// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
/// instructions for SelectionDAG operations.
///
class SPUDAGToDAGISel :
public SelectionDAGISel
{
SPUTargetMachine &TM;
SPUTargetLowering &SPUtli;
unsigned GlobalBaseReg;
public:
explicit SPUDAGToDAGISel(SPUTargetMachine &tm) :
SelectionDAGISel(tm),
TM(tm),
SPUtli(*tm.getTargetLowering())
{ }
virtual bool runOnMachineFunction(MachineFunction &MF) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDValue getI32Imm(uint32_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDValue getI64Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
/// getSmallIPtrImm - Return a target constant of pointer type.
inline SDValue getSmallIPtrImm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
}
SDNode *emitBuildVector(SDValue build_vec) {
EVT vecVT = build_vec.getValueType();
EVT eltVT = vecVT.getVectorElementType();
SDNode *bvNode = build_vec.getNode();
DebugLoc dl = bvNode->getDebugLoc();
// Check to see if this vector can be represented as a CellSPU immediate
// constant by invoking all of the instruction selection predicates:
if (((vecVT == MVT::v8i16) &&
(SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i16).getNode() != 0)) ||
((vecVT == MVT::v4i32) &&
((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
(SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
(SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
(SPU::get_v4i32_imm(bvNode, *CurDAG).getNode() != 0))) ||
((vecVT == MVT::v2i64) &&
((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
(SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
(SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i64).getNode() != 0))))
return Select(build_vec);
// No, need to emit a constant pool spill:
std::vector<Constant*> CV;
for (size_t i = 0; i < build_vec.getNumOperands(); ++i) {
ConstantSDNode *V = dyn_cast<ConstantSDNode > (build_vec.getOperand(i));
CV.push_back(const_cast<ConstantInt *> (V->getConstantIntValue()));
}
Constant *CP = ConstantVector::get(CV);
SDValue CPIdx = CurDAG->getConstantPool(CP, SPUtli.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
SDValue CGPoolOffset =
SPU::LowerConstantPool(CPIdx, *CurDAG,
SPUtli.getSPUTargetMachine());
return SelectCode(CurDAG->getLoad(build_vec.getValueType(), dl,
CurDAG->getEntryNode(), CGPoolOffset,
PseudoSourceValue::getConstantPool(), 0,
false, Alignment));
}
/// Select - Convert the specified operand from a target-independent to a
/// target-specific node if it hasn't already been changed.
SDNode *Select(SDValue Op);
//! Emit the instruction sequence for i64 shl
SDNode *SelectSHLi64(SDValue &Op, EVT OpVT);
//! Emit the instruction sequence for i64 srl
SDNode *SelectSRLi64(SDValue &Op, EVT OpVT);
//! Emit the instruction sequence for i64 sra
SDNode *SelectSRAi64(SDValue &Op, EVT OpVT);
//! Emit the necessary sequence for loading i64 constants:
SDNode *SelectI64Constant(SDValue &Op, EVT OpVT, DebugLoc dl);
//! Alternate instruction emit sequence for loading i64 constants
SDNode *SelectI64Constant(uint64_t i64const, EVT OpVT, DebugLoc dl);
//! Returns true if the address N is an A-form (local store) address
bool SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index);
//! D-form address predicate
bool SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index);
/// Alternate D-form address using i7 offset predicate
bool SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
SDValue &Base);
/// D-form address selection workhorse
bool DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Disp,
SDValue &Base, int minOffset, int maxOffset);
//! Address predicate if N can be expressed as an indexed [r+r] operation.
bool SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) {
SDValue Op0, Op1;
switch (ConstraintCode) {
default: return true;
case 'm': // memory
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1))
SelectXFormAddr(Op, Op, Op0, Op1);
break;
case 'o': // offsetable
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1)) {
Op0 = Op;
Op1 = getSmallIPtrImm(0);
}
break;
case 'v': // not offsetable
#if 1
llvm_unreachable("InlineAsmMemoryOperand 'v' constraint not handled.");
#else
SelectAddrIdxOnly(Op, Op, Op0, Op1);
#endif
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelect();
virtual const char *getPassName() const {
return "Cell SPU DAG->DAG Pattern Instruction Selection";
}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
const TargetInstrInfo *II = TM.getInstrInfo();
assert(II && "No InstrInfo?");
return new SPUHazardRecognizer(*II);
}
// Include the pieces autogenerated from the target description.
#include "SPUGenDAGISel.inc"
};
}
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void
SPUDAGToDAGISel::InstructionSelect()
{
DEBUG(BB->dump());
// Select target instructions for the DAG.
SelectRoot(*CurDAG);
CurDAG->RemoveDeadNodes();
}
/*!
\arg Op The ISD instruction operand
\arg N The address to be tested
\arg Base The base address
\arg Index The base address index
*/
bool
SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index) {
// These match the addr256k operand type:
EVT OffsVT = MVT::i16;
SDValue Zero = CurDAG->getTargetConstant(0, OffsVT);
switch (N.getOpcode()) {
case ISD::Constant:
case ISD::ConstantPool:
case ISD::GlobalAddress:
llvm_report_error("SPU SelectAFormAddr: Constant/Pool/Global not lowered.");
/*NOTREACHED*/
case ISD::TargetConstant:
case ISD::TargetGlobalAddress:
case ISD::TargetJumpTable:
llvm_report_error("SPUSelectAFormAddr: Target Constant/Pool/Global "
"not wrapped as A-form address.");
/*NOTREACHED*/
case SPUISD::AFormAddr:
// Just load from memory if there's only a single use of the location,
// otherwise, this will get handled below with D-form offset addresses
if (N.hasOneUse()) {
SDValue Op0 = N.getOperand(0);
switch (Op0.getOpcode()) {
case ISD::TargetConstantPool:
case ISD::TargetJumpTable:
Base = Op0;
Index = Zero;
return true;
case ISD::TargetGlobalAddress: {
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op0);
GlobalValue *GV = GSDN->getGlobal();
if (GV->getAlignment() == 16) {
Base = Op0;
Index = Zero;
return true;
}
break;
}
}
}
break;
}
return false;
}
bool
SPUDAGToDAGISel::SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
SDValue &Base) {
const int minDForm2Offset = -(1 << 7);
const int maxDForm2Offset = (1 << 7) - 1;
return DFormAddressPredicate(Op, N, Disp, Base, minDForm2Offset,
maxDForm2Offset);
}
/*!
\arg Op The ISD instruction (ignored)
\arg N The address to be tested
\arg Base Base address register/pointer
\arg Index Base address index
Examine the input address by a base register plus a signed 10-bit
displacement, [r+I10] (D-form address).
\return true if \a N is a D-form address with \a Base and \a Index set
to non-empty SDValue instances.
*/
bool
SPUDAGToDAGISel::SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index) {
return DFormAddressPredicate(Op, N, Base, Index,
SPUFrameInfo::minFrameOffset(),
SPUFrameInfo::maxFrameOffset());
}
bool
SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index, int minOffset,
int maxOffset) {
unsigned Opc = N.getOpcode();
EVT PtrTy = SPUtli.getPointerTy();
if (Opc == ISD::FrameIndex) {
// Stack frame index must be less than 512 (divided by 16):
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N);
int FI = int(FIN->getIndex());
DEBUG(errs() << "SelectDFormAddr: ISD::FrameIndex = "
<< FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
return true;
}
} else if (Opc == ISD::ADD) {
// Generated by getelementptr
const SDValue Op0 = N.getOperand(0);
const SDValue Op1 = N.getOperand(1);
if ((Op0.getOpcode() == SPUISD::Hi && Op1.getOpcode() == SPUISD::Lo)
|| (Op1.getOpcode() == SPUISD::Hi && Op0.getOpcode() == SPUISD::Lo)) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = N;
return true;
} else if (Op1.getOpcode() == ISD::Constant
|| Op1.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1);
int32_t offset = int32_t(CN->getSExtValue());
if (Op0.getOpcode() == ISD::FrameIndex) {
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op0);
int FI = int(FIN->getIndex());
DEBUG(errs() << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
return true;
}
} else if (offset > minOffset && offset < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = Op0;
return true;
}
} else if (Op0.getOpcode() == ISD::Constant
|| Op0.getOpcode() == ISD::TargetConstant) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0);
int32_t offset = int32_t(CN->getSExtValue());
if (Op1.getOpcode() == ISD::FrameIndex) {
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op1);
int FI = int(FIN->getIndex());
DEBUG(errs() << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
return true;
}
} else if (offset > minOffset && offset < maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = Op1;
return true;
}
}
} else if (Opc == SPUISD::IndirectAddr) {
// Indirect with constant offset -> D-Form address
const SDValue Op0 = N.getOperand(0);
const SDValue Op1 = N.getOperand(1);
if (Op0.getOpcode() == SPUISD::Hi
&& Op1.getOpcode() == SPUISD::Lo) {
// (SPUindirect (SPUhi <arg>, 0), (SPUlo <arg>, 0))
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = N;
return true;
} else if (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1)) {
int32_t offset = 0;
SDValue idxOp;
if (isa<ConstantSDNode>(Op1)) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
offset = int32_t(CN->getSExtValue());
idxOp = Op0;
} else if (isa<ConstantSDNode>(Op0)) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op0);
offset = int32_t(CN->getSExtValue());
idxOp = Op1;
}
if (offset >= minOffset && offset <= maxOffset) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = idxOp;
return true;
}
}
} else if (Opc == SPUISD::AFormAddr) {
Base = CurDAG->getTargetConstant(0, N.getValueType());
Index = N;
return true;
} else if (Opc == SPUISD::LDRESULT) {
Base = CurDAG->getTargetConstant(0, N.getValueType());
Index = N;
return true;
} else if (Opc == ISD::Register || Opc == ISD::CopyFromReg) {
unsigned OpOpc = Op.getOpcode();
if (OpOpc == ISD::STORE || OpOpc == ISD::LOAD) {
// Direct load/store without getelementptr
SDValue Addr, Offs;
// Get the register from CopyFromReg
if (Opc == ISD::CopyFromReg)
Addr = N.getOperand(1);
else
Addr = N; // Register
Offs = ((OpOpc == ISD::STORE) ? Op.getOperand(3) : Op.getOperand(2));
if (Offs.getOpcode() == ISD::Constant || Offs.getOpcode() == ISD::UNDEF) {
if (Offs.getOpcode() == ISD::UNDEF)
Offs = CurDAG->getTargetConstant(0, Offs.getValueType());
Base = Offs;
Index = Addr;
return true;
}
} else {
/* If otherwise unadorned, default to D-form address with 0 offset: */
if (Opc == ISD::CopyFromReg) {
Index = N.getOperand(1);
} else {
Index = N;
}
Base = CurDAG->getTargetConstant(0, Index.getValueType());
return true;
}
}
return false;
}
/*!
\arg Op The ISD instruction operand
\arg N The address operand
\arg Base The base pointer operand
\arg Index The offset/index operand
If the address \a N can be expressed as an A-form or D-form address, returns
false. Otherwise, creates two operands, Base and Index that will become the
(r)(r) X-form address.
*/
bool
SPUDAGToDAGISel::SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index) {
if (!SelectAFormAddr(Op, N, Base, Index)
&& !SelectDFormAddr(Op, N, Base, Index)) {
// If the address is neither A-form or D-form, punt and use an X-form
// address:
Base = N.getOperand(1);
Index = N.getOperand(0);
return true;
}
return false;
}
//! Convert the operand from a target-independent to a target-specific node
/*!
*/
SDNode *
SPUDAGToDAGISel::Select(SDValue Op) {
SDNode *N = Op.getNode();
unsigned Opc = N->getOpcode();
int n_ops = -1;
unsigned NewOpc;
EVT OpVT = Op.getValueType();
SDValue Ops[8];
DebugLoc dl = N->getDebugLoc();
if (N->isMachineOpcode()) {
return NULL; // Already selected.
}
if (Opc == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
SDValue Imm0 = CurDAG->getTargetConstant(0, Op.getValueType());
if (FI < 128) {
NewOpc = SPU::AIr32;
Ops[0] = TFI;
Ops[1] = Imm0;
n_ops = 2;
} else {
NewOpc = SPU::Ar32;
Ops[0] = CurDAG->getRegister(SPU::R1, Op.getValueType());
Ops[1] = SDValue(CurDAG->getTargetNode(SPU::ILAr32, dl, Op.getValueType(),
TFI, Imm0), 0);
n_ops = 2;
}
} else if (Opc == ISD::Constant && OpVT == MVT::i64) {
// Catch the i64 constants that end up here. Note: The backend doesn't
// attempt to legalize the constant (it's useless because DAGCombiner
// will insert 64-bit constants and we can't stop it).
return SelectI64Constant(Op, OpVT, Op.getDebugLoc());
} else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
&& OpVT == MVT::i64) {
SDValue Op0 = Op.getOperand(0);
EVT Op0VT = Op0.getValueType();
EVT Op0VecVT = EVT::getVectorVT(*CurDAG->getContext(),
Op0VT, (128 / Op0VT.getSizeInBits()));
EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
SDValue shufMask;
switch (Op0VT.getSimpleVT().SimpleTy) {
default:
llvm_report_error("CellSPU Select: Unhandled zero/any extend EVT");
/*NOTREACHED*/
case MVT::i32:
shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
CurDAG->getConstant(0x80808080, MVT::i32),
CurDAG->getConstant(0x00010203, MVT::i32),
CurDAG->getConstant(0x80808080, MVT::i32),
CurDAG->getConstant(0x08090a0b, MVT::i32));
break;
case MVT::i16:
shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
CurDAG->getConstant(0x80808080, MVT::i32),
CurDAG->getConstant(0x80800203, MVT::i32),
CurDAG->getConstant(0x80808080, MVT::i32),
CurDAG->getConstant(0x80800a0b, MVT::i32));
break;
case MVT::i8:
shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
CurDAG->getConstant(0x80808080, MVT::i32),
CurDAG->getConstant(0x80808003, MVT::i32),
CurDAG->getConstant(0x80808080, MVT::i32),
CurDAG->getConstant(0x8080800b, MVT::i32));
break;
}
SDNode *shufMaskLoad = emitBuildVector(shufMask);
SDNode *PromoteScalar =
SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl, Op0VecVT, Op0));
SDValue zextShuffle =
CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
SDValue(PromoteScalar, 0),
SDValue(PromoteScalar, 0),
SDValue(shufMaskLoad, 0));
// N.B.: BIT_CONVERT replaces and updates the zextShuffle node, so we
// re-use it in the VEC2PREFSLOT selection without needing to explicitly
// call SelectCode (it's already done for us.)
SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, OpVecVT, zextShuffle));
return SelectCode(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT,
zextShuffle));
} else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
SDNode *CGLoad =
emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
return SelectCode(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT,
Op.getOperand(0), Op.getOperand(1),
SDValue(CGLoad, 0)));
} else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
SDNode *CGLoad =
emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl));
return SelectCode(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT,
Op.getOperand(0), Op.getOperand(1),
SDValue(CGLoad, 0)));
} else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
SDNode *CGLoad =
emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
return SelectCode(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT,
Op.getOperand(0), Op.getOperand(1),
SDValue(CGLoad, 0)));
} else if (Opc == ISD::TRUNCATE) {
SDValue Op0 = Op.getOperand(0);
if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL)
&& OpVT == MVT::i32
&& Op0.getValueType() == MVT::i64) {
// Catch (truncate:i32 ([sra|srl]:i64 arg, c), where c >= 32
//
// Take advantage of the fact that the upper 32 bits are in the
// i32 preferred slot and avoid shuffle gymnastics:
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
if (CN != 0) {
unsigned shift_amt = unsigned(CN->getZExtValue());
if (shift_amt >= 32) {
SDNode *hi32 =
CurDAG->getTargetNode(SPU::ORr32_r64, dl, OpVT,
Op0.getOperand(0));
shift_amt -= 32;
if (shift_amt > 0) {
// Take care of the additional shift, if present:
SDValue shift = CurDAG->getTargetConstant(shift_amt, MVT::i32);
unsigned Opc = SPU::ROTMAIr32_i32;
if (Op0.getOpcode() == ISD::SRL)
Opc = SPU::ROTMr32;
hi32 = CurDAG->getTargetNode(Opc, dl, OpVT, SDValue(hi32, 0),
shift);
}
return hi32;
}
}
}
} else if (Opc == ISD::SHL) {
if (OpVT == MVT::i64) {
return SelectSHLi64(Op, OpVT);
}
} else if (Opc == ISD::SRL) {
if (OpVT == MVT::i64) {
return SelectSRLi64(Op, OpVT);
}
} else if (Opc == ISD::SRA) {
if (OpVT == MVT::i64) {
return SelectSRAi64(Op, OpVT);
}
} else if (Opc == ISD::FNEG
&& (OpVT == MVT::f64 || OpVT == MVT::v2f64)) {
DebugLoc dl = Op.getDebugLoc();
// Check if the pattern is a special form of DFNMS:
// (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))
SDValue Op0 = Op.getOperand(0);
if (Op0.getOpcode() == ISD::FSUB) {
SDValue Op00 = Op0.getOperand(0);
if (Op00.getOpcode() == ISD::FMUL) {
unsigned Opc = SPU::DFNMSf64;
if (OpVT == MVT::v2f64)
Opc = SPU::DFNMSv2f64;
return CurDAG->getTargetNode(Opc, dl, OpVT,
Op00.getOperand(0),
Op00.getOperand(1),
Op0.getOperand(1));
}
}
SDValue negConst = CurDAG->getConstant(0x8000000000000000ULL, MVT::i64);
SDNode *signMask = 0;
unsigned Opc = SPU::XORfneg64;
if (OpVT == MVT::f64) {
signMask = SelectI64Constant(negConst, MVT::i64, dl);
} else if (OpVT == MVT::v2f64) {
Opc = SPU::XORfnegvec;
signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl,
MVT::v2i64,
negConst, negConst));
}
return CurDAG->getTargetNode(Opc, dl, OpVT,
Op.getOperand(0), SDValue(signMask, 0));
} else if (Opc == ISD::FABS) {
if (OpVT == MVT::f64) {
SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
return CurDAG->getTargetNode(SPU::ANDfabs64, dl, OpVT,
Op.getOperand(0), SDValue(signMask, 0));
} else if (OpVT == MVT::v2f64) {
SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
absConst, absConst);
SDNode *signMask = emitBuildVector(absVec);
return CurDAG->getTargetNode(SPU::ANDfabsvec, dl, OpVT,
Op.getOperand(0), SDValue(signMask, 0));
}
} else if (Opc == SPUISD::LDRESULT) {
// Custom select instructions for LDRESULT
EVT VT = N->getValueType(0);
SDValue Arg = N->getOperand(0);
SDValue Chain = N->getOperand(1);
SDNode *Result;
const valtype_map_s *vtm = getValueTypeMapEntry(VT);
if (vtm->ldresult_ins == 0) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "LDRESULT for unsupported type: "
<< VT.getEVTString();
llvm_report_error(Msg.str());
}
Opc = vtm->ldresult_ins;
if (vtm->ldresult_imm) {
SDValue Zero = CurDAG->getTargetConstant(0, VT);
Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Zero, Chain);
} else {
Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Arg, Chain);
}
return Result;
} else if (Opc == SPUISD::IndirectAddr) {
// Look at the operands: SelectCode() will catch the cases that aren't
// specifically handled here.
//
// SPUInstrInfo catches the following patterns:
// (SPUindirect (SPUhi ...), (SPUlo ...))
// (SPUindirect $sp, imm)
EVT VT = Op.getValueType();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
RegisterSDNode *RN;
if ((Op0.getOpcode() != SPUISD::Hi && Op1.getOpcode() != SPUISD::Lo)
|| (Op0.getOpcode() == ISD::Register
&& ((RN = dyn_cast<RegisterSDNode>(Op0.getNode())) != 0
&& RN->getReg() != SPU::R1))) {
NewOpc = SPU::Ar32;
if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
Op1 = CurDAG->getTargetConstant(CN->getSExtValue(), VT);
NewOpc = (isI32IntS10Immediate(CN) ? SPU::AIr32 : SPU::Ar32);
}
Ops[0] = Op0;
Ops[1] = Op1;
n_ops = 2;
}
}
if (n_ops > 0) {
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
else
return CurDAG->getTargetNode(NewOpc, dl, OpVT, Ops, n_ops);
} else
return SelectCode(Op);
}
/*!
* Emit the instruction sequence for i64 left shifts. The basic algorithm
* is to fill the bottom two word slots with zeros so that zeros are shifted
* in as the entire quadword is shifted left.
*
* \note This code could also be used to implement v2i64 shl.
*
* @param Op The shl operand
* @param OpVT Op's machine value value type (doesn't need to be passed, but
* makes life easier.)
* @return The SDNode with the entire instruction sequence
*/
SDNode *
SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, EVT OpVT) {
SDValue Op0 = Op.getOperand(0);
EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
SDValue ShiftAmt = Op.getOperand(1);
EVT ShiftAmtVT = ShiftAmt.getValueType();
SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0;
SDValue SelMaskVal;
DebugLoc dl = Op.getDebugLoc();
VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16);
SelMask = CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal);
ZeroFill = CurDAG->getTargetNode(SPU::ILv2i64, dl, VecVT,
CurDAG->getTargetConstant(0, OpVT));
VecOp0 = CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
SDValue(ZeroFill, 0),
SDValue(VecOp0, 0),
SDValue(SelMask, 0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
unsigned bits = unsigned(CN->getZExtValue()) & 7;
if (bytes > 0) {
Shift =
CurDAG->getTargetNode(SPU::SHLQBYIv2i64, dl, VecVT,
SDValue(VecOp0, 0),
CurDAG->getTargetConstant(bytes, ShiftAmtVT));
}
if (bits > 0) {
Shift =
CurDAG->getTargetNode(SPU::SHLQBIIv2i64, dl, VecVT,
SDValue((Shift != 0 ? Shift : VecOp0), 0),
CurDAG->getTargetConstant(bits, ShiftAmtVT));
}
} else {
SDNode *Bytes =
CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
ShiftAmt,
CurDAG->getTargetConstant(3, ShiftAmtVT));
SDNode *Bits =
CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
ShiftAmt,
CurDAG->getTargetConstant(7, ShiftAmtVT));
Shift =
CurDAG->getTargetNode(SPU::SHLQBYv2i64, dl, VecVT,
SDValue(VecOp0, 0), SDValue(Bytes, 0));
Shift =
CurDAG->getTargetNode(SPU::SHLQBIv2i64, dl, VecVT,
SDValue(Shift, 0), SDValue(Bits, 0));
}
return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
}
/*!
* Emit the instruction sequence for i64 logical right shifts.
*
* @param Op The shl operand
* @param OpVT Op's machine value value type (doesn't need to be passed, but
* makes life easier.)
* @return The SDNode with the entire instruction sequence
*/
SDNode *
SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, EVT OpVT) {
SDValue Op0 = Op.getOperand(0);
EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
SDValue ShiftAmt = Op.getOperand(1);
EVT ShiftAmtVT = ShiftAmt.getValueType();
SDNode *VecOp0, *Shift = 0;
DebugLoc dl = Op.getDebugLoc();
VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
unsigned bits = unsigned(CN->getZExtValue()) & 7;
if (bytes > 0) {
Shift =
CurDAG->getTargetNode(SPU::ROTQMBYIv2i64, dl, VecVT,
SDValue(VecOp0, 0),
CurDAG->getTargetConstant(bytes, ShiftAmtVT));
}
if (bits > 0) {
Shift =
CurDAG->getTargetNode(SPU::ROTQMBIIv2i64, dl, VecVT,
SDValue((Shift != 0 ? Shift : VecOp0), 0),
CurDAG->getTargetConstant(bits, ShiftAmtVT));
}
} else {
SDNode *Bytes =
CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
ShiftAmt,
CurDAG->getTargetConstant(3, ShiftAmtVT));
SDNode *Bits =
CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
ShiftAmt,
CurDAG->getTargetConstant(7, ShiftAmtVT));
// Ensure that the shift amounts are negated!
Bytes = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
SDValue(Bytes, 0),
CurDAG->getTargetConstant(0, ShiftAmtVT));
Bits = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
SDValue(Bits, 0),
CurDAG->getTargetConstant(0, ShiftAmtVT));
Shift =
CurDAG->getTargetNode(SPU::ROTQMBYv2i64, dl, VecVT,
SDValue(VecOp0, 0), SDValue(Bytes, 0));
Shift =
CurDAG->getTargetNode(SPU::ROTQMBIv2i64, dl, VecVT,
SDValue(Shift, 0), SDValue(Bits, 0));
}
return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
}
/*!
* Emit the instruction sequence for i64 arithmetic right shifts.
*
* @param Op The shl operand
* @param OpVT Op's machine value value type (doesn't need to be passed, but
* makes life easier.)
* @return The SDNode with the entire instruction sequence
*/
SDNode *
SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, EVT OpVT) {
// Promote Op0 to vector
EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
SDValue ShiftAmt = Op.getOperand(1);
EVT ShiftAmtVT = ShiftAmt.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDNode *VecOp0 =
CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0));
SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT);
SDNode *SignRot =
CurDAG->getTargetNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64,
SDValue(VecOp0, 0), SignRotAmt);
SDNode *UpperHalfSign =
CurDAG->getTargetNode(SPU::ORi32_v4i32, dl, MVT::i32, SDValue(SignRot, 0));
SDNode *UpperHalfSignMask =
CurDAG->getTargetNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0));
SDNode *UpperLowerMask =
CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT,
CurDAG->getTargetConstant(0xff00ULL, MVT::i16));
SDNode *UpperLowerSelect =
CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
SDValue(UpperHalfSignMask, 0),
SDValue(VecOp0, 0),
SDValue(UpperLowerMask, 0));
SDNode *Shift = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
unsigned bits = unsigned(CN->getZExtValue()) & 7;
if (bytes > 0) {
bytes = 31 - bytes;
Shift =
CurDAG->getTargetNode(SPU::ROTQBYIv2i64, dl, VecVT,
SDValue(UpperLowerSelect, 0),
CurDAG->getTargetConstant(bytes, ShiftAmtVT));
}
if (bits > 0) {
bits = 8 - bits;
Shift =
CurDAG->getTargetNode(SPU::ROTQBIIv2i64, dl, VecVT,
SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0),
CurDAG->getTargetConstant(bits, ShiftAmtVT));
}
} else {
SDNode *NegShift =
CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT));
Shift =
CurDAG->getTargetNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT,
SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0));
Shift =
CurDAG->getTargetNode(SPU::ROTQBIv2i64, dl, VecVT,
SDValue(Shift, 0), SDValue(NegShift, 0));
}
return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
}
/*!
Do the necessary magic necessary to load a i64 constant
*/
SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, EVT OpVT,
DebugLoc dl) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode());
return SelectI64Constant(CN->getZExtValue(), OpVT, dl);
}
SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
DebugLoc dl) {
EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(), OpVT, 2);
SDValue i64vec =
SPU::LowerV2I64Splat(OpVecVT, *CurDAG, Value64, dl);
// Here's where it gets interesting, because we have to parse out the
// subtree handed back in i64vec:
if (i64vec.getOpcode() == ISD::BIT_CONVERT) {
// The degenerate case where the upper and lower bits in the splat are
// identical:
SDValue Op0 = i64vec.getOperand(0);
ReplaceUses(i64vec, Op0);
return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
SDValue(emitBuildVector(Op0), 0));
} else if (i64vec.getOpcode() == SPUISD::SHUFB) {
SDValue lhs = i64vec.getOperand(0);
SDValue rhs = i64vec.getOperand(1);
SDValue shufmask = i64vec.getOperand(2);
if (lhs.getOpcode() == ISD::BIT_CONVERT) {
ReplaceUses(lhs, lhs.getOperand(0));
lhs = lhs.getOperand(0);
}
SDNode *lhsNode = (lhs.getNode()->isMachineOpcode()
? lhs.getNode()
: emitBuildVector(lhs));
if (rhs.getOpcode() == ISD::BIT_CONVERT) {
ReplaceUses(rhs, rhs.getOperand(0));
rhs = rhs.getOperand(0);
}
SDNode *rhsNode = (rhs.getNode()->isMachineOpcode()
? rhs.getNode()
: emitBuildVector(rhs));
if (shufmask.getOpcode() == ISD::BIT_CONVERT) {
ReplaceUses(shufmask, shufmask.getOperand(0));
shufmask = shufmask.getOperand(0);
}
SDNode *shufMaskNode = (shufmask.getNode()->isMachineOpcode()
? shufmask.getNode()
: emitBuildVector(shufmask));
SDNode *shufNode =
Select(CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
SDValue(lhsNode, 0), SDValue(rhsNode, 0),
SDValue(shufMaskNode, 0)));
return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
SDValue(shufNode, 0));
} else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) {
return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
SDValue(emitBuildVector(i64vec), 0));
} else {
llvm_report_error("SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec"
"condition");
}
}
/// createSPUISelDag - This pass converts a legalized DAG into a
/// SPU-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
return new SPUDAGToDAGISel(TM);
}
|