aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Hexagon/HexagonHardwareLoops.cpp
blob: c47ee9c8e2e70c898891673351265c7ffd57e588 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the Hexagon hardware
// loop instruction.  The hardware loop can perform loop branches with a
// zero-cycle overhead.
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
// The pattern detected by this phase is due to running Strength Reduction.
//
// Criteria for hardware loops:
//  - Countable loops (w/ ind. var for a trip count)
//  - Assumes loops are normalized by IndVarSimplify
//  - Try inner-most loops first
//  - No nested hardware loops.
//  - No function calls in loops.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "Hexagon.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <algorithm>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "hwloops"

#ifndef NDEBUG
static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
#endif

STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");

namespace llvm {
  void initializeHexagonHardwareLoopsPass(PassRegistry&);
}

namespace {
  class CountValue;
  struct HexagonHardwareLoops : public MachineFunctionPass {
    MachineLoopInfo            *MLI;
    MachineRegisterInfo        *MRI;
    MachineDominatorTree       *MDT;
    const HexagonInstrInfo     *TII;
#ifndef NDEBUG
    static int Counter;
#endif

  public:
    static char ID;

    HexagonHardwareLoops() : MachineFunctionPass(ID) {
      initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    const char *getPassName() const override { return "Hexagon Hardware Loops"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// Kinds of comparisons in the compare instructions.
    struct Comparison {
      enum Kind {
        EQ  = 0x01,
        NE  = 0x02,
        L   = 0x04, // Less-than property.
        G   = 0x08, // Greater-than property.
        U   = 0x40, // Unsigned property.
        LTs = L,
        LEs = L | EQ,
        GTs = G,
        GEs = G | EQ,
        LTu = L      | U,
        LEu = L | EQ | U,
        GTu = G      | U,
        GEu = G | EQ | U
      };

      static Kind getSwappedComparison(Kind Cmp) {
        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
        if ((Cmp & L) || (Cmp & G))
          return (Kind)(Cmp ^ (L|G));
        return Cmp;
      }
    };

    /// \brief Find the register that contains the loop controlling
    /// induction variable.
    /// If successful, it will return true and set the \p Reg, \p IVBump
    /// and \p IVOp arguments.  Otherwise it will return false.
    /// The returned induction register is the register R that follows the
    /// following induction pattern:
    /// loop:
    ///   R = phi ..., [ R.next, LatchBlock ]
    ///   R.next = R + #bump
    ///   if (R.next < #N) goto loop
    /// IVBump is the immediate value added to R, and IVOp is the instruction
    /// "R.next = R + #bump".
    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
                               int64_t &IVBump, MachineInstr *&IVOp) const;

    /// \brief Analyze the statements in a loop to determine if the loop
    /// has a computable trip count and, if so, return a value that represents
    /// the trip count expression.
    CountValue *getLoopTripCount(MachineLoop *L,
                                 SmallVectorImpl<MachineInstr *> &OldInsts);

    /// \brief Return the expression that represents the number of times
    /// a loop iterates.  The function takes the operands that represent the
    /// loop start value, loop end value, and induction value.  Based upon
    /// these operands, the function attempts to compute the trip count.
    /// If the trip count is not directly available (as an immediate value,
    /// or a register), the function will attempt to insert computation of it
    /// to the loop's preheader.
    CountValue *computeCount(MachineLoop *Loop,
                             const MachineOperand *Start,
                             const MachineOperand *End,
                             unsigned IVReg,
                             int64_t IVBump,
                             Comparison::Kind Cmp) const;

    /// \brief Return true if the instruction is not valid within a hardware
    /// loop.
    bool isInvalidLoopOperation(const MachineInstr *MI) const;

    /// \brief Return true if the loop contains an instruction that inhibits
    /// using the hardware loop.
    bool containsInvalidInstruction(MachineLoop *L) const;

    /// \brief Given a loop, check if we can convert it to a hardware loop.
    /// If so, then perform the conversion and return true.
    bool convertToHardwareLoop(MachineLoop *L);

    /// \brief Return true if the instruction is now dead.
    bool isDead(const MachineInstr *MI,
                SmallVectorImpl<MachineInstr *> &DeadPhis) const;

    /// \brief Remove the instruction if it is now dead.
    void removeIfDead(MachineInstr *MI);

    /// \brief Make sure that the "bump" instruction executes before the
    /// compare.  We need that for the IV fixup, so that the compare
    /// instruction would not use a bumped value that has not yet been
    /// defined.  If the instructions are out of order, try to reorder them.
    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);

    /// \brief Get the instruction that loads an immediate value into \p R,
    /// or 0 if such an instruction does not exist.
    MachineInstr *defWithImmediate(unsigned R);

    /// \brief Get the immediate value referenced to by \p MO, either for
    /// immediate operands, or for register operands, where the register
    /// was defined with an immediate value.
    int64_t getImmediate(MachineOperand &MO);

    /// \brief Reset the given machine operand to now refer to a new immediate
    /// value.  Assumes that the operand was already referencing an immediate
    /// value, either directly, or via a register.
    void setImmediate(MachineOperand &MO, int64_t Val);

    /// \brief Fix the data flow of the induction varible.
    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
    ///                                     |
    ///                                     +-> back to phi
    /// where "bump" is the increment of the induction variable:
    ///   iv = iv + #const.
    /// Due to some prior code transformations, the actual flow may look
    /// like this:
    ///   phi -+-> bump ---> back to phi
    ///        |
    ///        +-> comparison-in-latch (against upper_bound-bump),
    /// i.e. the comparison that controls the loop execution may be using
    /// the value of the induction variable from before the increment.
    ///
    /// Return true if the loop's flow is the desired one (i.e. it's
    /// either been fixed, or no fixing was necessary).
    /// Otherwise, return false.  This can happen if the induction variable
    /// couldn't be identified, or if the value in the latch's comparison
    /// cannot be adjusted to reflect the post-bump value.
    bool fixupInductionVariable(MachineLoop *L);

    /// \brief Given a loop, if it does not have a preheader, create one.
    /// Return the block that is the preheader.
    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
  };

  char HexagonHardwareLoops::ID = 0;
#ifndef NDEBUG
  int HexagonHardwareLoops::Counter = 0;
#endif

  /// \brief Abstraction for a trip count of a loop. A smaller version
  /// of the MachineOperand class without the concerns of changing the
  /// operand representation.
  class CountValue {
  public:
    enum CountValueType {
      CV_Register,
      CV_Immediate
    };
  private:
    CountValueType Kind;
    union Values {
      struct {
        unsigned Reg;
        unsigned Sub;
      } R;
      unsigned ImmVal;
    } Contents;

  public:
    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
      Kind = t;
      if (Kind == CV_Register) {
        Contents.R.Reg = v;
        Contents.R.Sub = u;
      } else {
        Contents.ImmVal = v;
      }
    }
    bool isReg() const { return Kind == CV_Register; }
    bool isImm() const { return Kind == CV_Immediate; }

    unsigned getReg() const {
      assert(isReg() && "Wrong CountValue accessor");
      return Contents.R.Reg;
    }
    unsigned getSubReg() const {
      assert(isReg() && "Wrong CountValue accessor");
      return Contents.R.Sub;
    }
    unsigned getImm() const {
      assert(isImm() && "Wrong CountValue accessor");
      return Contents.ImmVal;
    }

    void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
      if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
      if (isImm()) { OS << Contents.ImmVal; }
    }
  };
} // end anonymous namespace


INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
                      "Hexagon Hardware Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
                    "Hexagon Hardware Loops", false, false)


/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr *MI) {
  return MI->getOpcode() == Hexagon::J2_loop0r ||
    MI->getOpcode() == Hexagon::J2_loop0i;
}

FunctionPass *llvm::createHexagonHardwareLoops() {
  return new HexagonHardwareLoops();
}


bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");

  bool Changed = false;

  MLI = &getAnalysis<MachineLoopInfo>();
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();

  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
       I != E; ++I) {
    MachineLoop *L = *I;
    if (!L->getParentLoop())
      Changed |= convertToHardwareLoop(L);
  }

  return Changed;
}


bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
                                                 unsigned &Reg,
                                                 int64_t &IVBump,
                                                 MachineInstr *&IVOp
                                                 ) const {
  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Preheader = L->getLoopPreheader();
  MachineBasicBlock *Latch = L->getLoopLatch();
  if (!Header || !Preheader || !Latch)
    return false;

  // This pair represents an induction register together with an immediate
  // value that will be added to it in each loop iteration.
  typedef std::pair<unsigned,int64_t> RegisterBump;

  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
  // from an induction operation
  //   R.next = R + bump
  // where bump is an immediate value.
  typedef std::map<unsigned,RegisterBump> InductionMap;

  InductionMap IndMap;

  typedef MachineBasicBlock::instr_iterator instr_iterator;
  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
       I != E && I->isPHI(); ++I) {
    MachineInstr *Phi = &*I;

    // Have a PHI instruction.  Get the operand that corresponds to the
    // latch block, and see if is a result of an addition of form "reg+imm",
    // where the "reg" is defined by the PHI node we are looking at.
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
      if (Phi->getOperand(i+1).getMBB() != Latch)
        continue;

      unsigned PhiOpReg = Phi->getOperand(i).getReg();
      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
      unsigned UpdOpc = DI->getOpcode();
      bool isAdd = (UpdOpc == Hexagon::A2_addi);

      if (isAdd) {
        // If the register operand to the add is the PHI we're
        // looking at, this meets the induction pattern.
        unsigned IndReg = DI->getOperand(1).getReg();
        if (MRI->getVRegDef(IndReg) == Phi) {
          unsigned UpdReg = DI->getOperand(0).getReg();
          int64_t V = DI->getOperand(2).getImm();
          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
        }
      }
    }  // for (i)
  }  // for (instr)

  SmallVector<MachineOperand,2> Cond;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
  if (NotAnalyzed)
    return false;

  unsigned CSz = Cond.size();
  assert (CSz == 1 || CSz == 2);
  unsigned PredR = Cond[CSz-1].getReg();

  MachineInstr *PredI = MRI->getVRegDef(PredR);
  if (!PredI->isCompare())
    return false;

  unsigned CmpReg1 = 0, CmpReg2 = 0;
  int CmpImm = 0, CmpMask = 0;
  bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
                                         CmpMask, CmpImm);
  // Fail if the compare was not analyzed, or it's not comparing a register
  // with an immediate value.  Not checking the mask here, since we handle
  // the individual compare opcodes (including CMPb) later on.
  if (!CmpAnalyzed)
    return false;

  // Exactly one of the input registers to the comparison should be among
  // the induction registers.
  InductionMap::iterator IndMapEnd = IndMap.end();
  InductionMap::iterator F = IndMapEnd;
  if (CmpReg1 != 0) {
    InductionMap::iterator F1 = IndMap.find(CmpReg1);
    if (F1 != IndMapEnd)
      F = F1;
  }
  if (CmpReg2 != 0) {
    InductionMap::iterator F2 = IndMap.find(CmpReg2);
    if (F2 != IndMapEnd) {
      if (F != IndMapEnd)
        return false;
      F = F2;
    }
  }
  if (F == IndMapEnd)
    return false;

  Reg = F->second.first;
  IVBump = F->second.second;
  IVOp = MRI->getVRegDef(F->first);
  return true;
}


/// \brief Analyze the statements in a loop to determine if the loop has
/// a computable trip count and, if so, return a value that represents
/// the trip count expression.
///
/// This function iterates over the phi nodes in the loop to check for
/// induction variable patterns that are used in the calculation for
/// the number of time the loop is executed.
CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
                                    SmallVectorImpl<MachineInstr *> &OldInsts) {
  MachineBasicBlock *TopMBB = L->getTopBlock();
  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
  assert(PI != TopMBB->pred_end() &&
         "Loop must have more than one incoming edge!");
  MachineBasicBlock *Backedge = *PI++;
  if (PI == TopMBB->pred_end())  // dead loop?
    return nullptr;
  MachineBasicBlock *Incoming = *PI++;
  if (PI != TopMBB->pred_end())  // multiple backedges?
    return nullptr;

  // Make sure there is one incoming and one backedge and determine which
  // is which.
  if (L->contains(Incoming)) {
    if (L->contains(Backedge))
      return nullptr;
    std::swap(Incoming, Backedge);
  } else if (!L->contains(Backedge))
    return nullptr;

  // Look for the cmp instruction to determine if we can get a useful trip
  // count.  The trip count can be either a register or an immediate.  The
  // location of the value depends upon the type (reg or imm).
  MachineBasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return nullptr;

  unsigned IVReg = 0;
  int64_t IVBump = 0;
  MachineInstr *IVOp;
  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
  if (!FoundIV)
    return nullptr;

  MachineBasicBlock *Preheader = L->getLoopPreheader();

  MachineOperand *InitialValue = nullptr;
  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
    if (MBB == Preheader)
      InitialValue = &IV_Phi->getOperand(i);
    else if (MBB == Latch)
      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
  }
  if (!InitialValue)
    return nullptr;

  SmallVector<MachineOperand,2> Cond;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
  if (NotAnalyzed)
    return nullptr;

  MachineBasicBlock *Header = L->getHeader();
  // TB must be non-null.  If FB is also non-null, one of them must be
  // the header.  Otherwise, branch to TB could be exiting the loop, and
  // the fall through can go to the header.
  assert (TB && "Latch block without a branch?");
  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
  if (!TB || (FB && TB != Header && FB != Header))
    return nullptr;

  // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
  // to put imm(0), followed by P in the vector Cond.
  // If TB is not the header, it means that the "not-taken" path must lead
  // to the header.
  bool Negated = (Cond.size() > 1) ^ (TB != Header);
  unsigned PredReg = Cond[Cond.size()-1].getReg();
  MachineInstr *CondI = MRI->getVRegDef(PredReg);
  unsigned CondOpc = CondI->getOpcode();

  unsigned CmpReg1 = 0, CmpReg2 = 0;
  int Mask = 0, ImmValue = 0;
  bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
                                         Mask, ImmValue);
  if (!AnalyzedCmp)
    return nullptr;

  // The comparison operator type determines how we compute the loop
  // trip count.
  OldInsts.push_back(CondI);
  OldInsts.push_back(IVOp);

  // Sadly, the following code gets information based on the position
  // of the operands in the compare instruction.  This has to be done
  // this way, because the comparisons check for a specific relationship
  // between the operands (e.g. is-less-than), rather than to find out
  // what relationship the operands are in (as on PPC).
  Comparison::Kind Cmp;
  bool isSwapped = false;
  const MachineOperand &Op1 = CondI->getOperand(1);
  const MachineOperand &Op2 = CondI->getOperand(2);
  const MachineOperand *EndValue = nullptr;

  if (Op1.isReg()) {
    if (Op2.isImm() || Op1.getReg() == IVReg)
      EndValue = &Op2;
    else {
      EndValue = &Op1;
      isSwapped = true;
    }
  }

  if (!EndValue)
    return nullptr;

  switch (CondOpc) {
    case Hexagon::C2_cmpeqi:
    case Hexagon::C2_cmpeq:
      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
      break;
    case Hexagon::C2_cmpgtui:
    case Hexagon::C2_cmpgtu:
      Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
      break;
    case Hexagon::C2_cmpgti:
    case Hexagon::C2_cmpgt:
      Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
      break;
    // Very limited support for byte/halfword compares.
    case Hexagon::A4_cmpbeqi:
    case Hexagon::A4_cmpheqi: {
      if (IVBump != 1)
        return nullptr;

      int64_t InitV, EndV;
      // Since the comparisons are "ri", the EndValue should be an
      // immediate.  Check it just in case.
      assert(EndValue->isImm() && "Unrecognized latch comparison");
      EndV = EndValue->getImm();
      // Allow InitialValue to be a register defined with an immediate.
      if (InitialValue->isReg()) {
        if (!defWithImmediate(InitialValue->getReg()))
          return nullptr;
        InitV = getImmediate(*InitialValue);
      } else {
        assert(InitialValue->isImm());
        InitV = InitialValue->getImm();
      }
      if (InitV >= EndV)
        return nullptr;
      if (CondOpc == Hexagon::A4_cmpbeqi) {
        if (!isInt<8>(InitV) || !isInt<8>(EndV))
          return nullptr;
      } else {  // Hexagon::CMPhEQri_V4
        if (!isInt<16>(InitV) || !isInt<16>(EndV))
          return nullptr;
      }
      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
      break;
    }
    default:
      return nullptr;
  }

  if (isSwapped)
   Cmp = Comparison::getSwappedComparison(Cmp);

  if (InitialValue->isReg()) {
    unsigned R = InitialValue->getReg();
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    if (!MDT->properlyDominates(DefBB, Header))
      return nullptr;
    OldInsts.push_back(MRI->getVRegDef(R));
  }
  if (EndValue->isReg()) {
    unsigned R = EndValue->getReg();
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    if (!MDT->properlyDominates(DefBB, Header))
      return nullptr;
  }

  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
}

/// \brief Helper function that returns the expression that represents the
/// number of times a loop iterates.  The function takes the operands that
/// represent the loop start value, loop end value, and induction value.
/// Based upon these operands, the function attempts to compute the trip count.
CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
                                               const MachineOperand *Start,
                                               const MachineOperand *End,
                                               unsigned IVReg,
                                               int64_t IVBump,
                                               Comparison::Kind Cmp) const {
  // Cannot handle comparison EQ, i.e. while (A == B).
  if (Cmp == Comparison::EQ)
    return nullptr;

  // Check if either the start or end values are an assignment of an immediate.
  // If so, use the immediate value rather than the register.
  if (Start->isReg()) {
    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
    if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi)
      Start = &StartValInstr->getOperand(1);
  }
  if (End->isReg()) {
    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
    if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi)
      End = &EndValInstr->getOperand(1);
  }

  assert (Start->isReg() || Start->isImm());
  assert (End->isReg() || End->isImm());

  bool CmpLess =     Cmp & Comparison::L;
  bool CmpGreater =  Cmp & Comparison::G;
  bool CmpHasEqual = Cmp & Comparison::EQ;

  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
  // If loop executes while iv is "less" with the iv value going down, then
  // the iv must wrap.
  if (CmpLess && IVBump < 0)
    return nullptr;
  // If loop executes while iv is "greater" with the iv value going up, then
  // the iv must wrap.
  if (CmpGreater && IVBump > 0)
    return nullptr;

  if (Start->isImm() && End->isImm()) {
    // Both, start and end are immediates.
    int64_t StartV = Start->getImm();
    int64_t EndV = End->getImm();
    int64_t Dist = EndV - StartV;
    if (Dist == 0)
      return nullptr;

    bool Exact = (Dist % IVBump) == 0;

    if (Cmp == Comparison::NE) {
      if (!Exact)
        return nullptr;
      if ((Dist < 0) ^ (IVBump < 0))
        return nullptr;
    }

    // For comparisons that include the final value (i.e. include equality
    // with the final value), we need to increase the distance by 1.
    if (CmpHasEqual)
      Dist = Dist > 0 ? Dist+1 : Dist-1;

    // assert (CmpLess => Dist > 0);
    assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
    // assert (CmpGreater => Dist < 0);
    assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");

    // "Normalized" distance, i.e. with the bump set to +-1.
    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump-1)) /   IVBump
                               :  (-Dist + (-IVBump-1)) / (-IVBump);
    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");

    uint64_t Count = Dist1;

    if (Count > 0xFFFFFFFFULL)
      return nullptr;

    return new CountValue(CountValue::CV_Immediate, Count);
  }

  // A general case: Start and End are some values, but the actual
  // iteration count may not be available.  If it is not, insert
  // a computation of it into the preheader.

  // If the induction variable bump is not a power of 2, quit.
  // Othwerise we'd need a general integer division.
  if (!isPowerOf2_64(std::abs(IVBump)))
    return nullptr;

  MachineBasicBlock *PH = Loop->getLoopPreheader();
  assert (PH && "Should have a preheader by now");
  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
  DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
                                         : DebugLoc();

  // If Start is an immediate and End is a register, the trip count
  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
  // is actually "reg + -imm".

  // If the loop IV is going downwards, i.e. if the bump is negative,
  // then the iteration count (computed as End-Start) will need to be
  // negated.  To avoid the negation, just swap Start and End.
  if (IVBump < 0) {
    std::swap(Start, End);
    IVBump = -IVBump;
  }
  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
  // Signedness, and "including equality" are preserved.

  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)

  int64_t StartV = 0, EndV = 0;
  if (Start->isImm())
    StartV = Start->getImm();
  if (End->isImm())
    EndV = End->getImm();

  int64_t AdjV = 0;
  // To compute the iteration count, we would need this computation:
  //   Count = (End - Start + (IVBump-1)) / IVBump
  // or, when CmpHasEqual:
  //   Count = (End - Start + (IVBump-1)+1) / IVBump
  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
  // generating an instruction specifically to add it if we can adjust
  // the immediate values for Start or End.

  if (CmpHasEqual) {
    // Need to add 1 to the total iteration count.
    if (Start->isImm())
      StartV--;
    else if (End->isImm())
      EndV++;
    else
      AdjV += 1;
  }

  if (Cmp != Comparison::NE) {
    if (Start->isImm())
      StartV -= (IVBump-1);
    else if (End->isImm())
      EndV += (IVBump-1);
    else
      AdjV += (IVBump-1);
  }

  unsigned R = 0, SR = 0;
  if (Start->isReg()) {
    R = Start->getReg();
    SR = Start->getSubReg();
  } else {
    R = End->getReg();
    SR = End->getSubReg();
  }
  const TargetRegisterClass *RC = MRI->getRegClass(R);
  // Hardware loops cannot handle 64-bit registers.  If it's a double
  // register, it has to have a subregister.
  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
    return nullptr;
  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;

  // Compute DistR (register with the distance between Start and End).
  unsigned DistR, DistSR;

  // Avoid special case, where the start value is an imm(0).
  if (Start->isImm() && StartV == 0) {
    DistR = End->getReg();
    DistSR = End->getSubReg();
  } else {
    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
                              (RegToImm ? TII->get(Hexagon::A2_subri) :
                                          TII->get(Hexagon::A2_addi));
    unsigned SubR = MRI->createVirtualRegister(IntRC);
    MachineInstrBuilder SubIB =
      BuildMI(*PH, InsertPos, DL, SubD, SubR);

    if (RegToReg) {
      SubIB.addReg(End->getReg(), 0, End->getSubReg())
           .addReg(Start->getReg(), 0, Start->getSubReg());
    } else if (RegToImm) {
      SubIB.addImm(EndV)
           .addReg(Start->getReg(), 0, Start->getSubReg());
    } else { // ImmToReg
      SubIB.addReg(End->getReg(), 0, End->getSubReg())
           .addImm(-StartV);
    }
    DistR = SubR;
    DistSR = 0;
  }

  // From DistR, compute AdjR (register with the adjusted distance).
  unsigned AdjR, AdjSR;

  if (AdjV == 0) {
    AdjR = DistR;
    AdjSR = DistSR;
  } else {
    // Generate CountR = ADD DistR, AdjVal
    unsigned AddR = MRI->createVirtualRegister(IntRC);
    MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
    BuildMI(*PH, InsertPos, DL, AddD, AddR)
      .addReg(DistR, 0, DistSR)
      .addImm(AdjV);

    AdjR = AddR;
    AdjSR = 0;
  }

  // From AdjR, compute CountR (register with the final count).
  unsigned CountR, CountSR;

  if (IVBump == 1) {
    CountR = AdjR;
    CountSR = AdjSR;
  } else {
    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
    unsigned Shift = Log2_32(IVBump);

    // Generate NormR = LSR DistR, Shift.
    unsigned LsrR = MRI->createVirtualRegister(IntRC);
    const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
      .addReg(AdjR, 0, AdjSR)
      .addImm(Shift);

    CountR = LsrR;
    CountSR = 0;
  }

  return new CountValue(CountValue::CV_Register, CountR, CountSR);
}


/// \brief Return true if the operation is invalid within hardware loop.
bool HexagonHardwareLoops::isInvalidLoopOperation(
      const MachineInstr *MI) const {

  // call is not allowed because the callee may use a hardware loop
  if (MI->getDesc().isCall())
    return true;

  // do not allow nested hardware loops
  if (isHardwareLoop(MI))
    return true;

  // check if the instruction defines a hardware loop register
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    unsigned R = MO.getReg();
    if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
        R == Hexagon::SA0 || R == Hexagon::SA1)
      return true;
  }
  return false;
}


/// \brief - Return true if the loop contains an instruction that inhibits
/// the use of the hardware loop function.
bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
  const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    MachineBasicBlock *MBB = Blocks[i];
    for (MachineBasicBlock::iterator
           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
      const MachineInstr *MI = &*MII;
      if (isInvalidLoopOperation(MI))
        return true;
    }
  }
  return false;
}


/// \brief Returns true if the instruction is dead.  This was essentially
/// copied from DeadMachineInstructionElim::isDead, but with special cases
/// for inline asm, physical registers and instructions with side effects
/// removed.
bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
  // Examine each operand.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;

    unsigned Reg = MO.getReg();
    if (MRI->use_nodbg_empty(Reg))
      continue;

    typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;

    // This instruction has users, but if the only user is the phi node for the
    // parent block, and the only use of that phi node is this instruction, then
    // this instruction is dead: both it (and the phi node) can be removed.
    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
    use_nodbg_iterator End = MRI->use_nodbg_end();
    if (std::next(I) != End || !I->getParent()->isPHI())
      return false;

    MachineInstr *OnePhi = I->getParent();
    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
      const MachineOperand &OPO = OnePhi->getOperand(j);
      if (!OPO.isReg() || !OPO.isDef())
        continue;

      unsigned OPReg = OPO.getReg();
      use_nodbg_iterator nextJ;
      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
           J != End; J = nextJ) {
        nextJ = std::next(J);
        MachineOperand &Use = *J;
        MachineInstr *UseMI = Use.getParent();

        // If the phi node has a user that is not MI, bail...
        if (MI != UseMI)
          return false;
      }
    }
    DeadPhis.push_back(OnePhi);
  }

  // If there are no defs with uses, the instruction is dead.
  return true;
}

void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
  // This procedure was essentially copied from DeadMachineInstructionElim.

  SmallVector<MachineInstr*, 1> DeadPhis;
  if (isDead(MI, DeadPhis)) {
    DEBUG(dbgs() << "HW looping will remove: " << *MI);

    // It is possible that some DBG_VALUE instructions refer to this
    // instruction.  Examine each def operand for such references;
    // if found, mark the DBG_VALUE as undef (but don't delete it).
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      MachineRegisterInfo::use_iterator nextI;
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
           E = MRI->use_end(); I != E; I = nextI) {
        nextI = std::next(I);  // I is invalidated by the setReg
        MachineOperand &Use = *I;
        MachineInstr *UseMI = I->getParent();
        if (UseMI == MI)
          continue;
        if (Use.isDebug())
          UseMI->getOperand(0).setReg(0U);
        // This may also be a "instr -> phi -> instr" case which can
        // be removed too.
      }
    }

    MI->eraseFromParent();
    for (unsigned i = 0; i < DeadPhis.size(); ++i)
      DeadPhis[i]->eraseFromParent();
  }
}

/// \brief Check if the loop is a candidate for converting to a hardware
/// loop.  If so, then perform the transformation.
///
/// This function works on innermost loops first.  A loop can be converted
/// if it is a counting loop; either a register value or an immediate.
///
/// The code makes several assumptions about the representation of the loop
/// in llvm.
bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
  // This is just for sanity.
  assert(L->getHeader() && "Loop without a header?");

  bool Changed = false;
  // Process nested loops first.
  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    Changed |= convertToHardwareLoop(*I);

  // If a nested loop has been converted, then we can't convert this loop.
  if (Changed)
    return Changed;

#ifndef NDEBUG
  // Stop trying after reaching the limit (if any).
  int Limit = HWLoopLimit;
  if (Limit >= 0) {
    if (Counter >= HWLoopLimit)
      return false;
    Counter++;
  }
#endif

  // Does the loop contain any invalid instructions?
  if (containsInvalidInstruction(L))
    return false;

  // Is the induction variable bump feeding the latch condition?
  if (!fixupInductionVariable(L))
    return false;

  MachineBasicBlock *LastMBB = L->getExitingBlock();
  // Don't generate hw loop if the loop has more than one exit.
  if (!LastMBB)
    return false;

  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
  if (LastI == LastMBB->end())
    return false;

  // Ensure the loop has a preheader: the loop instruction will be
  // placed there.
  bool NewPreheader = false;
  MachineBasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader) {
    Preheader = createPreheaderForLoop(L);
    if (!Preheader)
      return false;
    NewPreheader = true;
  }
  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();

  SmallVector<MachineInstr*, 2> OldInsts;
  // Are we able to determine the trip count for the loop?
  CountValue *TripCount = getLoopTripCount(L, OldInsts);
  if (!TripCount)
    return false;

  // Is the trip count available in the preheader?
  if (TripCount->isReg()) {
    // There will be a use of the register inserted into the preheader,
    // so make sure that the register is actually defined at that point.
    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
    MachineBasicBlock *BBDef = TCDef->getParent();
    if (!NewPreheader) {
      if (!MDT->dominates(BBDef, Preheader))
        return false;
    } else {
      // If we have just created a preheader, the dominator tree won't be
      // aware of it.  Check if the definition of the register dominates
      // the header, but is not the header itself.
      if (!MDT->properlyDominates(BBDef, L->getHeader()))
        return false;
    }
  }

  // Determine the loop start.
  MachineBasicBlock *LoopStart = L->getTopBlock();
  if (L->getLoopLatch() != LastMBB) {
    // When the exit and latch are not the same, use the latch block as the
    // start.
    // The loop start address is used only after the 1st iteration, and the
    // loop latch may contains instrs. that need to be executed after the
    // first iteration.
    LoopStart = L->getLoopLatch();
    // Make sure the latch is a successor of the exit, otherwise it won't work.
    if (!LastMBB->isSuccessor(LoopStart))
      return false;
  }

  // Convert the loop to a hardware loop.
  DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
  DebugLoc DL;
  if (InsertPos != Preheader->end())
    DL = InsertPos->getDebugLoc();

  if (TripCount->isReg()) {
    // Create a copy of the loop count register.
    unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
    // Add the Loop instruction to the beginning of the loop.
    BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
      .addMBB(LoopStart)
      .addReg(CountReg);
  } else {
    assert(TripCount->isImm() && "Expecting immediate value for trip count");
    // Add the Loop immediate instruction to the beginning of the loop,
    // if the immediate fits in the instructions.  Otherwise, we need to
    // create a new virtual register.
    int64_t CountImm = TripCount->getImm();
    if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) {
      unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
        .addImm(CountImm);
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
        .addMBB(LoopStart).addReg(CountReg);
    } else
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i))
        .addMBB(LoopStart).addImm(CountImm);
  }

  // Make sure the loop start always has a reference in the CFG.  We need
  // to create a BlockAddress operand to get this mechanism to work both the
  // MachineBasicBlock and BasicBlock objects need the flag set.
  LoopStart->setHasAddressTaken();
  // This line is needed to set the hasAddressTaken flag on the BasicBlock
  // object.
  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));

  // Replace the loop branch with an endloop instruction.
  DebugLoc LastIDL = LastI->getDebugLoc();
  BuildMI(*LastMBB, LastI, LastIDL,
          TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);

  // The loop ends with either:
  //  - a conditional branch followed by an unconditional branch, or
  //  - a conditional branch to the loop start.
  if (LastI->getOpcode() == Hexagon::J2_jumpt ||
      LastI->getOpcode() == Hexagon::J2_jumpf) {
    // Delete one and change/add an uncond. branch to out of the loop.
    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
    LastI = LastMBB->erase(LastI);
    if (!L->contains(BranchTarget)) {
      if (LastI != LastMBB->end())
        LastI = LastMBB->erase(LastI);
      SmallVector<MachineOperand, 0> Cond;
      TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
    }
  } else {
    // Conditional branch to loop start; just delete it.
    LastMBB->erase(LastI);
  }
  delete TripCount;

  // The induction operation and the comparison may now be
  // unneeded. If these are unneeded, then remove them.
  for (unsigned i = 0; i < OldInsts.size(); ++i)
    removeIfDead(OldInsts[i]);

  ++NumHWLoops;
  return true;
}


bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
                                            MachineInstr *CmpI) {
  assert (BumpI != CmpI && "Bump and compare in the same instruction?");

  MachineBasicBlock *BB = BumpI->getParent();
  if (CmpI->getParent() != BB)
    return false;

  typedef MachineBasicBlock::instr_iterator instr_iterator;
  // Check if things are in order to begin with.
  for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
    if (&*I == CmpI)
      return true;

  // Out of order.
  unsigned PredR = CmpI->getOperand(0).getReg();
  bool FoundBump = false;
  instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt);
  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
    MachineInstr *In = &*I;
    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
      MachineOperand &MO = In->getOperand(i);
      if (MO.isReg() && MO.isUse()) {
        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
          return false;
      }
    }

    if (In == BumpI) {
      instr_iterator After = BumpI;
      instr_iterator From = CmpI;
      BB->splice(std::next(After), BB, From);
      FoundBump = true;
      break;
    }
  }
  assert (FoundBump && "Cannot determine instruction order");
  return FoundBump;
}


MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
  MachineInstr *DI = MRI->getVRegDef(R);
  unsigned DOpc = DI->getOpcode();
  switch (DOpc) {
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32_Int_Real:
    case Hexagon::CONST64_Int_Real:
      return DI;
  }
  return nullptr;
}


int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
  if (MO.isImm())
    return MO.getImm();
  assert(MO.isReg());
  unsigned R = MO.getReg();
  MachineInstr *DI = defWithImmediate(R);
  assert(DI && "Need an immediate operand");
  // All currently supported "define-with-immediate" instructions have the
  // actual immediate value in the operand(1).
  int64_t v = DI->getOperand(1).getImm();
  return v;
}


void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
  if (MO.isImm()) {
    MO.setImm(Val);
    return;
  }

  assert(MO.isReg());
  unsigned R = MO.getReg();
  MachineInstr *DI = defWithImmediate(R);
  if (MRI->hasOneNonDBGUse(R)) {
    // If R has only one use, then just change its defining instruction to
    // the new immediate value.
    DI->getOperand(1).setImm(Val);
    return;
  }

  const TargetRegisterClass *RC = MRI->getRegClass(R);
  unsigned NewR = MRI->createVirtualRegister(RC);
  MachineBasicBlock &B = *DI->getParent();
  DebugLoc DL = DI->getDebugLoc();
  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
    .addImm(Val);
  MO.setReg(NewR);
}


bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Preheader = L->getLoopPreheader();
  MachineBasicBlock *Latch = L->getLoopLatch();

  if (!Header || !Preheader || !Latch)
    return false;

  // These data structures follow the same concept as the corresponding
  // ones in findInductionRegister (where some comments are).
  typedef std::pair<unsigned,int64_t> RegisterBump;
  typedef std::pair<unsigned,RegisterBump> RegisterInduction;
  typedef std::set<RegisterInduction> RegisterInductionSet;

  // Register candidates for induction variables, with their associated bumps.
  RegisterInductionSet IndRegs;

  // Look for induction patterns:
  //   vreg1 = PHI ..., [ latch, vreg2 ]
  //   vreg2 = ADD vreg1, imm
  typedef MachineBasicBlock::instr_iterator instr_iterator;
  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
       I != E && I->isPHI(); ++I) {
    MachineInstr *Phi = &*I;

    // Have a PHI instruction.
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
      if (Phi->getOperand(i+1).getMBB() != Latch)
        continue;

      unsigned PhiReg = Phi->getOperand(i).getReg();
      MachineInstr *DI = MRI->getVRegDef(PhiReg);
      unsigned UpdOpc = DI->getOpcode();
      bool isAdd = (UpdOpc == Hexagon::A2_addi);

      if (isAdd) {
        // If the register operand to the add/sub is the PHI we are looking
        // at, this meets the induction pattern.
        unsigned IndReg = DI->getOperand(1).getReg();
        if (MRI->getVRegDef(IndReg) == Phi) {
          unsigned UpdReg = DI->getOperand(0).getReg();
          int64_t V = DI->getOperand(2).getImm();
          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
        }
      }
    }  // for (i)
  }  // for (instr)

  if (IndRegs.empty())
    return false;

  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  SmallVector<MachineOperand,2> Cond;
  // AnalyzeBranch returns true if it fails to analyze branch.
  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
  if (NotAnalyzed)
    return false;

  // Check if the latch branch is unconditional.
  if (Cond.empty())
    return false;

  if (TB != Header && FB != Header)
    // The latch does not go back to the header.  Not a latch we know and love.
    return false;

  // Expecting a predicate register as a condition.  It won't be a hardware
  // predicate register at this point yet, just a vreg.
  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
  // into Cond, followed by the predicate register.  For non-negated branches
  // it's just the register.
  unsigned CSz = Cond.size();
  if (CSz != 1 && CSz != 2)
    return false;

  unsigned P = Cond[CSz-1].getReg();
  MachineInstr *PredDef = MRI->getVRegDef(P);

  if (!PredDef->isCompare())
    return false;

  SmallSet<unsigned,2> CmpRegs;
  MachineOperand *CmpImmOp = nullptr;

  // Go over all operands to the compare and look for immediate and register
  // operands.  Assume that if the compare has a single register use and a
  // single immediate operand, then the register is being compared with the
  // immediate value.
  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
    MachineOperand &MO = PredDef->getOperand(i);
    if (MO.isReg()) {
      // Skip all implicit references.  In one case there was:
      //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
      if (MO.isImplicit())
        continue;
      if (MO.isUse()) {
        unsigned R = MO.getReg();
        if (!defWithImmediate(R)) {
          CmpRegs.insert(MO.getReg());
          continue;
        }
        // Consider the register to be the "immediate" operand.
        if (CmpImmOp)
          return false;
        CmpImmOp = &MO;
      }
    } else if (MO.isImm()) {
      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
        return false;
      CmpImmOp = &MO;
    }
  }

  if (CmpRegs.empty())
    return false;

  // Check if the compared register follows the order we want.  Fix if needed.
  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
       I != E; ++I) {
    // This is a success.  If the register used in the comparison is one that
    // we have identified as a bumped (updated) induction register, there is
    // nothing to do.
    if (CmpRegs.count(I->first))
      return true;

    // Otherwise, if the register being compared comes out of a PHI node,
    // and has been recognized as following the induction pattern, and is
    // compared against an immediate, we can fix it.
    const RegisterBump &RB = I->second;
    if (CmpRegs.count(RB.first)) {
      if (!CmpImmOp)
        return false;

      int64_t CmpImm = getImmediate(*CmpImmOp);
      int64_t V = RB.second;
      if (V > 0 && CmpImm+V < CmpImm)  // Overflow (64-bit).
        return false;
      if (V < 0 && CmpImm+V > CmpImm)  // Overflow (64-bit).
        return false;
      CmpImm += V;
      // Some forms of cmp-immediate allow u9 and s10.  Assume the worst case
      // scenario, i.e. an 8-bit value.
      if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
        return false;

      // Make sure that the compare happens after the bump.  Otherwise,
      // after the fixup, the compare would use a yet-undefined register.
      MachineInstr *BumpI = MRI->getVRegDef(I->first);
      bool Order = orderBumpCompare(BumpI, PredDef);
      if (!Order)
        return false;

      // Finally, fix the compare instruction.
      setImmediate(*CmpImmOp, CmpImm);
      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
        MachineOperand &MO = PredDef->getOperand(i);
        if (MO.isReg() && MO.getReg() == RB.first) {
          MO.setReg(I->first);
          return true;
        }
      }
    }
  }

  return false;
}


/// \brief Create a preheader for a given loop.
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
      MachineLoop *L) {
  if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
    return TmpPH;

  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineFunction *MF = Header->getParent();
  DebugLoc DL;

  if (!Latch || Header->hasAddressTaken())
    return nullptr;

  typedef MachineBasicBlock::instr_iterator instr_iterator;

  // Verify that all existing predecessors have analyzable branches
  // (or no branches at all).
  typedef std::vector<MachineBasicBlock*> MBBVector;
  MBBVector Preds(Header->pred_begin(), Header->pred_end());
  SmallVector<MachineOperand,2> Tmp1;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;

  if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
    return nullptr;

  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
    MachineBasicBlock *PB = *I;
    if (PB != Latch) {
      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
      if (NotAnalyzed)
        return nullptr;
    }
  }

  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
  MF->insert(Header, NewPH);

  if (Header->pred_size() > 2) {
    // Ensure that the header has only two predecessors: the preheader and
    // the loop latch.  Any additional predecessors of the header should
    // join at the newly created preheader.  Inspect all PHI nodes from the
    // header and create appropriate corresponding PHI nodes in the preheader.

    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
         I != E && I->isPHI(); ++I) {
      MachineInstr *PN = &*I;

      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
      NewPH->insert(NewPH->end(), NewPN);

      unsigned PR = PN->getOperand(0).getReg();
      const TargetRegisterClass *RC = MRI->getRegClass(PR);
      unsigned NewPR = MRI->createVirtualRegister(RC);
      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));

      // Copy all non-latch operands of a header's PHI node to the newly
      // created PHI node in the preheader.
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
        unsigned PredR = PN->getOperand(i).getReg();
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
        if (PredB == Latch)
          continue;

        NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
      }

      // Remove copied operands from the old PHI node and add the value
      // coming from the preheader's PHI.
      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
        if (PredB != Latch) {
          PN->RemoveOperand(i+1);
          PN->RemoveOperand(i);
        }
      }
      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
      PN->addOperand(MachineOperand::CreateMBB(NewPH));
    }

  } else {
    assert(Header->pred_size() == 2);

    // The header has only two predecessors, but the non-latch predecessor
    // is not a preheader (e.g. it has other successors, etc.)
    // In such a case we don't need any extra PHI nodes in the new preheader,
    // all we need is to adjust existing PHIs in the header to now refer to
    // the new preheader.
    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
         I != E && I->isPHI(); ++I) {
      MachineInstr *PN = &*I;
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
        MachineOperand &MO = PN->getOperand(i+1);
        if (MO.getMBB() != Latch)
          MO.setMBB(NewPH);
      }
    }
  }

  // "Reroute" the CFG edges to link in the new preheader.
  // If any of the predecessors falls through to the header, insert a branch
  // to the new preheader in that place.
  SmallVector<MachineOperand,1> Tmp2;
  SmallVector<MachineOperand,1> EmptyCond;

  TB = FB = nullptr;

  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
    MachineBasicBlock *PB = *I;
    if (PB != Latch) {
      Tmp2.clear();
      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
      (void)NotAnalyzed; // suppress compiler warning
      assert (!NotAnalyzed && "Should be analyzable!");
      if (TB != Header && (Tmp2.empty() || FB != Header))
        TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
      PB->ReplaceUsesOfBlockWith(Header, NewPH);
    }
  }

  // It can happen that the latch block will fall through into the header.
  // Insert an unconditional branch to the header.
  TB = FB = nullptr;
  bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
  (void)LatchNotAnalyzed; // suppress compiler warning
  assert (!LatchNotAnalyzed && "Should be analyzable!");
  if (!TB && !FB)
    TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);

  // Finally, the branch from the preheader to the header.
  TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
  NewPH->addSuccessor(Header);

  return NewPH;
}