aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/CellSPU/SPUInstrInfo.td
blob: faa6a7cca2e2cd35e3e433745ded566757aa6bcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by a team from the Computer Systems Research
// Department at The Aerospace Corporation and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// Cell SPU Instructions:
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// TODO Items (not urgent today, but would be nice, low priority)
//
// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
// in 16-bit and 32-bit constants and reduce instruction count.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pseudo instructions:
//===----------------------------------------------------------------------===//

let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt),
                                "${:comment} ADJCALLSTACKDOWN",
                                [(callseq_start imm:$amt)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins u16imm:$amt),
                                "${:comment} ADJCALLSTACKUP",
                                [(callseq_end imm:$amt)]>;
}

//===----------------------------------------------------------------------===//
// DWARF debugging Pseudo Instructions
//===----------------------------------------------------------------------===//

def DWARF_LOC        : Pseudo<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file),
                              "${:comment} .loc $file, $line, $col",
                      [(dwarf_loc (i32 imm:$line), (i32 imm:$col),
                                  (i32 imm:$file))]>;

//===----------------------------------------------------------------------===//
// Loads:
// NB: The ordering is actually important, since the instruction selection
// will try each of the instructions in sequence, i.e., the D-form first with
// the 10-bit displacement, then the A-form with the 16 bit displacement, and
// finally the X-form with the register-register.
//===----------------------------------------------------------------------===//

let isLoad = 1 in {
  def LQDv16i8:
      RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set (v16i8 VECREG:$rT), (load dform_addr:$src))]>;

  def LQDv8i16:
      RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set (v8i16 VECREG:$rT), (load dform_addr:$src))]>;

  def LQDv4i32:
      RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set (v4i32 VECREG:$rT), (load dform_addr:$src))]>;

  def LQDv2i64:
      RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set (v2i64 VECREG:$rT), (load dform_addr:$src))]>;

  def LQDv4f32:
      RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set (v4f32 VECREG:$rT), (load dform_addr:$src))]>;

  def LQDv2f64:
      RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set (v2f64 VECREG:$rT), (load dform_addr:$src))]>;

  def LQDr128:
      RI10Form<0b00101100, (outs GPRC:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set GPRC:$rT, (load dform_addr:$src))]>;

  def LQDr64:
      RI10Form<0b00101100, (outs R64C:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
         [(set R64C:$rT, (load dform_addr:$src))]>;

  def LQDr32:
      RI10Form<0b00101100, (outs R32C:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set R32C:$rT, (load dform_addr:$src))]>;

  // Floating Point
  def LQDf32:
      RI10Form<0b00101100, (outs R32FP:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set R32FP:$rT, (load dform_addr:$src))]>;

  def LQDf64:
      RI10Form<0b00101100, (outs R64FP:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set R64FP:$rT, (load dform_addr:$src))]>;
  // END Floating Point

  def LQDr16:
      RI10Form<0b00101100, (outs R16C:$rT), (ins memri10:$src),
        "lqd\t$rT, $src", LoadStore,
        [(set R16C:$rT, (load dform_addr:$src))]>;

  def LQAv16i8:
      RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set (v16i8 VECREG:$rT), (load aform_addr:$src))]>;

  def LQAv8i16:
      RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set (v8i16 VECREG:$rT), (load aform_addr:$src))]>;

  def LQAv4i32:
      RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set (v4i32 VECREG:$rT), (load aform_addr:$src))]>;

  def LQAv2i64:
      RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set (v2i64 VECREG:$rT), (load aform_addr:$src))]>;

  def LQAv4f32:
      RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set (v4f32 VECREG:$rT), (load aform_addr:$src))]>;

  def LQAv2f64:
      RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set (v2f64 VECREG:$rT), (load aform_addr:$src))]>;

  def LQAr128:
      RI16Form<0b100001100, (outs GPRC:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set GPRC:$rT, (load aform_addr:$src))]>;

  def LQAr64:
      RI16Form<0b100001100, (outs R64C:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set R64C:$rT, (load aform_addr:$src))]>;

  def LQAr32:
      RI16Form<0b100001100, (outs R32C:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set R32C:$rT, (load aform_addr:$src))]>;

  def LQAf32:
      RI16Form<0b100001100, (outs R32FP:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set R32FP:$rT, (load aform_addr:$src))]>;

  def LQAf64:
      RI16Form<0b100001100, (outs R64FP:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set R64FP:$rT, (load aform_addr:$src))]>;

  def LQAr16:
      RI16Form<0b100001100, (outs R16C:$rT), (ins addr256k:$src),
        "lqa\t$rT, $src", LoadStore,
        [(set R16C:$rT, (load aform_addr:$src))]>;

  def LQXv16i8:
      RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set (v16i8 VECREG:$rT), (load xform_addr:$src))]>;

  def LQXv8i16:
      RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set (v8i16 VECREG:$rT), (load xform_addr:$src))]>;

  def LQXv4i32:
      RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set (v4i32 VECREG:$rT), (load xform_addr:$src))]>;

  def LQXv2i64:
      RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set (v2i64 VECREG:$rT), (load xform_addr:$src))]>;

  def LQXv4f32:
      RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set (v4f32 VECREG:$rT), (load xform_addr:$src))]>;

  def LQXv2f64:
      RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set (v2f64 VECREG:$rT), (load xform_addr:$src))]>;

  def LQXr128:
      RRForm<0b00100011100, (outs GPRC:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set GPRC:$rT, (load xform_addr:$src))]>;

  def LQXr64:
      RRForm<0b00100011100, (outs R64C:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set R64C:$rT, (load xform_addr:$src))]>;

  def LQXr32:
      RRForm<0b00100011100, (outs R32C:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set R32C:$rT, (load xform_addr:$src))]>;

  def LQXf32:
      RRForm<0b00100011100, (outs R32FP:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set R32FP:$rT, (load xform_addr:$src))]>;

  def LQXf64:
      RRForm<0b00100011100, (outs R64FP:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set R64FP:$rT, (load xform_addr:$src))]>;

  def LQXr16:
      RRForm<0b00100011100, (outs R16C:$rT), (ins memrr:$src),
        "lqx\t$rT, $src", LoadStore,
        [(set R16C:$rT, (load xform_addr:$src))]>;

/* Load quadword, PC relative: Not much use at this point in time.
   Might be of use later for relocatable code.
  def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
                     "lqr\t$rT, $disp", LoadStore,
                     [(set VECREG:$rT, (load iaddr:$disp))]>;
 */

 // Catch-all for unaligned loads:
}

//===----------------------------------------------------------------------===//
// Stores:
//===----------------------------------------------------------------------===//

let isStore = 1 in {
  def STQDv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store (v16i8 VECREG:$rT), dform_addr:$src)]>;

  def STQDv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store (v8i16 VECREG:$rT), dform_addr:$src)]>;

  def STQDv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store (v4i32 VECREG:$rT), dform_addr:$src)]>;

  def STQDv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store (v2i64 VECREG:$rT), dform_addr:$src)]>;

  def STQDv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store (v4f32 VECREG:$rT), dform_addr:$src)]>;

  def STQDv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store (v2f64 VECREG:$rT), dform_addr:$src)]>;

  def STQDr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store GPRC:$rT, dform_addr:$src)]>;

  def STQDr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store R64C:$rT, dform_addr:$src)]>;

  def STQDr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store R32C:$rT, dform_addr:$src)]>;

  // Floating Point
  def STQDf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store R32FP:$rT, dform_addr:$src)]>;

  def STQDf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store R64FP:$rT, dform_addr:$src)]>;

  def STQDr16 : RI10Form<0b00100100, (outs), (ins R16C:$rT, memri10:$src),
      "stqd\t$rT, $src", LoadStore,
      [(store R16C:$rT, dform_addr:$src)]>;

  def STQAv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store (v16i8 VECREG:$rT), aform_addr:$src)]>;

  def STQAv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store (v8i16 VECREG:$rT), aform_addr:$src)]>;

  def STQAv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store (v4i32 VECREG:$rT), aform_addr:$src)]>;

  def STQAv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store (v2i64 VECREG:$rT), aform_addr:$src)]>;

  def STQAv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store (v4f32 VECREG:$rT), aform_addr:$src)]>;

  def STQAv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store (v2f64 VECREG:$rT), aform_addr:$src)]>;

  def STQAr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store GPRC:$rT, aform_addr:$src)]>;

  def STQAr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store R64C:$rT, aform_addr:$src)]>;

  def STQAr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store R32C:$rT, aform_addr:$src)]>;

  // Floating Point
  def STQAf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store R32FP:$rT, aform_addr:$src)]>;

  def STQAf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, addr256k:$src),
      "stqa\t$rT, $src", LoadStore,
      [(store R64FP:$rT, aform_addr:$src)]>;

  def STQXv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store (v16i8 VECREG:$rT), xform_addr:$src)]>;

  def STQXv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store (v8i16 VECREG:$rT), xform_addr:$src)]>;

  def STQXv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store (v4i32 VECREG:$rT), xform_addr:$src)]>;

  def STQXv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store (v2i64 VECREG:$rT), xform_addr:$src)]>;

  def STQXv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store (v4f32 VECREG:$rT), xform_addr:$src)]>;

  def STQXv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store (v2f64 VECREG:$rT), xform_addr:$src)]>;

  def STQXr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store GPRC:$rT, xform_addr:$src)]>;

  def STQXr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store R64C:$rT, xform_addr:$src)]>;

  def STQXr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store R32C:$rT, xform_addr:$src)]>;

  // Floating Point
  def STQXf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store R32FP:$rT, xform_addr:$src)]>;

  def STQXf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store R64FP:$rT, xform_addr:$src)]>;

  def STQXr16 : RI10Form<0b00100100, (outs), (ins R16C:$rT, memrr:$src),
      "stqx\t$rT, $src", LoadStore,
      [(store R16C:$rT, xform_addr:$src)]>;

/* Store quadword, PC relative: Not much use at this point in time. Might
   be useful for relocatable code.
  def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
                     "stqr\t$rT, $disp", LoadStore,
                     [(store VECREG:$rT, iaddr:$disp)]>;
 */
}

//===----------------------------------------------------------------------===//
// Generate Controls for Insertion:
//===----------------------------------------------------------------------===//

def CBD :
    RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src),
      "cbd\t$rT, $src", ShuffleOp,
      [(set (v16i8 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;

def CBX : RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cbx\t$rT, $src", ShuffleOp,
    [(set (v16i8 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;

def CHD : RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src),
    "chd\t$rT, $src", ShuffleOp,
    [(set (v8i16 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;

def CHX : RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
    "chx\t$rT, $src", ShuffleOp,
    [(set (v8i16 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;

def CWD : RI7Form<0b01101111100, (outs VECREG:$rT), (ins memri7:$src),
    "cwd\t$rT, $src", ShuffleOp,
    [(set (v4i32 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;

def CWX : RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cwx\t$rT, $src", ShuffleOp,
    [(set (v4i32 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;

def CDD : RI7Form<0b11101111100, (outs VECREG:$rT), (ins memri7:$src),
    "cdd\t$rT, $src", ShuffleOp,
    [(set (v2i64 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;

def CDX : RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cdx\t$rT, $src", ShuffleOp,
    [(set (v2i64 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;

//===----------------------------------------------------------------------===//
// Constant formation:
//===----------------------------------------------------------------------===//

def ILHv8i16:
  RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
    "ilh\t$rT, $val", ImmLoad,
    [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;

def ILHr16:
  RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
    "ilh\t$rT, $val", ImmLoad,
    [(set R16C:$rT, immSExt16:$val)]>;

// IL does sign extension!
def ILr64:
  RI16Form<0b100000010, (outs R64C:$rT), (ins s16imm_i64:$val),
    "il\t$rT, $val", ImmLoad,
    [(set R64C:$rT, immSExt16:$val)]>;

def ILv2i64:
  RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm_i64:$val),
    "il\t$rT, $val", ImmLoad,
    [(set VECREG:$rT, (v2i64 v2i64SExt16Imm:$val))]>;

def ILv4i32:
  RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm:$val),
    "il\t$rT, $val", ImmLoad,
    [(set VECREG:$rT, (v4i32 v4i32SExt16Imm:$val))]>;

def ILr32:
  RI16Form<0b100000010, (outs R32C:$rT), (ins s16imm_i32:$val),
    "il\t$rT, $val", ImmLoad,
    [(set R32C:$rT, immSExt16:$val)]>;

def ILf32:
  RI16Form<0b100000010, (outs R32FP:$rT), (ins s16imm_f32:$val),
    "il\t$rT, $val", ImmLoad,
    [(set R32FP:$rT, (SPUFPconstant fpimmSExt16:$val))]>;

def ILf64:
  RI16Form<0b100000010, (outs R64FP:$rT), (ins s16imm_f64:$val),
    "il\t$rT, $val", ImmLoad,
    [(set R64FP:$rT, (SPUFPconstant fpimmSExt16:$val))]>;

def ILHUv4i32:
  RI16Form<0b010000010, (outs VECREG:$rT), (ins u16imm:$val),
    "ilhu\t$rT, $val", ImmLoad,
    [(set VECREG:$rT, (v4i32 immILHUvec:$val))]>;

def ILHUr32:
   RI16Form<0b010000010, (outs R32C:$rT), (ins u16imm:$val),
    "ilhu\t$rT, $val", ImmLoad,
    [(set R32C:$rT, hi16:$val)]>;

// ILHUf32: Used to custom lower float constant loads
def ILHUf32:
   RI16Form<0b010000010, (outs R32FP:$rT), (ins f16imm:$val),
    "ilhu\t$rT, $val", ImmLoad,
    [(set R32FP:$rT, (SPUFPconstant hi16_f32:$val))]>;

// ILHUhi: Used for loading high portion of an address. Note the symbolHi
// printer used for the operand.
def ILHUhi : RI16Form<0b010000010, (outs R32C:$rT), (ins symbolHi:$val),
    "ilhu\t$rT, $val", ImmLoad,
    [(set R32C:$rT, hi16:$val)]>;

// Immediate load address (can also be used to load 18-bit unsigned constants,
// see the zext 16->32 pattern)
def ILAr64:
  RI18Form<0b1000010, (outs R64C:$rT), (ins u18imm_i64:$val),
    "ila\t$rT, $val", LoadNOP,
    [(set R64C:$rT, imm18:$val)]>;

// TODO: ILAv2i64

def ILAv2i64:
  RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val),
    "ila\t$rT, $val", LoadNOP,
    [(set (v2i64 VECREG:$rT), v2i64Uns18Imm:$val)]>;

def ILAv4i32:
  RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val),
    "ila\t$rT, $val", LoadNOP,
    [(set (v4i32 VECREG:$rT), v4i32Uns18Imm:$val)]>;

def ILAr32:
  RI18Form<0b1000010, (outs R32C:$rT), (ins u18imm:$val),
    "ila\t$rT, $val", LoadNOP,
    [(set R32C:$rT, imm18:$val)]>;

def ILAf32:
  RI18Form<0b1000010, (outs R32FP:$rT), (ins f18imm:$val),
    "ila\t$rT, $val", LoadNOP,
    [(set R32FP:$rT, (SPUFPconstant fpimm18:$val))]>;

def ILAf64:
  RI18Form<0b1000010, (outs R64FP:$rT), (ins f18imm_f64:$val),
    "ila\t$rT, $val", LoadNOP,
    [(set R64FP:$rT, (SPUFPconstant fpimm18:$val))]>;

def ILAlo:
    RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLo:$val),
    "ila\t$rT, $val", ImmLoad,
    [(set R32C:$rT, imm18:$val)]>;

def ILAlsa:
    RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLSA:$val),
    "ila\t$rT, $val", ImmLoad,
    [/* no pattern */]>;

// Immediate OR, Halfword Lower: The "other" part of loading large constants
// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
// Note that these are really two operand instructions, but they're encoded
// as three operands with the first two arguments tied-to each other.

def IOHLvec:
    RI16Form<0b100000110, (outs VECREG:$rT), (ins VECREG:$rS, u16imm:$val),
      "iohl\t$rT, $val", ImmLoad,
      [/* insert intrinsic here */]>,
      RegConstraint<"$rS = $rT">,
      NoEncode<"$rS">;

def IOHLr32:
    RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, i32imm:$val),
      "iohl\t$rT, $val", ImmLoad,
      [/* insert intrinsic here */]>,
      RegConstraint<"$rS = $rT">,
      NoEncode<"$rS">;

def IOHLf32:
    RI16Form<0b100000110, (outs R32FP:$rT), (ins R32FP:$rS, f32imm:$val),
      "iohl\t$rT, $val", ImmLoad,
      [/* insert intrinsic here */]>,
      RegConstraint<"$rS = $rT">,
      NoEncode<"$rS">;

// Form select mask for bytes using immediate, used in conjunction with the
// SELB instruction:

def FSMBIv16i8 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
    "fsmbi\t$rT, $val", SelectOp,
    [(set (v16i8 VECREG:$rT), (SPUfsmbi_v16i8 immU16:$val))]>;

def FSMBIv8i16 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
    "fsmbi\t$rT, $val", SelectOp,
    [(set (v8i16 VECREG:$rT), (SPUfsmbi_v8i16 immU16:$val))]>;

def FSMBIvecv4i32 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
    "fsmbi\t$rT, $val", SelectOp,
    [(set (v4i32 VECREG:$rT), (SPUfsmbi_v4i32 immU16:$val))]>;

//===----------------------------------------------------------------------===//
// Integer and Logical Operations:
//===----------------------------------------------------------------------===//

def AHv8i16:
  RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "ah\t$rT, $rA, $rB", IntegerOp,
    [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;

def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
          (AHv8i16 VECREG:$rA, VECREG:$rB)>;

//  [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;

def AHr16:
  RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    "ah\t$rT, $rA, $rB", IntegerOp,
    [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;

def AHIvec:
    RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "ahi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
                                     v8i16SExt10Imm:$val))]>;

def AHIr16 : RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
  "ahi\t$rT, $rA, $val", IntegerOp,
  [(set R16C:$rT, (add R16C:$rA, v8i16SExt10Imm:$val))]>;

def Avec : RRForm<0b00000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
  "a\t$rT, $rA, $rB", IntegerOp,
  [(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

def : Pat<(add (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)),
          (Avec VECREG:$rA, VECREG:$rB)>;

def Ar32 : RRForm<0b00000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
  "a\t$rT, $rA, $rB", IntegerOp,
  [(set R32C:$rT, (add R32C:$rA, R32C:$rB))]>;

def AIvec:
    RI10Form<0b00111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "ai\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA),
                                      v4i32SExt10Imm:$val))]>;

def AIr32 : RI10Form<0b00111000, (outs R32C:$rT),
                                 (ins R32C:$rA, s10imm_i32:$val),
  "ai\t$rT, $rA, $val", IntegerOp,
  [(set R32C:$rT, (add R32C:$rA, i32ImmSExt10:$val))]>;

def SFHvec : RRForm<0b00010010000, (outs VECREG:$rT),
                                   (ins VECREG:$rA, VECREG:$rB),
  "sfh\t$rT, $rA, $rB", IntegerOp,
  [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;

def SFHr16 : RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
  "sfh\t$rT, $rA, $rB", IntegerOp,
  [(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>;

def SFHIvec:
    RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "sfhi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
                                     (v8i16 VECREG:$rA)))]>;

def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
  "sfhi\t$rT, $rA, $val", IntegerOp,
  [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;

def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
                                  (ins VECREG:$rA, VECREG:$rB),
  "sf\t$rT, $rA, $rB", IntegerOp,
  [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
  "sf\t$rT, $rA, $rB", IntegerOp,
  [(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>;

def SFIvec:
    RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "sfi\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
                                     (v4i32 VECREG:$rA)))]>;

def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
                                  (ins R32C:$rA, s10imm_i32:$val),
  "sfi\t$rT, $rA, $val", IntegerOp,
  [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;

// ADDX: only available in vector form, doesn't match a pattern.
def ADDXvec:
    RRForm<0b00000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
                               VECREG:$rCarry),
      "addx\t$rT, $rA, $rB", IntegerOp,
      []>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

// CG: only available in vector form, doesn't match a pattern.
def CGvec:
    RRForm<0b01000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
                               VECREG:$rCarry),
      "cg\t$rT, $rA, $rB", IntegerOp,
      []>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

// SFX: only available in vector form, doesn't match a pattern
def SFXvec:
    RRForm<0b10000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
                               VECREG:$rCarry),
      "sfx\t$rT, $rA, $rB", IntegerOp,
      []>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

// BG: only available in vector form, doesn't match a pattern.
def BGvec:
    RRForm<0b01000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
                               VECREG:$rCarry),
      "bg\t$rT, $rA, $rB", IntegerOp,
      []>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

// BGX: only available in vector form, doesn't match a pattern.
def BGXvec:
    RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
                               VECREG:$rCarry),
      "bgx\t$rT, $rA, $rB", IntegerOp,
      []>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

// Halfword multiply variants:
// N.B: These can be used to build up larger quantities (16x16 -> 32)

def MPYv8i16:
  RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "mpy\t$rT, $rA, $rB", IntegerMulDiv,
    [(set (v8i16 VECREG:$rT), (SPUmpy_v8i16 (v8i16 VECREG:$rA),
                                            (v8i16 VECREG:$rB)))]>;

def MPYr16:
  RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    "mpy\t$rT, $rA, $rB", IntegerMulDiv,
    [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;

def MPYUv4i32:
  RRForm<0b00110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
    [(set (v4i32 VECREG:$rT),
          (SPUmpyu_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

def MPYUr16:
  RRForm<0b00110011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
    "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
    [(set R32C:$rT, (mul (zext R16C:$rA),
                         (zext R16C:$rB)))]>;

def MPYUr32:
  RRForm<0b00110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
    "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
    [(set R32C:$rT, (SPUmpyu_i32 R32C:$rA, R32C:$rB))]>;

// mpyi: multiply 16 x s10imm -> 32 result (custom lowering for 32 bit result,
// this only produces the lower 16 bits)
def MPYIvec:
  RI10Form<0b00101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    "mpyi\t$rT, $rA, $val", IntegerMulDiv,
    [(set (v8i16 VECREG:$rT), (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;

def MPYIr16:
  RI10Form<0b00101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    "mpyi\t$rT, $rA, $val", IntegerMulDiv,
    [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;

// mpyui: same issues as other multiplies, plus, this doesn't match a
// pattern... but may be used during target DAG selection or lowering
def MPYUIvec:
  RI10Form<0b10101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    "mpyui\t$rT, $rA, $val", IntegerMulDiv,
    []>;

def MPYUIr16:
  RI10Form<0b10101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    "mpyui\t$rT, $rA, $val", IntegerMulDiv,
    []>;

// mpya: 16 x 16 + 16 -> 32 bit result
def MPYAvec:
  RRRForm<0b0011, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
    "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
    [(set (v4i32 VECREG:$rT), (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
                                                           (v8i16 VECREG:$rB)))),
                                   (v4i32 VECREG:$rC)))]>;

def MPYAr32:
  RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
    "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
    [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
                         R32C:$rC))]>;

def : Pat<(add (mul (sext R16C:$rA), (sext R16C:$rB)), R32C:$rC),
          (MPYAr32 R16C:$rA, R16C:$rB, R32C:$rC)>;

def MPYAr32_sextinreg:
  RRRForm<0b0011, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
    "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
    [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
                              (sext_inreg R32C:$rB, i16)),
                         R32C:$rC))]>;

//def MPYAr32:
//  RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
//    "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
//    [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
//                         R32C:$rC))]>;

// mpyh: multiply high, used to synthesize 32-bit multiplies
def MPYHv4i32:
    RRForm<0b10100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
      [(set (v4i32 VECREG:$rT),
            (SPUmpyh_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

def MPYHr32:
    RRForm<0b10100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
      [(set R32C:$rT, (SPUmpyh_i32 R32C:$rA, R32C:$rB))]>;

// mpys: multiply high and shift right (returns the top half of
// a 16-bit multiply, sign extended to 32 bits.)
def MPYSvec:
    RRForm<0b11100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "mpys\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

def MPYSr16:
    RRForm<0b11100011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
      "mpys\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

// mpyhh: multiply high-high (returns the 32-bit result from multiplying
// the top 16 bits of the $rA, $rB)
def MPYHHv8i16:
    RRForm<0b01100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
      [(set (v8i16 VECREG:$rT),
            (SPUmpyhh_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;

def MPYHHr32:
    RRForm<0b01100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

// mpyhha: Multiply high-high, add to $rT:
def MPYHHAvec:
    RRForm<0b01100010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

def MPYHHAr32:
    RRForm<0b01100010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

// mpyhhu: Multiply high-high, unsigned
def MPYHHUvec:
    RRForm<0b01110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

def MPYHHUr32:
    RRForm<0b01110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

// mpyhhau: Multiply high-high, unsigned
def MPYHHAUvec:
    RRForm<0b01110010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

def MPYHHAUr32:
    RRForm<0b01110010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
      []>;

// clz: Count leading zeroes
def CLZv4i32:
    RRForm_1<0b10100101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "clz\t$rT, $rA", IntegerOp,
      [/* intrinsic */]>;

def CLZr32:
    RRForm_1<0b10100101010, (outs R32C:$rT), (ins R32C:$rA),
      "clz\t$rT, $rA", IntegerOp,
      [(set R32C:$rT, (ctlz R32C:$rA))]>;

// cntb: Count ones in bytes (aka "population count")
// NOTE: This instruction is really a vector instruction, but the custom
// lowering code uses it in unorthodox ways to support CTPOP for other
// data types!
def CNTBv16i8:
    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "cntb\t$rT, $rA", IntegerOp,
      [(set (v16i8 VECREG:$rT), (SPUcntb_v16i8 (v16i8 VECREG:$rA)))]>;

def CNTBv8i16 :
    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "cntb\t$rT, $rA", IntegerOp,
      [(set (v8i16 VECREG:$rT), (SPUcntb_v8i16 (v8i16 VECREG:$rA)))]>;

def CNTBv4i32 :
    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "cntb\t$rT, $rA", IntegerOp,
      [(set (v4i32 VECREG:$rT), (SPUcntb_v4i32 (v4i32 VECREG:$rA)))]>;

// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
def FSMB:
    RRForm_1<0b01101101100, (outs VECREG:$rT), (ins R16C:$rA),
      "fsmb\t$rT, $rA", SelectOp,
      []>;

// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
// only 8-bits wide (even though it's input as 16-bits here)
def FSMH:
    RRForm_1<0b10101101100, (outs VECREG:$rT), (ins R16C:$rA),
      "fsmh\t$rT, $rA", SelectOp,
      []>;

// fsm: Form select mask for words. Like the other fsm* instructions,
// only the lower 4 bits of $rA are significant.
def FSM:
    RRForm_1<0b00101101100, (outs VECREG:$rT), (ins R16C:$rA),
      "fsm\t$rT, $rA", SelectOp,
      []>;

// gbb: Gather all low order bits from each byte in $rA into a single 16-bit
// quantity stored into $rT
def GBB:
    RRForm_1<0b01001101100, (outs R16C:$rT), (ins VECREG:$rA),
      "gbb\t$rT, $rA", GatherOp,
      []>;

// gbh: Gather all low order bits from each halfword in $rA into a single
// 8-bit quantity stored in $rT
def GBH:
    RRForm_1<0b10001101100, (outs R16C:$rT), (ins VECREG:$rA),
      "gbh\t$rT, $rA", GatherOp,
      []>;

// gb: Gather all low order bits from each word in $rA into a single
// 4-bit quantity stored in $rT
def GB:
    RRForm_1<0b00001101100, (outs R16C:$rT), (ins VECREG:$rA),
      "gb\t$rT, $rA", GatherOp,
      []>;

// avgb: average bytes
def AVGB:
    RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "avgb\t$rT, $rA, $rB", ByteOp,
      []>;

// absdb: absolute difference of bytes
def ABSDB:
    RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "absdb\t$rT, $rA, $rB", ByteOp,
      []>;

// sumb: sum bytes into halfwords
def SUMB:
    RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "sumb\t$rT, $rA, $rB", ByteOp,
      []>;

// Sign extension operations:
def XSBHvec:
    RRForm_1<0b01101101010, (outs VECREG:$rDst), (ins VECREG:$rSrc),
      "xsbh\t$rDst, $rSrc", IntegerOp,
      [(set (v8i16 VECREG:$rDst), (sext (v16i8 VECREG:$rSrc)))]>;

// Ordinary form for XSBH
def XSBHr16:
    RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R16C:$rSrc),
      "xsbh\t$rDst, $rSrc", IntegerOp,
      [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;

// 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
// quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
// pattern below). Intentionally doesn't match a pattern because we want the
// sext 8->32 pattern to do the work for us, namely because we need the extra
// XSHWr32.
def XSBHr32:
    RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc),
      "xsbh\t$rDst, $rSrc", IntegerOp,
      [(set R32C:$rDst, (sext_inreg R32C:$rSrc, i8))]>;

// Sign extend halfwords to words:
def XSHWvec:
    RRForm_1<0b01101101010, (outs VECREG:$rDest), (ins VECREG:$rSrc),
      "xshw\t$rDest, $rSrc", IntegerOp,
      [(set (v4i32 VECREG:$rDest), (sext (v8i16 VECREG:$rSrc)))]>;

def XSHWr32:
    RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc),
      "xshw\t$rDst, $rSrc", IntegerOp,
      [(set R32C:$rDst, (sext_inreg R32C:$rSrc, i16))]>;

def XSHWr16:
    RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R16C:$rSrc),
      "xshw\t$rDst, $rSrc", IntegerOp,
      [(set R32C:$rDst, (sext R16C:$rSrc))]>;

def XSWDvec:
    RRForm_1<0b01100101010, (outs VECREG:$rDst), (ins VECREG:$rSrc),
      "xswd\t$rDst, $rSrc", IntegerOp,
      [(set (v2i64 VECREG:$rDst), (sext (v4i32 VECREG:$rSrc)))]>;

def XSWDr64:
    RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R64C:$rSrc),
      "xswd\t$rDst, $rSrc", IntegerOp,
      [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;

def XSWDr32:
    RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R32C:$rSrc),
      "xswd\t$rDst, $rSrc", IntegerOp,
      [(set R64C:$rDst, (SPUsext32_to_64 R32C:$rSrc))]>;

def : Pat<(sext R32C:$inp),
          (XSWDr32 R32C:$inp)>;

// AND operations
def ANDv16i8:
    RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA),
                                     (v16i8 VECREG:$rB)))]>;

def ANDv8i16:
    RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA),
                                     (v8i16 VECREG:$rB)))]>;

def ANDv4i32:
    RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA),
                                     (v4i32 VECREG:$rB)))]>;

def ANDr32:
    RRForm<0b10000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (and R32C:$rA, R32C:$rB))]>;

//===---------------------------------------------
// Special instructions to perform the fabs instruction
def ANDfabs32:
    RRForm<0b10000011000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [/* Intentionally does not match a pattern */]>;

def ANDfabs64:
    RRForm<0b10000011000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [/* Intentionally does not match a pattern */]>;

// Could use ANDv4i32, but won't for clarity
def ANDfabsvec:
    RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [/* Intentionally does not match a pattern */]>;

//===---------------------------------------------

def ANDr16:
    RRForm<0b10000011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (and R16C:$rA, R16C:$rB))]>;

// Hacked form of AND to zero-extend 16-bit quantities to 32-bit
// quantities -- see 16->32 zext pattern.
//
// This pattern is somewhat artificial, since it might match some
// compiler generated pattern but it is unlikely to do so.
def AND2To4:
    RRForm<0b10000011000, (outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
      "and\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;

// N.B.: vnot_conv is one of those special target selection pattern fragments,
// in which we expect there to be a bit_convert on the constant. Bear in mind
// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
// constant -1 vector.)
def ANDCv16i8:
    RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "andc\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA),
                                     (vnot (v16i8 VECREG:$rB))))]>;

def ANDCv8i16:
    RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "andc\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA),
                                     (vnot (v8i16 VECREG:$rB))))]>;

def ANDCv4i32:
    RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "andc\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA),
                                     (vnot (v4i32 VECREG:$rB))))]>;

def ANDCr32:
    RRForm<0b10000011010, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "andc\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (and R32C:$rA, (not R32C:$rB)))]>;

def ANDCr16:
    RRForm<0b10000011010, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "andc\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (and R16C:$rA, (not R16C:$rB)))]>;

def ANDBIv16i8:
    RI10Form<0b01101000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
      "andbi\t$rT, $rA, $val", IntegerOp,
      [(set (v16i8 VECREG:$rT),
            (and (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>;

def ANDHIv8i16:
    RI10Form<0b10101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "andhi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT),
            (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;

def ANDHIr16:
    RI10Form<0b10101000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
      "andhi\t$rT, $rA, $val", IntegerOp,
      [(set R16C:$rT, (and R16C:$rA, i16ImmSExt10:$val))]>;

def ANDIv4i32:
    RI10Form<0b00101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "andi\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT),
            (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;

def ANDIr32:
    RI10Form<0b10101000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
      "andi\t$rT, $rA, $val", IntegerOp,
      [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;

// Hacked form of ANDI to zero-extend i16 quantities to i32. See the
// zext 16->32 pattern below.
//
// Note that this pattern is somewhat artificial, since it might match
// something the compiler generates but is unlikely to occur in practice.
def ANDI2To4:
    RI10Form<0b10101000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
      "andi\t$rT, $rA, $val", IntegerOp,
      [(set R32C:$rT, (and (zext R16C:$rA), i32ImmSExt10:$val))]>;

// Bitwise OR group:
// Bitwise "or" (N.B.: These are also register-register copy instructions...)
def ORv16i8:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>;

def ORv8i16:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;

def ORv4i32:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

def ORv4f32:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set (v4f32 VECREG:$rT),
            (v4f32 (bitconvert (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))))]>;

def ORv2f64:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set (v2f64 VECREG:$rT), 
            (v2f64 (bitconvert (or (v2i64 VECREG:$rA), (v2i64 VECREG:$rB)))))]>;

def ORgprc:
    RRForm<0b10000010000, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set GPRC:$rT, (or GPRC:$rA, GPRC:$rB))]>;

def ORr64:
    RRForm<0b10000010000, (outs R64C:$rT), (ins R64C:$rA, R64C:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set R64C:$rT, (or R64C:$rA, R64C:$rB))]>;

def ORr32:
    RRForm<0b10000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (or R32C:$rA, R32C:$rB))]>;

def ORr16:
    RRForm<0b10000010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (or R16C:$rA, R16C:$rB))]>;

// ORv*_*: Used in scalar->vector promotions:
def ORv8i16_i16:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins R16C:$rA, R16C:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(v8i16 (SPUpromote_scalar R16C:$rA)),
          (ORv8i16_i16 R16C:$rA, R16C:$rA)>;

def ORv4i32_i32:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins R32C:$rA, R32C:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(v4i32 (SPUpromote_scalar R32C:$rA)),
          (ORv4i32_i32 R32C:$rA, R32C:$rA)>;

def ORv2i64_i64:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins R64C:$rA, R64C:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(v2i64 (SPUpromote_scalar R64C:$rA)),
          (ORv2i64_i64 R64C:$rA, R64C:$rA)>;

def ORv4f32_f32:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins R32FP:$rA, R32FP:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(v4f32 (SPUpromote_scalar R32FP:$rA)),
          (ORv4f32_f32 R32FP:$rA, R32FP:$rA)>;

def ORv2f64_f64:
    RRForm<0b10000010000, (outs VECREG:$rT), (ins R64FP:$rA, R64FP:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(v2f64 (SPUpromote_scalar R64FP:$rA)),
          (ORv2f64_f64 R64FP:$rA, R64FP:$rA)>;

// ORi*_v*: Used to extract vector element 0 (the preferred slot)
def ORi16_v8i16:
    RRForm<0b10000010000, (outs R16C:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(SPUextract_elt0 (v8i16 VECREG:$rA)),
          (ORi16_v8i16 VECREG:$rA, VECREG:$rA)>;

def : Pat<(SPUextract_elt0_chained (v8i16 VECREG:$rA)),
          (ORi16_v8i16 VECREG:$rA, VECREG:$rA)>;

def ORi32_v4i32:
    RRForm<0b10000010000, (outs R32C:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(SPUextract_elt0 (v4i32 VECREG:$rA)),
          (ORi32_v4i32 VECREG:$rA, VECREG:$rA)>;

def : Pat<(SPUextract_elt0_chained (v4i32 VECREG:$rA)),
          (ORi32_v4i32 VECREG:$rA, VECREG:$rA)>;

def ORi64_v2i64:
    RRForm<0b10000010000, (outs R64C:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(SPUextract_elt0 (v2i64 VECREG:$rA)),
          (ORi64_v2i64 VECREG:$rA, VECREG:$rA)>;

def : Pat<(SPUextract_elt0_chained (v2i64 VECREG:$rA)),
          (ORi64_v2i64 VECREG:$rA, VECREG:$rA)>;

def ORf32_v4f32:
    RRForm<0b10000010000, (outs R32FP:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(SPUextract_elt0 (v4f32 VECREG:$rA)),
          (ORf32_v4f32 VECREG:$rA, VECREG:$rA)>;

def : Pat<(SPUextract_elt0_chained (v4f32 VECREG:$rA)),
          (ORf32_v4f32 VECREG:$rA, VECREG:$rA)>;

def ORf64_v2f64:
    RRForm<0b10000010000, (outs R64FP:$rT), (ins VECREG:$rA, VECREG:$rB),
      "or\t$rT, $rA, $rB", IntegerOp,
      [/* no pattern */]>;

def : Pat<(SPUextract_elt0 (v2f64 VECREG:$rA)),
          (ORf64_v2f64 VECREG:$rA, VECREG:$rA)>;

def : Pat<(SPUextract_elt0_chained (v2f64 VECREG:$rA)),
          (ORf64_v2f64 VECREG:$rA, VECREG:$rA)>;

// ORC: Bitwise "or" with complement (match before ORvec, ORr32)
def ORCv16i8:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "orc\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA),
                                    (vnot (v16i8 VECREG:$rB))))]>;

def ORCv8i16:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "orc\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA),
                                    (vnot (v8i16 VECREG:$rB))))]>;

def ORCv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "orc\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA),
                                    (vnot (v4i32 VECREG:$rB))))]>;

def ORCr32:
  RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
    "orc\t$rT, $rA, $rB", IntegerOp,
    [(set R32C:$rT, (or R32C:$rA, (not R32C:$rB)))]>;

def ORCr16:
  RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    "orc\t$rT, $rA, $rB", IntegerOp,
    [(set R16C:$rT, (or R16C:$rA, (not R16C:$rB)))]>;

// OR byte immediate
def ORBIv16i8:
    RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
       "orbi\t$rT, $rA, $val", IntegerOp,
       [(set (v16i8 VECREG:$rT),
             (or (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>;

// OR halfword immediate
def ORHIv8i16:
    RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "orhi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA),
                                    v8i16SExt10Imm:$val))]>;

def ORHIr16:
    RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
      "orhi\t$rT, $rA, $val", IntegerOp,
      [(set R16C:$rT, (or R16C:$rA, i16ImmSExt10:$val))]>;

// Bitwise "or" with immediate
def ORIv4i32:
    RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "ori\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA),
                                     v4i32SExt10Imm:$val))]>;

def ORIr32:
    RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
      "ori\t$rT, $rA, $val", IntegerOp,
      [(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>;

// Hacked forms of or immediate to copy one 32- and 64-bit FP register  
// to another. Do not match patterns.
def ORIf32:
    RI10Form_1<0b00100000, (outs R32FP:$rT), (ins R32FP:$rA, s10imm_i32:$val),
      "ori\t$rT, $rA, $val", IntegerOp,
      [/* no pattern */]>;

def ORIf64:
    RI10Form_1<0b00100000, (outs R64FP:$rT), (ins R64FP:$rA, s10imm_i32:$val),
      "ori\t$rT, $rA, $val", IntegerOp,
      [/* no pattern */]>;

def ORIr64:
    RI10Form_1<0b00100000, (outs R64C:$rT), (ins R64C:$rA, s10imm_i32:$val),
      "ori\t$rT, $rA, $val", IntegerOp,
      [/* no pattern */]>;

// ORI2To4: hacked version of the ori instruction to extend 16-bit quantities
// to 32-bit quantities. used exclusively to match "anyext" conversions (vide
// infra "anyext 16->32" pattern.)
def ORI2To4:
    RI10Form<0b00100000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
      "ori\t$rT, $rA, $val", IntegerOp,
      [(set R32C:$rT, (or (anyext R16C:$rA), i32ImmSExt10:$val))]>;

// ORX: "or" across the vector: or's $rA's word slots leaving the result in
// $rT[0], slots 1-3 are zeroed.
//
// Needs to match an intrinsic pattern.
def ORXv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "orx\t$rT, $rA, $rB", IntegerOp,
      []>;

def XORv16i8:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>;

def XORv8i16:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;

def XORv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

def XORr32:
    RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (xor R32C:$rA, R32C:$rB))]>;

//==----------------------------------------------------------
// Special forms for floating point instructions.
// Bitwise ORs and ANDs don't make sense for normal floating 
// point numbers. These operations (fneg and fabs), however,
// require bitwise logical ops to manipulate the sign bit.
def XORfneg32:
    RRForm<0b10010010000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [/* Intentionally does not match a pattern, see fneg32 */]>;

// KLUDGY! Better way to do this without a VECREG? bitconvert?
// VECREG is assumed to contain two identical 64-bit masks, so 
// it doesn't matter which word we select for the xor
def XORfneg64:
    RRForm<0b10010010000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [/* Intentionally does not match a pattern, see fneg64 */]>;

// Could use XORv4i32, but will use this for clarity
def XORfnegvec:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [/* Intentionally does not match a pattern, see fneg{32,64} */]>;

//==----------------------------------------------------------

def XORr16:
    RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "xor\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (xor R16C:$rA, R16C:$rB))]>;

def XORBIv16i8:
    RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
       "xorbi\t$rT, $rA, $val", IntegerOp,
       [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;

def XORHIv8i16:
    RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "xorhi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
                                      v8i16SExt10Imm:$val))]>;

def XORHIr16:
    RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
      "xorhi\t$rT, $rA, $val", IntegerOp,
      [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;

def XORIv4i32:
    RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "xori\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
                                     v4i32SExt10Imm:$val))]>;

def XORIr32:
    RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
      "xori\t$rT, $rA, $val", IntegerOp,
      [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;

// NAND:
def NANDv16i8:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "nand\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (vnot (and (v16i8 VECREG:$rA),
                                           (v16i8 VECREG:$rB))))]>;

def NANDv8i16:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "nand\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (vnot (and (v8i16 VECREG:$rA),
                                           (v8i16 VECREG:$rB))))]>;

def NANDv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "nand\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (vnot (and (v4i32 VECREG:$rA),
                                           (v4i32 VECREG:$rB))))]>;

def NANDr32:
    RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "nand\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (not (and R32C:$rA, R32C:$rB)))]>;

def NANDr16:
    RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "nand\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (not (and R16C:$rA, R16C:$rB)))]>;

// NOR:
def NORv16i8:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "nor\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (vnot (or (v16i8 VECREG:$rA),
                                          (v16i8 VECREG:$rB))))]>;

def NORv8i16:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "nor\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (vnot (or (v8i16 VECREG:$rA),
                                          (v8i16 VECREG:$rB))))]>;

def NORv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "nor\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (vnot (or (v4i32 VECREG:$rA),
                                          (v4i32 VECREG:$rB))))]>;

def NORr32:
    RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "nor\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (not (or R32C:$rA, R32C:$rB)))]>;

def NORr16:
    RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "nor\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (not (or R16C:$rA, R16C:$rB)))]>;

// EQV: Equivalence (1 for each same bit, otherwise 0)
def EQVv16i8:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "eqv\t$rT, $rA, $rB", IntegerOp,
      [(set (v16i8 VECREG:$rT), (or (and (v16i8 VECREG:$rA),
                                         (v16i8 VECREG:$rB)),
                                    (and (vnot (v16i8 VECREG:$rA)),
                                         (vnot (v16i8 VECREG:$rB)))))]>;

def : Pat<(xor (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))),
          (EQVv16i8 VECREG:$rA, VECREG:$rB)>;

def : Pat<(xor (vnot (v16i8 VECREG:$rA)), (v16i8 VECREG:$rB)),
          (EQVv16i8 VECREG:$rA, VECREG:$rB)>;

def EQVv8i16:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "eqv\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (or (and (v8i16 VECREG:$rA),
                                         (v8i16 VECREG:$rB)),
                                    (and (vnot (v8i16 VECREG:$rA)),
                                         (vnot (v8i16 VECREG:$rB)))))]>;

def : Pat<(xor (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))),
          (EQVv8i16 VECREG:$rA, VECREG:$rB)>;

def : Pat<(xor (vnot (v8i16 VECREG:$rA)), (v8i16 VECREG:$rB)),
          (EQVv8i16 VECREG:$rA, VECREG:$rB)>;

def EQVv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "eqv\t$rT, $rA, $rB", IntegerOp,
      [(set (v4i32 VECREG:$rT), (or (and (v4i32 VECREG:$rA),
                                         (v4i32 VECREG:$rB)),
                                    (and (vnot (v4i32 VECREG:$rA)),
                                         (vnot (v4i32 VECREG:$rB)))))]>;

def : Pat<(xor (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))),
          (EQVv4i32 VECREG:$rA, VECREG:$rB)>;

def : Pat<(xor (vnot (v4i32 VECREG:$rA)), (v4i32 VECREG:$rB)),
          (EQVv4i32 VECREG:$rA, VECREG:$rB)>;

def EQVr32:
    RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "eqv\t$rT, $rA, $rB", IntegerOp,
      [(set R32C:$rT, (or (and R32C:$rA, R32C:$rB),
                          (and (not R32C:$rA), (not R32C:$rB))))]>;

def : Pat<(xor R32C:$rA, (not R32C:$rB)),
          (EQVr32 R32C:$rA, R32C:$rB)>;

def : Pat<(xor (not R32C:$rA), R32C:$rB),
          (EQVr32 R32C:$rA, R32C:$rB)>;

def EQVr16:
    RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "eqv\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (or (and R16C:$rA, R16C:$rB),
                          (and (not R16C:$rA), (not R16C:$rB))))]>;

def : Pat<(xor R16C:$rA, (not R16C:$rB)),
          (EQVr16 R16C:$rA, R16C:$rB)>;

def : Pat<(xor (not R16C:$rA), R16C:$rB),
          (EQVr16 R16C:$rA, R16C:$rB)>;

// gcc optimizes (p & q) | (~p & ~q) -> ~(p | q) | (p & q), so match that
// pattern also:
def : Pat<(or (vnot (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))),
              (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))),
          (EQVv16i8 VECREG:$rA, VECREG:$rB)>;

def : Pat<(or (vnot (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))),
              (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))),
          (EQVv8i16 VECREG:$rA, VECREG:$rB)>;

def : Pat<(or (vnot (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))),
              (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))),
          (EQVv4i32 VECREG:$rA, VECREG:$rB)>;

def : Pat<(or (not (or R32C:$rA, R32C:$rB)), (and R32C:$rA, R32C:$rB)),
          (EQVr32 R32C:$rA, R32C:$rB)>;

def : Pat<(or (not (or R16C:$rA, R16C:$rB)), (and R16C:$rA, R16C:$rB)),
          (EQVr16 R16C:$rA, R16C:$rB)>;

// Select bits:
def SELBv16i8:
    RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "selb\t$rT, $rA, $rB, $rC", IntegerOp,
      [(set (v16i8 VECREG:$rT),
            (SPUselb_v16i8 (v16i8 VECREG:$rA), (v16i8 VECREG:$rB),
                           (v16i8 VECREG:$rC)))]>;

def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
              (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
              (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
              (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
              (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
              (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
              (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
              (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
              (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
              (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
              (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
              (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
              (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
              (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
              (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
              (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
              (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
          (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def SELBv8i16:
    RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "selb\t$rT, $rA, $rB, $rC", IntegerOp,
      [(set (v8i16 VECREG:$rT),
            (SPUselb_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB),
                                               (v8i16 VECREG:$rC)))]>;

def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
              (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
              (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
              (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
              (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
              (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
              (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
              (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
              (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
              (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
              (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
              (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
              (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
              (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
              (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
              (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
              (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
          (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def SELBv4i32:
    RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "selb\t$rT, $rA, $rB, $rC", IntegerOp,
      [(set (v4i32 VECREG:$rT),
            (SPUselb_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB),
                                               (v4i32 VECREG:$rC)))]>;

def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
              (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
              (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
              (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
              (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
              (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
              (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
              (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
              (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
              (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
              (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
              (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
              (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
              (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
              (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
              (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
              (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
          (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def SELBr32:
    RRRForm<0b1000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
      "selb\t$rT, $rA, $rB, $rC", IntegerOp,
      []>;

// And the various patterns that can be matched... (all 8 of them :-)
def : Pat<(or (and R32C:$rA, R32C:$rC),
              (and R32C:$rB, (not R32C:$rC))),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and R32C:$rC, R32C:$rA),
              (and R32C:$rB, (not R32C:$rC))),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and R32C:$rA, R32C:$rC),
              (and (not R32C:$rC), R32C:$rB)),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and R32C:$rC, R32C:$rA),
              (and (not R32C:$rC), R32C:$rB)),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and R32C:$rA, (not R32C:$rC)),
              (and R32C:$rB, R32C:$rC)),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and R32C:$rA, (not R32C:$rC)),
              (and R32C:$rC, R32C:$rB)),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and (not R32C:$rC), R32C:$rA),
              (and R32C:$rB, R32C:$rC)),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def : Pat<(or (and (not R32C:$rC), R32C:$rA),
              (and R32C:$rC, R32C:$rB)),
          (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;

def SELBr16:
    RRRForm<0b1000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB, R16C:$rC),
      "selb\t$rT, $rA, $rB, $rC", IntegerOp,
      []>;

def : Pat<(or (and R16C:$rA, R16C:$rC),
              (and R16C:$rB, (not R16C:$rC))),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and R16C:$rC, R16C:$rA),
              (and R16C:$rB, (not R16C:$rC))),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and R16C:$rA, R16C:$rC),
              (and (not R16C:$rC), R16C:$rB)),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and R16C:$rC, R16C:$rA),
              (and (not R16C:$rC), R16C:$rB)),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and R16C:$rA, (not R16C:$rC)),
              (and R16C:$rB, R16C:$rC)),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and R16C:$rA, (not R16C:$rC)),
              (and R16C:$rC, R16C:$rB)),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and (not R16C:$rC), R16C:$rA),
              (and R16C:$rB, R16C:$rC)),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

def : Pat<(or (and (not R16C:$rC), R16C:$rA),
              (and R16C:$rC, R16C:$rB)),
          (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;

//===----------------------------------------------------------------------===//
// Vector shuffle...
//===----------------------------------------------------------------------===//

def SHUFB:
    RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "shufb\t$rT, $rA, $rB, $rC", IntegerOp,
      [/* insert intrinsic here */]>;

// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
// the SPUISD::SHUFB opcode.
def : Pat<(SPUshuffle (v16i8 VECREG:$rA), (v16i8 VECREG:$rB), VECREG:$rC),
          (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(SPUshuffle (v8i16 VECREG:$rA), (v8i16 VECREG:$rB), VECREG:$rC),
          (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(SPUshuffle (v4i32 VECREG:$rA), (v4i32 VECREG:$rB), VECREG:$rC),
          (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : Pat<(SPUshuffle (v2i64 VECREG:$rA), (v2i64 VECREG:$rB), VECREG:$rC),
          (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

//===----------------------------------------------------------------------===//
// Shift and rotate group:
//===----------------------------------------------------------------------===//

def SHLHv8i16:
    RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
      "shlh\t$rT, $rA, $rB", RotateShift,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_shl_v8i16 (v8i16 VECREG:$rA), R16C:$rB))]>;

// $rB gets promoted to 32-bit register type when confronted with
// this llvm assembly code:
//
// define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) {
//      %A = shl i16 %arg1, %arg2
//      ret i16 %A
// }
//
// However, we will generate this code when lowering 8-bit shifts and rotates.

def SHLHr16:
    RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "shlh\t$rT, $rA, $rB", RotateShift,
      [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;

def SHLHr16_r32:
    RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
      "shlh\t$rT, $rA, $rB", RotateShift,
      [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;

def SHLHIv8i16:
    RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "shlhi\t$rT, $rA, $val", RotateShift,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)))]>;

def : Pat<(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)),
          (SHLHIv8i16 VECREG:$rA, imm:$val)>;

def SHLHIr16:
    RI7Form<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
      "shlhi\t$rT, $rA, $val", RotateShift,
      [(set R16C:$rT, (shl R16C:$rA, (i32 uimm7:$val)))]>;

def : Pat<(shl R16C:$rA, (i16 uimm7:$val)),
          (SHLHIr16 R16C:$rA, uimm7:$val)>;

def SHLv4i32:
    RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
      "shl\t$rT, $rA, $rB", RotateShift,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_shl_v4i32 (v4i32 VECREG:$rA), R16C:$rB))]>;

def SHLr32:
    RRForm<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "shl\t$rT, $rA, $rB", RotateShift,
      [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;

def SHLIv4i32:
    RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "shli\t$rT, $rA, $val", RotateShift,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)))]>;

def: Pat<(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)),
         (SHLIv4i32 VECREG:$rA, uimm7:$val)>;

def SHLIr32:
    RI7Form<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
      "shli\t$rT, $rA, $val", RotateShift,
      [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;

def : Pat<(shl R32C:$rA, (i16 uimm7:$val)),
          (SHLIr32 R32C:$rA, uimm7:$val)>;

// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
// register) to the left. Vector form is here to ensure type correctness.
def SHLQBIvec:
    RRForm<0b11011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "shlqbi\t$rT, $rA, $rB", RotateShift,
      [/* intrinsic */]>;

// See note above on SHLQBI.
def SHLQBIIvec:
    RI7Form<0b11011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "shlqbii\t$rT, $rA, $val", RotateShift,
      [/* intrinsic */]>;

// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
// not by bits.
def SHLQBYvec:
    RI7Form<0b11111011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "shlqbyi\t$rT, $rA, $rB", RotateShift,
      [/* intrinsic */]>;

def SHLQBYIvec:
    RI7Form<0b11111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "shlqbyi\t$rT, $rA, $val", RotateShift,
      [/* intrinsic */]>;

// ROTH v8i16 form:
def ROTHv8i16:
    RRForm<0b00111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "roth\t$rT, $rA, $rB", RotateShift,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_rotl_v8i16 VECREG:$rA, VECREG:$rB))]>;

def ROTHr16:
    RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "roth\t$rT, $rA, $rB", RotateShift,
      [(set R16C:$rT, (rotl R16C:$rA, R16C:$rB))]>;

def ROTHr16_r32:
    RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
      "roth\t$rT, $rA, $rB", RotateShift,
      [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;

def ROTHIv8i16:
    RI7Form<0b00111110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "rothi\t$rT, $rA, $val", RotateShift,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)))]>;

def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)),
          (ROTHIv8i16 VECREG:$rA, imm:$val)>;

def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i32 uimm7:$val)),
          (ROTHIv8i16 VECREG:$rA, imm:$val)>;
    
def ROTHIr16:
    RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
      "rothi\t$rT, $rA, $val", RotateShift,
      [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;

def ROTHIr16_i32:
    RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
      "rothi\t$rT, $rA, $val", RotateShift,
      [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;

def ROTv4i32:
    RRForm<0b00011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
      "rot\t$rT, $rA, $rB", RotateShift,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), R32C:$rB))]>;

def ROTr32:
    RRForm<0b00011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "rot\t$rT, $rA, $rB", RotateShift,
      [(set R32C:$rT, (rotl R32C:$rA, R32C:$rB))]>;

def ROTIv4i32:
    RI7Form<0b00011110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
      "roti\t$rT, $rA, $val", RotateShift,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;

def : Pat<(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)),
          (ROTIv4i32 VECREG:$rA, imm:$val)>;

def ROTIr32:
    RI7Form<0b00011110000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
      "roti\t$rT, $rA, $val", RotateShift,
      [(set R32C:$rT, (rotl R32C:$rA, (i32 uimm7:$val)))]>;

def ROTIr32_i16:
    RI7Form<0b00111110000, (outs R32C:$rT), (ins R32C:$rA, u7imm:$val),
      "roti\t$rT, $rA, $val", RotateShift,
      [(set R32C:$rT, (rotl R32C:$rA, (i16 uimm7:$val)))]>;

// ROTQBY* vector forms: This rotates the entire vector, but vector registers
// are used here for type checking (instances where ROTQBI is used actually
// use vector registers)
def ROTQBYvec:
    RRForm<0b00111011100, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
      "rotqby\t$rT, $rA, $rB", RotateShift,
      [(set (v16i8 VECREG:$rT), (SPUrotbytes_left (v16i8 VECREG:$rA), R16C:$rB))]>;

def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), R16C:$rB),
          (ROTQBYvec VECREG:$rA, R16C:$rB)>;

// See ROTQBY note above.
def ROTQBYIvec:
    RI7Form<0b00111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "rotqbyi\t$rT, $rA, $val", RotateShift,
      [(set (v16i8 VECREG:$rT),
            (SPUrotbytes_left (v16i8 VECREG:$rA), (i16 uimm7:$val)))]>;

def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), (i16 uimm7:$val)),
          (ROTQBYIvec VECREG:$rA, uimm7:$val)>;

// See ROTQBY note above.
def ROTQBYBIvec:
    RI7Form<0b00110011100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
      "rotqbybi\t$rT, $rA, $val", RotateShift,
      [/* intrinsic */]>;

// See ROTQBY note above.
//
// Assume that the user of this instruction knows to shift the rotate count
// into bit 29
def ROTQBIvec:
    RRForm<0b00011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "rotqbi\t$rT, $rA, $rB", RotateShift,
      [/* insert intrinsic here */]>;

// See ROTQBY note above.
def ROTQBIIvec:
    RI7Form<0b00011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
      "rotqbii\t$rT, $rA, $val", RotateShift,
      [/* insert intrinsic here */]>;

// ROTHM v8i16 form:
// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
//          so this only matches a synthetically generated/lowered code
//          fragment.
// NOTE(2): $rB must be negated before the right rotate!
def ROTHMv8i16:
    RRForm<0b10111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
      "rothm\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R32C:$rB),
          (ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R16C:$rB),
          (ROTHMv8i16 VECREG:$rA,
                      (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), /* R8C */ R16C:$rB),
          (ROTHMv8i16 VECREG:$rA,
                      (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>;

// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
// Note: This instruction doesn't match a pattern because rB must be negated
// for the instruction to work. Thus, the pattern below the instruction!
def ROTHMr16:
    RRForm<0b10111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
      "rothm\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated! */]>;

def : Pat<(srl R16C:$rA, R32C:$rB),
          (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(srl R16C:$rA, R16C:$rB),
          (ROTHMr16 R16C:$rA,
                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(srl R16C:$rA, /* R8C */ R16C:$rB),
          (ROTHMr16 R16C:$rA,
                    (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /* ) */, 0))>;

// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
// that the immediate can be complemented, so that the user doesn't have to
// worry about it.
def ROTHMIv8i16:
    RI7Form<0b10111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
      "rothmi\t$rT, $rA, $val", RotateShift,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i32 imm:$val)))]>;

def: Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i16 imm:$val)),
         (ROTHMIv8i16 VECREG:$rA, imm:$val)>;

def ROTHMIr16:
    RI7Form<0b10111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
      "rothmi\t$rT, $rA, $val", RotateShift,
      [(set R16C:$rT, (srl R16C:$rA, (i32 uimm7:$val)))]>;

def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
         (ROTHMIr16 R16C:$rA, uimm7:$val)>;

// ROTM v4i32 form: See the ROTHM v8i16 comments.
def ROTMv4i32:
    RRForm<0b10011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
      "rotm\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R32C:$rB),
          (ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R16C:$rB),
          (ROTMv4i32 VECREG:$rA,
                     (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, /* R8C */ R16C:$rB),
          (ROTMv4i32 VECREG:$rA,
                     (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>;

def ROTMr32:
    RRForm<0b10011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "rotm\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(srl R32C:$rA, R32C:$rB),
          (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(srl R32C:$rA, R16C:$rB),
          (ROTMr32 R32C:$rA,
                   (SFIr32 (XSHWr16 R16C:$rB), 0))>;

// ROTMI v4i32 form: See the comment for ROTHM v8i16.
def ROTMIv4i32:
    RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
      "rotmi\t$rT, $rA, $val", RotateShift,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_srl_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>;

def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, (i16 uimm7:$val)),
          (ROTMIv4i32 VECREG:$rA, uimm7:$val)>;

// ROTMI r32 form: know how to complement the immediate value.
def ROTMIr32:
    RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
      "rotmi\t$rT, $rA, $val", RotateShift,
      [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;

def : Pat<(srl R32C:$rA, (i16 imm:$val)),
          (ROTMIr32 R32C:$rA, uimm7:$val)>;

// ROTQMBYvec: This is a vector form merely so that when used in an
// instruction pattern, type checking will succeed. This instruction assumes
// that the user knew to complement $rB.
def ROTQMBYvec:
    RRForm<0b10111011100, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
      "rotqmby\t$rT, $rA, $rB", RotateShift,
      [(set (v16i8 VECREG:$rT),
            (SPUrotbytes_right_zfill (v16i8 VECREG:$rA), R32C:$rB))]>;

def ROTQMBYIvec:
    RI7Form<0b10111111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
      "rotqmbyi\t$rT, $rA, $val", RotateShift,
      [(set (v16i8 VECREG:$rT),
            (SPUrotbytes_right_zfill (v16i8 VECREG:$rA), (i32 uimm7:$val)))]>;

def : Pat<(SPUrotbytes_right_zfill VECREG:$rA, (i16 uimm7:$val)),
          (ROTQMBYIvec VECREG:$rA, uimm7:$val)>;

def ROTQMBYBIvec:
    RRForm<0b10110011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "rotqmbybi\t$rT, $rA, $rB", RotateShift,
      [/* intrinsic */]>;

def ROTQMBIvec:
    RRForm<0b10011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "rotqmbi\t$rT, $rA, $rB", RotateShift,
      [/* intrinsic */]>;

def ROTQMBIIvec:
    RI7Form<0b10011111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
      "rotqmbii\t$rT, $rA, $val", RotateShift,
      [/* intrinsic */]>;

def ROTMAHv8i16:
    RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
      "rotmah\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R32C:$rB),
          (ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R16C:$rB),
          (ROTMAHv8i16 VECREG:$rA,
                       (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def ROTMAHr16:
    RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
      "rotmah\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(sra R16C:$rA, R32C:$rB),
          (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(sra R16C:$rA, R16C:$rB),
          (ROTMAHr16 R16C:$rA,
                     (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def ROTMAHIv8i16:
    RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
      "rotmahi\t$rT, $rA, $val", RotateShift,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;

def : Pat<(SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)),
          (ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;

def ROTMAHIr16:
    RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
      "rotmahi\t$rT, $rA, $val", RotateShift,
      [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;

def : Pat<(sra R16C:$rA, (i32 imm:$val)),
          (ROTMAHIr16 R16C:$rA, uimm7:$val)>;

def ROTMAv4i32:
    RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
      "rotma\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R32C:$rB),
          (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>;

def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R16C:$rB),
          (ROTMAv4i32 (v4i32 VECREG:$rA),
                      (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def ROTMAr32:
    RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "rotma\t$rT, $rA, $rB", RotateShift,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(sra R32C:$rA, R32C:$rB),
          (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(sra R32C:$rA, R16C:$rB),
          (ROTMAr32 R32C:$rA,
                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def ROTMAIv4i32:
    RRForm<0b01011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
      "rotmai\t$rT, $rA, $val", RotateShift,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_sra_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>;

def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, (i16 uimm7:$val)),
          (ROTMAIv4i32 VECREG:$rA, uimm7:$val)>;

def ROTMAIr32:
    RRForm<0b01011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
      "rotmai\t$rT, $rA, $val", RotateShift,
      [(set R32C:$rT, (sra R32C:$rA, (i32 uimm7:$val)))]>;

def : Pat<(sra R32C:$rA, (i16 uimm7:$val)),
          (ROTMAIr32 R32C:$rA, uimm7:$val)>;

//===----------------------------------------------------------------------===//
// Branch and conditionals:
//===----------------------------------------------------------------------===//

let isTerminator = 1, isBarrier = 1 in {
  // Halt If Equal (r32 preferred slot only, no vector form)
  def HEQr32:
    RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
      "heq\t$rA, $rB", BranchResolv,
      [/* no pattern to match */]>;

  def HEQIr32 :
    RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
      "heqi\t$rA, $val", BranchResolv,
      [/* no pattern to match */]>;

  // HGT/HGTI: These instructions use signed arithmetic for the comparison,
  // contrasting with HLGT/HLGTI, which use unsigned comparison:
  def HGTr32:
    RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
      "hgt\t$rA, $rB", BranchResolv,
      [/* no pattern to match */]>;

  def HGTIr32: 
    RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
      "hgti\t$rA, $val", BranchResolv,
      [/* no pattern to match */]>;

  def HLGTr32:
    RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
      "hlgt\t$rA, $rB", BranchResolv,
      [/* no pattern to match */]>;

  def HLGTIr32:
    RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
      "hlgti\t$rA, $val", BranchResolv,
      [/* no pattern to match */]>;
}

// Comparison operators:

def CEQBv16i8:
  RRForm<0b00001011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "ceqb\t$rT, $rA, $rB", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQBIv16i8:
  RI10Form<0b01111110, (outs VECREG:$rT), (ins VECREG:$rA, s7imm:$val),
    "ceqbi\t$rT, $rA, $val", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQHr16:
  RRForm<0b00010011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    "ceqh\t$rT, $rA, $rB", ByteOp,
    [/* no pattern to match */]>;

def CEQHv8i16:
  RRForm<0b00010011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "ceqh\t$rT, $rA, $rB", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQHIr16:
  RI10Form<0b10111110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    "ceqhi\t$rT, $rA, $val", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQHIv8i16:
  RI10Form<0b10111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    "ceqhi\t$rT, $rA, $val", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQr32:
  RRForm<0b00000011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
    "ceq\t$rT, $rA, $rB", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQv4i32:
  RRForm<0b00000011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "ceq\t$rT, $rA, $rB", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQIr32:
  RI10Form<0b00111110, (outs R32C:$rT), (ins R32C:$rA, s10imm:$val),
    "ceqi\t$rT, $rA, $val", ByteOp,
    [/* no pattern to match: intrinsic */]>;

def CEQIv4i32:
  RI10Form<0b00111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
    "ceqi\t$rT, $rA, $val", ByteOp,
    [/* no pattern to match: intrinsic */]>;

let isCall = 1,
  // All calls clobber the non-callee-saved registers:
  Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
          R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
          R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
          R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
          R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
          R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
          R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
          R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
  // All of these instructions use $lr (aka $0)
  Uses = [R0]  in {
  // Branch relative and set link: Used if we actually know that the target
  // is within [-32768, 32767] bytes of the target
  def BRSL:
    BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
      "brsl\t$$lr, $func",
      [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;

  // Branch absolute and set link: Used if we actually know that the target
  // is an absolute address
  def BRASL:
    BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
      "brasl\t$$lr, $func",
      [(SPUcall tglobaladdr:$func)]>;

  // Branch indirect and set link if external data. These instructions are not
  // actually generated, matched by an intrinsic:
  def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
  def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
  def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
  def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;

  // Branch indirect and set link. This is the "X-form" address version of a
  // function call
  def BISL:
    BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
}

// Unconditional branches:
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in {
  def BR :
    UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
      "br\t$dest",
      [(br bb:$dest)]>;

  // Unconditional, absolute address branch
  def BRA:
    UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
      "bra\t$dest",
      [/* no pattern */]>;

  // Indirect branch
  def BI:
    BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;

  // Various branches:
  def BRNZ:
    RI16Form<0b010000100, (outs), (ins R32C:$rCond, brtarget:$dest),
      "brnz\t$rCond,$dest",
      BranchResolv,
      [(brcond R32C:$rCond, bb:$dest)]>;

  def BRZ:
    RI16Form<0b000000100, (outs), (ins R32C:$rT, brtarget:$dest),
      "brz\t$rT,$dest",
      BranchResolv,
      [/* no pattern */]>;

  def BRHNZ:
    RI16Form<0b011000100, (outs), (ins R16C:$rCond, brtarget:$dest),
      "brhnz\t$rCond,$dest",
      BranchResolv,
      [(brcond R16C:$rCond, bb:$dest)]>;

  def BRHZ:
    RI16Form<0b001000100, (outs), (ins R16C:$rT, brtarget:$dest),
      "brhz\t$rT,$dest",
      BranchResolv,
      [/* no pattern */]>;
  
/*
  def BINZ:
    BICondForm<0b10010100100, "binz\t$rA, $func",
               [(SPUbinz R32C:$rA, R32C:$func)]>;

  def BIZ:
    BICondForm<0b00010100100, "biz\t$rA, $func",
               [(SPUbiz R32C:$rA, R32C:$func)]>;
*/
}

def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest), 
          (BRHZ R16C:$rA, bb:$dest)>;
def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest), 
          (BRHNZ R16C:$rA, bb:$dest)>;

def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), 
          (BRZ R32C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest), 
          (BRZ R32C:$rA, bb:$dest)>;

let isTerminator = 1, isBarrier = 1 in {
  let isReturn = 1 in {
    def RET:
        RETForm<"bi\t$$lr", [(retflag)]>;
  }
}

//===----------------------------------------------------------------------===//
// Various brcond predicates:
//===----------------------------------------------------------------------===//
/*
def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
          (BRZ R32C:$rA, bb:$dest)>;

def : Pat<(brcond (i32 (seteq R32C:$rA, R32C:$rB)), bb:$dest),
          (BRNZ (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;

def : Pat<(brcond (i16 (seteq R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
          (BRHNZ (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;

def : Pat<(brcond (i16 (seteq R16C:$rA, R16C:$rB)), bb:$dest),
          (BRHNZ (CEQHr16 R16C:$rA, R16C:$rB), bb:$dest)>;
*/

//===----------------------------------------------------------------------===//
// Single precision floating point instructions
//===----------------------------------------------------------------------===//

def FAv4f32:
    RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "fa\t$rT, $rA, $rB", SPrecFP,
      [(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>;

def FAf32 :
    RRForm<0b00100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fa\t$rT, $rA, $rB", SPrecFP,
      [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;

def FSv4f32:
    RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "fs\t$rT, $rA, $rB", SPrecFP,
      [(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>;

def FSf32 :
    RRForm<0b10100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fs\t$rT, $rA, $rB", SPrecFP,
      [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;

// Floating point reciprocal estimate
def FREv4f32 :
    RRForm_1<0b00011101100, (outs VECREG:$rT), (ins VECREG:$rA),
      "frest\t$rT, $rA", SPrecFP,
      [(set (v4f32 VECREG:$rT), (SPUreciprocalEst (v4f32 VECREG:$rA)))]>;

def FREf32 :
    RRForm_1<0b00011101100, (outs R32FP:$rT), (ins R32FP:$rA),
      "frest\t$rT, $rA", SPrecFP,
      [(set R32FP:$rT, (SPUreciprocalEst R32FP:$rA))]>;

// Floating point interpolate (used in conjunction with reciprocal estimate)
def FIv4f32 :
    RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "fi\t$rT, $rA, $rB", SPrecFP,
      [(set (v4f32 VECREG:$rT), (SPUinterpolate (v4f32 VECREG:$rA),
                                                (v4f32 VECREG:$rB)))]>;

def FIf32 :
    RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fi\t$rT, $rA, $rB", SPrecFP,
      [(set R32FP:$rT, (SPUinterpolate R32FP:$rA, R32FP:$rB))]>;

// Floating Compare Equal
def FCEQf32 :
    RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fceq\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setoeq R32FP:$rA, R32FP:$rB))]>;

def FCMEQf32 :
    RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fcmeq\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;

def FCGTf32 :
    RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fcgt\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setogt R32FP:$rA, R32FP:$rB))]>;

def FCMGTf32 :
    RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fcmgt\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setogt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;

// FP Status and Control Register Write
// Why isn't rT a don't care in the ISA?
// Should we create a special RRForm_3 for this guy and zero out the rT?
def FSCRWf32 :
    RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
      "fscrwr\t$rA", SPrecFP,
      [/* This instruction requires an intrinsic. Note: rT is unused. */]>;

// FP Status and Control Register Read
def FSCRRf32 :
    RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
      "fscrrd\t$rT", SPrecFP,
      [/* This instruction requires an intrinsic */]>;

// llvm instruction space
// How do these map onto cell instructions?
// fdiv rA rB
//   frest rC rB        # c = 1/b (both lines)
//   fi rC rB rC
//   fm rD rA rC        # d = a * 1/b
//   fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
//   fma rB rB rC rD            # b = b * c + d
//                              = -(d *b -a) * c + d
//                              = a * c - c ( a *b *c - a)

// fcopysign (???)

// Library calls:
// These llvm instructions will actually map to library calls.
// All that's needed, then, is to check that the appropriate library is
// imported and do a brsl to the proper function name.
// frem # fmod(x, y): x - (x/y) * y
// (Note: fmod(double, double), fmodf(float,float)
// fsqrt?
// fsin?
// fcos?
// Unimplemented SPU instruction space
// floating reciprocal absolute square root estimate (frsqest)

// The following are probably just intrinsics
// status and control register write 
// status and control register read

//--------------------------------------
// Floating point multiply instructions
//--------------------------------------

def FMv4f32:
    RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "fm\t$rT, $rA, $rB", SPrecFP,
      [(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA),
                                      (v4f32 VECREG:$rB)))]>;

def FMf32 :
    RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fm\t$rT, $rA, $rB", SPrecFP,
      [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;

// Floating point multiply and add
// e.g. d = c + (a * b)
def FMAv4f32:
    RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "fma\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set (v4f32 VECREG:$rT),
            (fadd (v4f32 VECREG:$rC),
                  (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;

def FMAf32:
    RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
      "fma\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;

// FP multiply and subtract
// Subtracts value in rC from product
// res = a * b - c
def FMSv4f32 :
    RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "fms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set (v4f32 VECREG:$rT),
            (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
                  (v4f32 VECREG:$rC)))]>;

def FMSf32 :
    RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
      "fms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set R32FP:$rT,
            (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;

// Floating Negative Mulitply and Subtract
// Subtracts product from value in rC
// res = fneg(fms a b c)
//     = - (a * b - c)
//     = c - a * b
// NOTE: subtraction order
// fsub a b = a - b
// fs a b = b - a? 
def FNMSf32 :
    RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
      "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;

def FNMSv4f32 :
    RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set (v4f32 VECREG:$rT), 
            (fsub (v4f32 VECREG:$rC), 
                  (fmul (v4f32 VECREG:$rA), 
                        (v4f32 VECREG:$rB))))]>;

//--------------------------------------
// Floating Point Conversions
// Signed conversions:
def CSiFv4f32:
    CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "csflt\t$rT, $rA, 0", SPrecFP,
      [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;

// Convert signed integer to floating point 
def CSiFf32 :
    CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
      "csflt\t$rT, $rA, 0", SPrecFP,
      [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;

// Convert unsigned into to float
def CUiFv4f32 :
    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "cuflt\t$rT, $rA, 0", SPrecFP,
      [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;

def CUiFf32 :
    CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
      "cuflt\t$rT, $rA, 0", SPrecFP,
      [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;

// Convert float to unsigned int 
// Assume that scale = 0

def CFUiv4f32 :
    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "cfltu\t$rT, $rA, 0", SPrecFP,
      [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;

def CFUif32 :
    CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
      "cfltu\t$rT, $rA, 0", SPrecFP,
      [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;

// Convert float to signed int 
// Assume that scale = 0

def CFSiv4f32 :
    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "cflts\t$rT, $rA, 0", SPrecFP,
      [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;

def CFSif32 :
    CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
      "cflts\t$rT, $rA, 0", SPrecFP,
      [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;

//===----------------------------------------------------------------------==//
// Single<->Double precision conversions
//===----------------------------------------------------------------------==//

// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
// v4f32, output is v2f64--which goes in the name?)

// Floating point extend single to double
// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
// operates on two double-word slots (i.e. 1st and 3rd fp numbers
// are ignored).
def FESDvec :
    RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "fesd\t$rT, $rA", SPrecFP,
      [(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>;

def FESDf32 :
    RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
      "fesd\t$rT, $rA", SPrecFP,
      [(set R64FP:$rT, (fextend R32FP:$rA))]>;

// Floating point round double to single
//def FRDSvec :
//    RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
//      "frds\t$rT, $rA,", SPrecFP,
//      [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;

def FRDSf64 :
    RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
      "frds\t$rT, $rA", SPrecFP,
      [(set R32FP:$rT, (fround R64FP:$rA))]>;

//ToDo include anyextend?

//===----------------------------------------------------------------------==//
// Double precision floating point instructions
//===----------------------------------------------------------------------==//
def FAf64 :
    RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
      "dfa\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;

def FAv2f64 :
    RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "dfa\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;

def FSf64 :
    RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
      "dfs\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;

def FSv2f64 :
    RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "dfs\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;

def FMf64 :
    RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
      "dfm\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;

def FMv2f64:
    RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "dfm\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;

def FMAf64:
    RRForm<0b00111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfma\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FMAv2f64:
    RRForm<0b00111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfma\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fadd (v2f64 VECREG:$rC),
                  (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FMSf64 :
    RRForm<0b10111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfms\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FMSv2f64 :
    RRForm<0b10111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfms\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
                  (v2f64 VECREG:$rC)))]>;

// FNMS: - (a * b - c)
// - (a * b) + c => c - (a * b)
def FNMSf64 :
    RRForm<0b01111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfnms\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fsub R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def : Pat<(fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC)),
          (FNMSf64 R64FP:$rA, R64FP:$rB, R64FP:$rC)>;

def FNMSv2f64 :
    RRForm<0b01111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfnms\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT), 
            (fsub (v2f64 VECREG:$rC), 
                  (fmul (v2f64 VECREG:$rA), 
                        (v2f64 VECREG:$rB))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def : Pat<(fneg (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
                (v2f64 VECREG:$rC))),
          (FNMSv2f64 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

// - (a * b + c)
// - (a * b) - c
def FNMAf64 :
    RRForm<0b11111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfnma\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FNMAv2f64 :
    RRForm<0b11111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfnma\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT), 
            (fneg (fadd (v2f64 VECREG:$rC), 
                        (fmul (v2f64 VECREG:$rA), 
                              (v2f64 VECREG:$rB)))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

//===----------------------------------------------------------------------==//
// Floating point negation and absolute value
//===----------------------------------------------------------------------==//

def : Pat<(fneg (v4f32 VECREG:$rA)),
          (XORfnegvec (v4f32 VECREG:$rA), 
                      (v4f32 (ILHUv4i32 0x8000)))>;

def : Pat<(fneg R32FP:$rA),
          (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;

def : Pat<(fneg (v2f64 VECREG:$rA)),
          (XORfnegvec (v2f64 VECREG:$rA),
                      (v2f64 (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80)))>;

def : Pat<(fneg R64FP:$rA),
          (XORfneg64 R64FP:$rA,
                     (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80))>;

// Floating point absolute value

def : Pat<(fabs R32FP:$rA),
          (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;

def : Pat<(fabs (v4f32 VECREG:$rA)),
          (ANDfabsvec (v4f32 VECREG:$rA),
                      (v4f32 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>;

def : Pat<(fabs R64FP:$rA),
          (ANDfabs64 R64FP:$rA, (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f))>;

def : Pat<(fabs (v2f64 VECREG:$rA)),
          (ANDfabsvec (v2f64 VECREG:$rA),
                      (v2f64 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>;

//===----------------------------------------------------------------------===//
// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
// in the odd pipeline)
//===----------------------------------------------------------------------===//

def ENOP : I<(outs), (ins), "enop", ExecNOP> {
  let Pattern = [];

  let Inst{0-10} = 0b10000000010;
  let Inst{11-17} = 0;
  let Inst{18-24} = 0;
  let Inst{25-31} = 0;
}

def LNOP : I<(outs), (ins), "lnop", LoadNOP> {
  let Pattern = [];

  let Inst{0-10} = 0b10000000000;
  let Inst{11-17} = 0;
  let Inst{18-24} = 0;
  let Inst{25-31} = 0;
}

//===----------------------------------------------------------------------===//
// Bit conversions (type conversions between vector/packed types)
// NOTE: Promotions are handled using the XS* instructions. Truncation
// is not handled.
//===----------------------------------------------------------------------===//
def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;

def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;

def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;

def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;

def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;

def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>;

def : Pat<(f32 (bitconvert (i32 R32C:$src))), (f32 R32FP:$src)>;

//===----------------------------------------------------------------------===//
// Instruction patterns:
//===----------------------------------------------------------------------===//

// General 32-bit constants:
def : Pat<(i32 imm:$imm),
          (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Single precision float constants:
def : Pat<(SPUFPconstant (f32 fpimm:$imm)),
          (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;

// General constant 32-bit vectors
def : Pat<(v4i32 v4i32Imm:$imm),
          (IOHLvec (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
                   (LO16_vec v4i32Imm:$imm))>;

//===----------------------------------------------------------------------===//
// Call instruction patterns:
//===----------------------------------------------------------------------===//
// Return void
def : Pat<(ret),
          (RET)>;

//===----------------------------------------------------------------------===//
// Zero/Any/Sign extensions
//===----------------------------------------------------------------------===//

// zext 1->32: Zero extend i1 to i32
def : Pat<(SPUextract_i1_zext R32C:$rSrc),
          (ANDIr32 R32C:$rSrc, 0x1)>;

// sext 8->32: Sign extend bytes to words
def : Pat<(sext_inreg R32C:$rSrc, i8),
          (XSHWr32 (XSBHr32 R32C:$rSrc))>;

def : Pat<(SPUextract_i8_sext VECREG:$rSrc),
          (XSHWr32 (XSBHr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc),
                            (v4i32 VECREG:$rSrc))))>;

def : Pat<(SPUextract_i8_zext VECREG:$rSrc),
          (ANDIr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), (v4i32 VECREG:$rSrc)),
                   0xff)>;

// zext 16->32: Zero extend halfwords to words (note that we have to juggle the
// 0xffff constant since it will not fit into an immediate.)
def : Pat<(i32 (zext R16C:$rSrc)),
          (AND2To4 R16C:$rSrc, (ILAr32 0xffff))>;

def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
          (ANDI2To4 R16C:$rSrc, 0xf)>;

def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
          (ANDI2To4 R16C:$rSrc, 0xff)>;

def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
          (ANDI2To4 R16C:$rSrc, 0xfff)>;

// anyext 16->32: Extend 16->32 bits, irrespective of sign
def : Pat<(i32 (anyext R16C:$rSrc)),
          (ORI2To4 R16C:$rSrc, 0)>;

//===----------------------------------------------------------------------===//
// Address translation: SPU, like PPC, has to split addresses into high and
// low parts in order to load them into a register.
//===----------------------------------------------------------------------===//

def : Pat<(SPUhi    tglobaladdr:$in, 0), (ILHUhi tglobaladdr:$in)>;
def : Pat<(SPUlo    tglobaladdr:$in, 0), (ILAlo  tglobaladdr:$in)>;
def : Pat<(SPUdform tglobaladdr:$in, imm:$imm), (ILAlsa tglobaladdr:$in)>;
def : Pat<(SPUhi    tconstpool:$in , 0), (ILHUhi tconstpool:$in)>;
def : Pat<(SPUlo    tconstpool:$in , 0), (ILAlo  tconstpool:$in)>;
def : Pat<(SPUdform tconstpool:$in, imm:$imm), (ILAlsa tconstpool:$in)>;
def : Pat<(SPUhi    tjumptable:$in, 0),  (ILHUhi tjumptable:$in)>;
def : Pat<(SPUlo    tjumptable:$in, 0),  (ILAlo tjumptable:$in)>;
def : Pat<(SPUdform tjumptable:$in, imm:$imm),  (ILAlsa tjumptable:$in)>;

// Force load of global address to a register. These forms show up in
// SPUISD::DFormAddr pseudo instructions:
/*
def : Pat<(add tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
def : Pat<(add tconstpool:$in, 0),  (ILAlsa tglobaladdr:$in)>;
def : Pat<(add tjumptable:$in, 0),  (ILAlsa tglobaladdr:$in)>;
 */
// Instrinsics:
include "CellSDKIntrinsics.td"